mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-08 10:00:29 +08:00
Sync v2.0 version of code to github repo
This commit is contained in:
@@ -1,5 +1,5 @@
|
||||
"""
|
||||
# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
|
||||
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
@@ -14,34 +14,13 @@
|
||||
# limitations under the License.
|
||||
"""
|
||||
|
||||
from dataclasses import dataclass
|
||||
|
||||
import paddle
|
||||
from paddle import nn
|
||||
from paddlenlp.utils.log import logger
|
||||
from paddleformers.utils.log import logger
|
||||
|
||||
from fastdeploy import envs
|
||||
from fastdeploy.model_executor.layers.utils import get_tensor
|
||||
|
||||
from .cutlass_fused_moe import CutlassFusedMoeMethod
|
||||
|
||||
|
||||
@dataclass
|
||||
class MoEComputeParams:
|
||||
"""
|
||||
some params for computing MoE.
|
||||
it is given to different compute methods.
|
||||
"""
|
||||
global_num_experts: int = -1
|
||||
top_k: int = -1
|
||||
hidden_size: int = -1
|
||||
num_local_experts: int = -1
|
||||
moe_intermediate_size: int = -1
|
||||
|
||||
tp_size: int = -1
|
||||
ep_size: int = -1
|
||||
dp_size: int = -1
|
||||
|
||||
moe_quant_type: str = ""
|
||||
|
||||
|
||||
class FusedMoE(nn.Layer):
|
||||
"""
|
||||
@@ -50,174 +29,195 @@ class FusedMoE(nn.Layer):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
llm_config,
|
||||
fd_config,
|
||||
moe_intermediate_size: int = -1,
|
||||
num_experts: int = -1,
|
||||
expert_id_offset: int = 0,
|
||||
top_k: int = -1,
|
||||
moe_use_gate_correction_bias: bool = False,
|
||||
moe_quant_type: str = "weight_only_int4",
|
||||
layer_idx: int = -1,
|
||||
gate_weight_key=None,
|
||||
gate_correction_bias_key=None,
|
||||
ffn1_expert_weight_key=None,
|
||||
ffn2_expert_weight_key=None,
|
||||
moe_ffn1_bias_keys=None,
|
||||
moe_ffn2_bias_keys=None,
|
||||
moe_ffn1_weight_scale_keys=None,
|
||||
moe_ffn2_weight_scale_keys=None,
|
||||
moe_ffn1_in_scale_keys=None,
|
||||
moe_ffn2_in_scale_keys=None,
|
||||
moe_tag: str = "",
|
||||
weight_key_map: dict = {},
|
||||
):
|
||||
"""
|
||||
Initialize the Moe layer with given parameters.
|
||||
Args:
|
||||
llm_config (LLMConfig): Arguments related to inference, containing
|
||||
fd_config (FDConfig): Arguments related to inference, containing
|
||||
attributes such as weight_dtype, act_dtype, mp_size, hidden_size, head_dim,
|
||||
num_attention_heads, and ffn_hidden_size.
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
self.llm_config = llm_config
|
||||
self.fd_config = fd_config
|
||||
self.layer_idx = layer_idx
|
||||
self.tp_size = llm_config.parallel_config.mp_size
|
||||
self.ep_size = llm_config.parallel_config.ep_size
|
||||
|
||||
self.moe_use_gate_correction_bias = moe_use_gate_correction_bias
|
||||
self.tp_size = fd_config.parallel_config.tensor_parallel_degree
|
||||
self.ep_size = fd_config.parallel_config.expert_parallel_degree
|
||||
self.ep_rank = fd_config.parallel_config.expert_parallel_rank
|
||||
|
||||
assert (self.tp_size >= 1 and self.ep_size == 1) or \
|
||||
(self.tp_size == 1 and self.ep_size > 1), \
|
||||
'MoE only support parallelism on TP or EP dimension.'
