Sync v2.0 version of code to github repo

This commit is contained in:
Jiang-Jia-Jun
2025-06-29 23:29:37 +00:00
parent d151496038
commit 92c2cfa2e7
597 changed files with 78776 additions and 22905 deletions

View File

@@ -1,4 +1,3 @@
"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
@@ -16,15 +15,14 @@
"""
from __future__ import annotations
from typing import TYPE_CHECKING
import paddle
from paddle.nn.functional import scaled_dot_product_attention
from fastdeploy.model_executor.layers.attention.base_attention_backend import AttentionBackend
from fastdeploy.worker.model_runner import ForwardMeta, ForwardMode
from fastdeploy.model_executor.layers.attention.base_attention_backend import \
AttentionBackend
from fastdeploy.worker.forward_meta import ForwardMeta
class PaddleNativeAttnBackend(AttentionBackend):
@@ -33,10 +31,8 @@ class PaddleNativeAttnBackend(AttentionBackend):
Which is used only for testing purpose.
"""
def __init__(self, device):
def __init__(self) -> None:
super().__init__()
self.forward_metadata = None
self.device = device
def init_attention_metadata(self, forward_meta: ForwardMeta):
"""Init the metadata for a forward pass."""
@@ -53,8 +49,8 @@ class PaddleNativeAttnBackend(AttentionBackend):
seq_lens: paddle.Tensor,
extend_prefix_lens: paddle.Tensor,
extend_seq_lens: paddle.Tensor,
causal=False,
):
causal: bool = False,
) -> paddle.Tensor:
"""Run the extend forward by using paddle native sdpa op.
Args:
@@ -111,18 +107,14 @@ class PaddleNativeAttnBackend(AttentionBackend):
per_req_value = v_cache[per_req_tokens].transpose(
[query.dim() - 2, 0])
per_req_out_redudant = (
scaled_dot_product_attention(
per_req_query_redudant.unsqueeze(0),
per_req_key.unsqueeze(0),
per_req_value.unsqueeze(0),
is_causal=causal,
)
.squeeze(0)
.transpose([query.dim() - 2, 0])
)
output[start_q:end_q, :,
:] = per_req_out_redudant[prefill_seq_len_q:, :, :]
per_req_out_redudant = (scaled_dot_product_attention(
per_req_query_redudant.unsqueeze(0),
per_req_key.unsqueeze(0),
per_req_value.unsqueeze(0),
is_causal=causal,
).squeeze(0).transpose([query.dim() - 2, 0]))
output[start_q:end_q, :, :] = per_req_out_redudant[
prefill_seq_len_q:, :, :]
start_q, start_kv = end_q, end_kv
return output
@@ -132,7 +124,7 @@ class PaddleNativeAttnBackend(AttentionBackend):
key: paddle.Tensor,
value: paddle.Tensor,
is_causal: bool = False,
):
) -> paddle.Tensor:
"""Paddle implementation of scaled dot-product attention."""
# query, key, value shape: [batch_size, num_heads, seq_len, head_size]
d_k = query.shape[-1]
@@ -159,8 +151,8 @@ class PaddleNativeAttnBackend(AttentionBackend):
req_to_token: paddle.Tensor,
req_pool_indices: paddle.Tensor,
seq_lens: paddle.Tensor,
causal=False,
):
causal: bool = False,
) -> paddle.Tensor:
"""Run the decode forward by using paddle native sdpa op.
Args:
@@ -203,16 +195,12 @@ class PaddleNativeAttnBackend(AttentionBackend):
per_req_value = v_cache[per_req_tokens].transpose(
[query.dim() - 2, 0])
per_req_out = (
self._scaled_dot_product_attention(
per_req_query.unsqueeze(0),
per_req_key.unsqueeze(0),
per_req_value.unsqueeze(0),
is_causal=causal,
)
.squeeze(0)
.transpose([query.dim() - 2, 0])
)
per_req_out = (self._scaled_dot_product_attention(
per_req_query.unsqueeze(0),
per_req_key.unsqueeze(0),
per_req_value.unsqueeze(0),
is_causal=causal,
).squeeze(0).transpose([query.dim() - 2, 0]))
output[start_q:end_q, :, :] = per_req_out
start_q, start_kv = end_q, end_kv
@@ -220,31 +208,28 @@ class PaddleNativeAttnBackend(AttentionBackend):
def forward_extend(
self,
q,
k,
v,
q: paddle.Tensor,
k: paddle.Tensor,
v: paddle.Tensor,
layer: paddle.nn.Layer,
forward_meta: ForwardMeta,
save_kv_cache=True,
):
save_kv_cache: bool = True,
) -> paddle.Tensor:
"""
Run the prefill and extend(prompt cache) attention forward by using paddle native sdpa op.
"""
if layer.qk_head_dim != layer.v_head_dim:
o = q.new_empty(
(q.shape[0], layer.tp_q_head_num * layer.v_head_dim))
(q.shape[0], layer.self.num_heads * layer.v_head_dim))
else:
o = paddle.empty_like(q)
if save_kv_cache:
forward_meta.token_to_kv_pool.set_kv_buffer(
layer, forward_meta.out_cache_loc, k, v
)
layer, forward_meta.out_cache_loc, k, v)
use_gqa = layer.tp_q_head_num != layer.tp_k_head_num
q_ = q.view([-1, layer.tp_q_head_num, layer.qk_head_dim])
o_ = o.view([-1, layer.tp_q_head_num, layer.v_head_dim])
q_ = q.view([-1, layer.self.num_heads, layer.qk_head_dim])
o_ = o.view([-1, layer.self.num_heads, layer.v_head_dim])
causal = True
@@ -264,31 +249,29 @@ class PaddleNativeAttnBackend(AttentionBackend):
def forward_decode(
self,
q,
k,
v,
q: paddle.Tensor,
k: paddle.Tensor,
v: paddle.Tensor,
layer: paddle.nn.Layer,
forward_meta: ForwardMeta,
):
) -> paddle.Tensor:
"""
Run the decoding attention forward by using paddle native sdpa op.
"""
q = q.reshape([-1, layer.tp_q_head_num * layer.qk_head_dim])
q = q.reshape([-1, layer.self.num_heads * layer.qk_head_dim])
if layer.qk_head_dim != layer.v_head_dim:
o = q.new_empty(
(q.shape[0], layer.tp_q_head_num * layer.v_head_dim))
(q.shape[0], layer.self.num_heads * layer.v_head_dim))
else:
o = paddle.empty_like(q)
forward_meta.token_to_kv_pool.set_kv_buffer(
layer, forward_meta.out_cache_loc, k, v
)
forward_meta.token_to_kv_pool.set_kv_buffer(layer,
forward_meta.out_cache_loc,
k, v)
use_gqa = layer.tp_q_head_num != layer.tp_k_head_num
q_ = q.view([-1, layer.tp_q_head_num, layer.qk_head_dim])
o_ = o.view([-1, layer.tp_q_head_num, layer.v_head_dim])
q_ = q.view([-1, layer.self.num_heads, layer.qk_head_dim])
o_ = o.view([-1, layer.self.num_heads, layer.v_head_dim])
self._run_sdpa_forward_decode(
q_,