Sync v2.0 version of code to github repo

This commit is contained in:
Jiang-Jia-Jun
2025-06-29 23:29:37 +00:00
parent d151496038
commit 92c2cfa2e7
597 changed files with 78776 additions and 22905 deletions

View File

@@ -28,7 +28,7 @@ class VocabParallelEmbedding(nn.Layer):
def __init__(
self,
llm_config,
fd_config,
num_embeddings,
embedding_dim=768,
params_dtype="bfloat16",
@@ -38,7 +38,7 @@ class VocabParallelEmbedding(nn.Layer):
Initialize the VocabParallelEmbedding layer for the model.
Args:
llm_config (LLMConfig): Arguments related to inference, containing
fd_config (FDConfig): Arguments related to inference, containing
attributes such as weight_dtype, act_dtype, mp_size, hidden_size, head_dim,
num_attention_heads, and ffn_hidden_size.
num_embeddings : vocabulary size.
@@ -48,21 +48,21 @@ class VocabParallelEmbedding(nn.Layer):
you can give it any name you like.
"""
super().__init__()
self.fd_config = fd_config
hcg = fleet.get_hybrid_communicate_group()
self.mp_rank = hcg.get_model_parallel_rank()
self.column_cut = llm_config.parallel_config.column_cut
self.column_cut = fd_config.parallel_config.column_cut
self.world_size = hcg.get_model_parallel_world_size()
self.ring_id = hcg.get_model_parallel_group().id
self.use_rope = llm_config.model_config.use_rope
self.rope_head_dim = llm_config.model_config.rope_head_dim
self.use_ep = llm_config.parallel_config.use_ep
self.hidden_dropout_prob = llm_config.model_config.hidden_dropout_prob
self.initializer_range = llm_config.model_config.initializer_range
self.weight_sharing = llm_config.model_config.weight_sharing
self.sequence_parallel = llm_config.parallel_config.sequence_parallel
self.weight_sharing_add_bias = llm_config.model_config.weight_sharing_add_bias
self.max_position_embeddings = llm_config.model_config.max_position_embeddings
self.freeze_embedding = llm_config.model_config.freeze_embedding
self.use_rope = fd_config.model_config.use_rope
self.rope_head_dim = fd_config.model_config.rope_head_dim
self.use_ep = fd_config.parallel_config.use_ep
self.hidden_dropout_prob = fd_config.model_config.hidden_dropout_prob
self.initializer_range = fd_config.model_config.initializer_range
self.sequence_parallel = fd_config.parallel_config.sequence_parallel
self.max_position_embeddings = fd_config.model_config.max_position_embeddings
self.freeze_embedding = fd_config.model_config.freeze_embedding
self.tie_word_embeddings = fd_config.model_config.tie_word_embeddings
if self.use_ep:
self.word_embeddings = nn.Embedding(
@@ -78,8 +78,7 @@ class VocabParallelEmbedding(nn.Layer):
get_model_parallel_group(),
weight_attr=paddle.ParamAttr(
initializer=nn.initializer.Normal(
mean=0.0, std=self.initializer_range),
),
mean=0.0, std=self.initializer_range), ),
)
else:
# column cut embedding
@@ -87,6 +86,7 @@ class VocabParallelEmbedding(nn.Layer):
num_embeddings,
embedding_dim // self.world_size,
)
self.word_embeddings.weight.is_distributed = True
self.word_embeddings.weight.split_axis = 1
@@ -94,34 +94,12 @@ class VocabParallelEmbedding(nn.Layer):
self.position_embeddings = nn.Embedding(
self.max_position_embeddings,
embedding_dim,
weight_attr=paddle.ParamAttr(
initializer=nn.initializer.Normal(
mean=0.0, std=self.initializer_range),
),
weight_attr=paddle.ParamAttr(initializer=nn.initializer.Normal(
mean=0.0, std=self.initializer_range), ),
)
self.prefix = prefix
if self.weight_sharing and self.weight_sharing_add_bias:
assert num_embeddings % self.world_size == 0
if self.use_ep:
self.bias = self.create_parameter(
shape=[num_embeddings],
dtype=paddle.get_default_dtype(),
attr=paddle.ParamAttr(
initializer=paddle.nn.initializer.Constant(value=0.0),
),
is_bias=True,
)
else:
self.bias = self.create_parameter(
shape=[num_embeddings // self.world_size],
dtype=paddle.get_default_dtype(),
attr=mask_lm_out_bias_attr,
is_bias=True,
)
self.bias.is_distributed = True
if self.freeze_embedding:
self.word_embeddings.weight.learning_rate = 0.0
if not self.use_rope:
@@ -138,9 +116,14 @@ class VocabParallelEmbedding(nn.Layer):
Args:
state_dict (dict): A dictionary containing the checkpoint weights and biases.
"""
self.word_embeddings.weight.set_value(
get_tensor(state_dict.pop(self.prefix + ".weight")).astype(
paddle.get_default_dtype()))
if self.tie_word_embeddings:
self.word_embeddings.weight.set_value(
get_tensor(state_dict[self.prefix + ".weight"]).astype(
paddle.get_default_dtype()))
else:
self.word_embeddings.weight.set_value(
get_tensor(state_dict.pop(self.prefix + ".weight")).astype(
paddle.get_default_dtype()))
def forward(self, ids_remove_padding=None):
"""