|
||||
|
||||
self.hidden_size = fd_config.model_config.hidden_size
|
||||
self.moe_config = fd_config.moe_config
|
||||
|
||||
self.hidden_size = llm_config.model_config.hidden_size
|
||||
self.moe_config = llm_config.moe_config
|
||||
self.use_offline_quant = llm_config.tmp_config.use_offline_quant
|
||||
moe_tag = self.llm_config.moe_config.moe_tag
|
||||
logger.info(f"{moe_tag}MoE is running in {moe_quant_type} mode")
|
||||
|
||||
self.moe_quant_type = moe_quant_type
|
||||
self.num_experts = num_experts
|
||||
self.num_local_experts = self.num_experts // self.ep_size
|
||||
|
||||
logger.info(f'''MoE config is num_experts:{num_experts},
|
||||
top_k:{top_k},
|
||||
hidden_size:{self.hidden_size},
|
||||
moe_intermediate_size:{moe_intermediate_size}''')
|
||||
logger.info(
|
||||
f"MoE is running on moe_quant_type: {self.moe_quant_type}, ep:{self.ep_size}, tp:{self.tp_size} mode"
|
||||
)
|
||||
self.moe_intermediate_size = moe_intermediate_size // self.tp_size
|
||||
|
||||
self.gate_weight_key = gate_weight_key
|
||||
self.gate_correction_bias_key = gate_correction_bias_key
|
||||
self.top_k = top_k
|
||||
self.hidden_size = self.hidden_size
|
||||
self.moe_intermediate_size = moe_intermediate_size // self.tp_size
|
||||
self.weight_key_map = weight_key_map
|
||||
|
||||
self.ffn1_expert_weight_key = ffn1_expert_weight_key
|
||||
self.ffn2_expert_weight_key = ffn2_expert_weight_key
|
||||
self.ffn1_bias_key = moe_ffn1_bias_keys
|
||||
self.ffn2_bias_key = moe_ffn2_bias_keys
|
||||
self.use_method = envs.FD_MOE_BACKEND.lower()
|
||||
self.gate_correction_bias = None
|
||||
self.moe_tag = moe_tag
|
||||
|
||||
if self.moe_quant_type == "w4a8":
|
||||
# below keys are only used in MoE W4A8!
|
||||
self.ffn1_expert_weight_scale_key = moe_ffn1_weight_scale_keys
|
||||
self.ffn2_expert_weight_scale_key = moe_ffn2_weight_scale_keys
|
||||
self.ffn1_expert_in_scale_key = moe_ffn1_in_scale_keys
|
||||
self.ffn2_expert_in_scale_key = moe_ffn2_in_scale_keys
|
||||
if self.ep_size > 1:
|
||||
expert_id_offset = expert_id_offset + self.ep_rank * self.num_local_experts
|
||||
|
||||
self.compute_method = CutlassFusedMoeMethod()
|
||||
self.expert_id_offset = expert_id_offset
|
||||
|
||||
self.moe_compute_params = MoEComputeParams()
|
||||
self.moe_compute_params.global_num_experts = self.num_experts
|
||||
self.moe_compute_params.top_k = top_k
|
||||
self.moe_compute_params.hidden_size = self.hidden_size
|
||||
self.moe_compute_params.num_local_experts = self.num_local_experts
|
||||
self.moe_compute_params.moe_quant_type = self.moe_quant_type
|
||||
self.moe_compute_params.moe_intermediate_size = self.moe_intermediate_size
|
||||
self.moe_compute_params.ep_size = self.ep_size
|
||||
self.moe_compute_params.tp_size = self.tp_size
|
||||
if fd_config.quant_config:
|
||||
self.quant_method = fd_config.quant_config.get_quant_method(self)
|
||||
else:
|
||||
# now, no quant method(w_fp16 a_fp16) can't get from quant_config, we will optimize it in future
|
||||
from .fused_moe_cutlass_backend import CutlassMoEMethod
|
||||
self.quant_method = CutlassMoEMethod(None)
|
||||
|
||||
def load_gate_state_dict(self, state_dict):
|
||||
if self.ep_size > 1:
|
||||
self.quant_method.init_ep(self)
|
||||
|
||||
logger.info(
|
||||
f"{moe_tag}MoE config is {num_experts=}[{expert_id_offset}, {expert_id_offset+self.num_local_experts}), \
|
||||
{top_k=}, hidden_size={self.hidden_size}, {moe_intermediate_size=}, \
|
||||
, ep_size={self.ep_size}, \
|
||||
tp_size={self.tp_size}.")
|
||||
|
||||
def load_experts_weight(self, state_dict: dict,
|
||||
ffn1_expert_weight_key: str,
|
||||
ffn2_expert_weight_key: str):
|
||||
"""
|
||||
load_gate_state_dict function.
|
||||
Load experts weight from state_dict.
|
||||
Args:
|
||||
state_dict (dict): The state_dict of model.
|
||||
ffn1_expert_weight_key (str): The key of ffn1 expert weight.
|
||||
ffn2_expert_weight_key (str): The key of ffn2 expert weight.
|
||||
"""
|
||||
up_gate_proj_weight = []
|
||||
up_gate_proj_weight_scale = []
|
||||
down_proj_weight = []
|
||||
down_proj_weight_scale = []
|
||||
for j in range(self.num_experts):
|
||||
up_gate_proj_weight.append(
|
||||
get_tensor(
|
||||
state_dict.pop(self.ffn1_expert_weight_key.format(j))))
|
||||
down_proj_weight.append(
|
||||
get_tensor(
|
||||
state_dict.pop(self.ffn2_expert_weight_key.format(j))))
|
||||
return up_gate_proj_weight, down_proj_weight
|
||||
ffn1_weights = []
|
||||
ffn2_weights = []
|
||||
is_ffn_merged = ffn1_expert_weight_key.format(
|
||||
self.expert_id_offset) in state_dict
|
||||
if is_ffn_merged:
|
||||
for i in range(self.num_local_experts):
|
||||
expert_idx = self.expert_id_offset + i
|
||||
ffn1_weights.append(
|
||||
get_tensor(
|
||||
state_dict.pop(
|
||||
ffn1_expert_weight_key.format(expert_idx))))
|
||||
ffn2_weights.append(
|
||||
get_tensor(
|
||||
state_dict.pop(
|
||||
ffn2_expert_weight_key.format(expert_idx))))
|
||||
else:
|
||||
gate_expert_weight_key = ffn1_expert_weight_key.replace(
|
||||
"up_gate_proj", "gate_proj")
|
||||
up_expert_weight_key = ffn1_expert_weight_key.replace(
|
||||
"up_gate_proj", "up_proj")
|
||||
for j in range(self.num_local_experts):
|
||||
expert_idx = self.expert_id_offset + j
|
||||
gate = get_tensor(
|
||||
state_dict.pop(gate_expert_weight_key.format(expert_idx)))
|
||||
up = get_tensor(
|
||||
state_dict.pop(up_expert_weight_key.format(expert_idx)))
|
||||
ffn1_weights.append(paddle.concat([gate, up], axis=-1))
|
||||
ffn2_weights.append(
|
||||
get_tensor(
|
||||
state_dict.pop(
|
||||
ffn2_expert_weight_key.format(expert_idx))))
|
||||
return ffn1_weights, ffn2_weights
|
||||
|
||||
def load_state_dict(self, state_dict, is_update: bool = False):
|
||||
def extract_moe_ffn_weights(self, state_dict: dict):
|
||||
"""
|
||||
Extract MoE FFN weights from state dict based on weight key mapping.
|
||||
|
||||
Args:
|
||||
state_dict (dict): Model state dictionary containing the weights.
|
||||
|
||||
Returns:
|
||||
tuple: A tuple containing two lists:
|
||||
- ffn1_weights: List of tensors for first FFN layer weights
|
||||
- ffn2_weights: List of tensors for second FFN layer weights
|
||||
|
||||
Raises:
|
||||
AssertionError: If required weight keys are missing or number of weights
|
||||
doesn't match number of local experts.
|
||||
"""
|
||||
ffn1_expert_weight_key = self.weight_key_map.get(
|
||||
"ffn1_expert_weight_key", None)
|
||||
ffn2_expert_weight_key = self.weight_key_map.get(
|
||||
"ffn2_expert_weight_key", None)
|
||||
assert ffn1_expert_weight_key is not None, "ffn1_expert_weight_key should not be none."
|
||||
assert ffn2_expert_weight_key is not None, "ffn2_expert_weight_key should not be none."
|
||||
|
||||
ffn1_weights, ffn2_weights = self.load_experts_weight(
|
||||
state_dict, ffn1_expert_weight_key, ffn2_expert_weight_key)
|
||||
assert len(
|
||||
ffn1_weights
|
||||
) == self.num_local_experts, "ffn1_weights length should be equal to num_local_experts."
|
||||
assert len(
|
||||
ffn2_weights
|
||||
) == self.num_local_experts, "ffn2_weights length should be equal to num_local_experts."
|
||||
|
||||
return ffn1_weights, ffn2_weights
|
||||
|
||||
def extract_gate_correction_bias(self, gate_correction_bias_key,
|
||||
state_dict):
|
||||
"""
|
||||
extract_gate_correction_bias function.
|
||||
"""
|
||||
gate_correction_bias_tensor = get_tensor(
|
||||
state_dict.pop(gate_correction_bias_key)).astype("float32")
|
||||
return gate_correction_bias_tensor
|
||||
|
||||
def load_state_dict(self, state_dict):
|
||||
"""
|
||||
load_state_dict function.
|
||||
"""
|
||||
# gate
|
||||
if not is_update:
|
||||
gate_weight_tensor = get_tensor(state_dict.pop(self.gate_weight_key))
|
||||
self.gate_weight = self.create_parameter(
|
||||
shape=gate_weight_tensor.shape,
|
||||
dtype="float32",
|
||||
)
|
||||
self.gate_weight.set_value(gate_weight_tensor)
|
||||
|
||||
# gate_correction_bias
|
||||
self.gate_correction_bias_key = self.weight_key_map.get(
|
||||
"gate_correction_bias_key", None)
|
||||
if self.gate_correction_bias_key is not None and self.gate_correction_bias_key in state_dict:
|
||||
self.moe_use_gate_correction_bias = True
|
||||
else:
|
||||
self.moe_use_gate_correction_bias = False
|
||||
if self.moe_use_gate_correction_bias:
|
||||
gate_correction_bias_tensor = get_tensor(
|
||||
state_dict.pop(self.gate_correction_bias_key))
|
||||
|
||||
gate_correction_bias_tensor = self.extract_gate_correction_bias(
|
||||
self.gate_correction_bias_key, state_dict)
|
||||
self.gate_correction_bias = self.create_parameter(
|
||||
shape=gate_correction_bias_tensor.shape,
|
||||
dtype="float32",
|
||||
)
|
||||
|
||||
self.gate_correction_bias.set_value(gate_correction_bias_tensor)
|
||||
|
||||
gate_weight_key = self.weight_key_map.get("gate_weight_key", None)
|
||||
assert gate_weight_key is not None, "gate_weight_key should not be None, please check model checkpoints"
|
||||
|
||||
gate_weight_tensor = get_tensor(state_dict.pop(gate_weight_key))
|
||||
|
||||
self.gate_weight = self.create_parameter(
|
||||
shape=gate_weight_tensor.shape,
|
||||
dtype="float32",
|
||||
)
|
||||
self.gate_weight.set_value(gate_weight_tensor.astype("float32"))
|
||||
|
||||
if self.fd_config.model_config.is_quantized:
|
||||
self.quant_method.process_prequanted_weights(self, state_dict)
|
||||
else:
|
||||
self.gate_correction_bias = None
|
||||
self.quant_method.create_weights(self, state_dict)
|
||||
|
||||
up_gate_proj_weight, down_proj_weight = self.load_gate_state_dict(
|
||||
state_dict)
|
||||
|
||||
weight1_scale = None
|
||||
weight2_scale = None
|
||||
ffn1_in_scale = None
|
||||
ffn2_in_scale = None
|
||||
if self.moe_quant_type == "w4a8":
|
||||
weight1_scale = []
|
||||
weight2_scale = []
|
||||
ffn1_in_scale = []
|
||||
ffn2_in_scale = []
|
||||
|
||||
for j in range(self.num_experts):
|
||||
weight1_scale.append(
|
||||
get_tensor(
|
||||
state_dict.pop(
|
||||
self.ffn1_expert_weight_scale_key.format(
|
||||
self.layer_idx, j))))
|
||||
weight2_scale.append(
|
||||
get_tensor(
|
||||
state_dict.pop(
|
||||
self.ffn2_expert_weight_scale_key.format(
|
||||
self.layer_idx, j))))
|
||||
ffn1_in_scale.append(
|
||||
get_tensor(
|
||||
state_dict.pop(
|
||||
self.ffn1_expert_in_scale_key.format(
|
||||
self.layer_idx, j))))
|
||||
ffn2_in_scale.append(
|
||||
get_tensor(
|
||||
state_dict.pop(
|
||||
self.ffn2_expert_in_scale_key.format(
|
||||
self.layer_idx, j))))
|
||||
|
||||
# other weight is with compute_method
|
||||
# different method may have different way to create weights
|
||||
self.compute_method.create_weights(self, self.moe_compute_params,
|
||||
up_gate_proj_weight,
|
||||
down_proj_weight, None, None,
|
||||
weight1_scale, weight2_scale,
|
||||
ffn1_in_scale, ffn2_in_scale)
|
||||
|
||||
def forward(self, x, **kwargs):
|
||||
def forward(self, x: paddle.Tensor):
|
||||
"""
|
||||
Defines the forward computation of the moe layer.
|
||||
|
||||
@@ -225,13 +225,9 @@ class FusedMoE(nn.Layer):
|
||||
x (Tensor): Input tensor to the moe layer.
|
||||
|
||||
Returns:
|
||||
Tensor: Output tensor.
|
||||
Tensor: Output tensor.s
|
||||
|
||||
"""
|
||||
|
||||
out = self.compute_method.apply(self, self.moe_compute_params, x)
|
||||
if self.tp_size > 1:
|
||||
from fastdeploy.distributed.communication_op import \
|
||||
tensor_model_parallel_all_reduce
|
||||
tensor_model_parallel_all_reduce(out)
|
||||
gate_out = paddle.matmul(x.cast("float32"), self.gate_weight)
|
||||
out = self.quant_method.apply(self, x, gate_out)
|
||||
return out
|
||||
|
Reference in New Issue
Block a user