mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00
Sync v2.0 version of code to github repo
This commit is contained in:
@@ -1,4 +1,3 @@
|
||||
|
||||
"""
|
||||
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
@@ -16,15 +15,14 @@
|
||||
|
||||
"""
|
||||
|
||||
|
||||
from __future__ import annotations
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
import paddle
|
||||
from paddle.nn.functional import scaled_dot_product_attention
|
||||
|
||||
from fastdeploy.model_executor.layers.attention.base_attention_backend import AttentionBackend
|
||||
from fastdeploy.worker.model_runner import ForwardMeta, ForwardMode
|
||||
from fastdeploy.model_executor.layers.attention.base_attention_backend import \
|
||||
AttentionBackend
|
||||
from fastdeploy.worker.forward_meta import ForwardMeta
|
||||
|
||||
|
||||
class PaddleNativeAttnBackend(AttentionBackend):
|
||||
@@ -33,10 +31,8 @@ class PaddleNativeAttnBackend(AttentionBackend):
|
||||
Which is used only for testing purpose.
|
||||
"""
|
||||
|
||||
def __init__(self, device):
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
self.forward_metadata = None
|
||||
self.device = device
|
||||
|
||||
def init_attention_metadata(self, forward_meta: ForwardMeta):
|
||||
"""Init the metadata for a forward pass."""
|
||||
@@ -53,8 +49,8 @@ class PaddleNativeAttnBackend(AttentionBackend):
|
||||
seq_lens: paddle.Tensor,
|
||||
extend_prefix_lens: paddle.Tensor,
|
||||
extend_seq_lens: paddle.Tensor,
|
||||
causal=False,
|
||||
):
|
||||
causal: bool = False,
|
||||
) -> paddle.Tensor:
|
||||
"""Run the extend forward by using paddle native sdpa op.
|
||||
|
||||
Args:
|
||||
@@ -111,18 +107,14 @@ class PaddleNativeAttnBackend(AttentionBackend):
|
||||
per_req_value = v_cache[per_req_tokens].transpose(
|
||||
[query.dim() - 2, 0])
|
||||
|
||||
per_req_out_redudant = (
|
||||
scaled_dot_product_attention(
|
||||
per_req_query_redudant.unsqueeze(0),
|
||||
per_req_key.unsqueeze(0),
|
||||
per_req_value.unsqueeze(0),
|
||||
is_causal=causal,
|
||||
)
|
||||
.squeeze(0)
|
||||
.transpose([query.dim() - 2, 0])
|
||||
)
|
||||
output[start_q:end_q, :,
|
||||
:] = per_req_out_redudant[prefill_seq_len_q:, :, :]
|
||||
per_req_out_redudant = (scaled_dot_product_attention(
|
||||
per_req_query_redudant.unsqueeze(0),
|
||||
per_req_key.unsqueeze(0),
|
||||
per_req_value.unsqueeze(0),
|
||||
is_causal=causal,
|
||||
).squeeze(0).transpose([query.dim() - 2, 0]))
|
||||
output[start_q:end_q, :, :] = per_req_out_redudant[
|
||||
prefill_seq_len_q:, :, :]
|
||||
start_q, start_kv = end_q, end_kv
|
||||
return output
|
||||
|
||||
@@ -132,7 +124,7 @@ class PaddleNativeAttnBackend(AttentionBackend):
|
||||
key: paddle.Tensor,
|
||||
value: paddle.Tensor,
|
||||
is_causal: bool = False,
|
||||
):
|
||||
) -> paddle.Tensor:
|
||||
"""Paddle implementation of scaled dot-product attention."""
|
||||
# query, key, value shape: [batch_size, num_heads, seq_len, head_size]
|
||||
d_k = query.shape[-1]
|
||||
@@ -159,8 +151,8 @@ class PaddleNativeAttnBackend(AttentionBackend):
|
||||
req_to_token: paddle.Tensor,
|
||||
req_pool_indices: paddle.Tensor,
|
||||
seq_lens: paddle.Tensor,
|
||||
causal=False,
|
||||
):
|
||||
causal: bool = False,
|
||||
) -> paddle.Tensor:
|
||||
"""Run the decode forward by using paddle native sdpa op.
|
||||
|
||||
Args:
|
||||
@@ -203,16 +195,12 @@ class PaddleNativeAttnBackend(AttentionBackend):
|
||||
per_req_value = v_cache[per_req_tokens].transpose(
|
||||
[query.dim() - 2, 0])
|
||||
|
||||
per_req_out = (
|
||||
self._scaled_dot_product_attention(
|
||||
per_req_query.unsqueeze(0),
|
||||
per_req_key.unsqueeze(0),
|
||||
per_req_value.unsqueeze(0),
|
||||
is_causal=causal,
|
||||
)
|
||||
.squeeze(0)
|
||||
.transpose([query.dim() - 2, 0])
|
||||
)
|
||||
per_req_out = (self._scaled_dot_product_attention(
|
||||
per_req_query.unsqueeze(0),
|
||||
per_req_key.unsqueeze(0),
|
||||
per_req_value.unsqueeze(0),
|
||||
is_causal=causal,
|
||||
).squeeze(0).transpose([query.dim() - 2, 0]))
|
||||
output[start_q:end_q, :, :] = per_req_out
|
||||
start_q, start_kv = end_q, end_kv
|
||||
|
||||
@@ -220,31 +208,28 @@ class PaddleNativeAttnBackend(AttentionBackend):
|
||||
|
||||
def forward_extend(
|
||||
self,
|
||||
q,
|
||||
k,
|
||||
v,
|
||||
q: paddle.Tensor,
|
||||
k: paddle.Tensor,
|
||||
v: paddle.Tensor,
|
||||
layer: paddle.nn.Layer,
|
||||
forward_meta: ForwardMeta,
|
||||
save_kv_cache=True,
|
||||
):
|
||||
save_kv_cache: bool = True,
|
||||
) -> paddle.Tensor:
|
||||
"""
|
||||
Run the prefill and extend(prompt cache) attention forward by using paddle native sdpa op.
|
||||
"""
|
||||
if layer.qk_head_dim != layer.v_head_dim:
|
||||
o = q.new_empty(
|
||||
(q.shape[0], layer.tp_q_head_num * layer.v_head_dim))
|
||||
(q.shape[0], layer.self.num_heads * layer.v_head_dim))
|
||||
else:
|
||||
o = paddle.empty_like(q)
|
||||
|
||||
if save_kv_cache:
|
||||
forward_meta.token_to_kv_pool.set_kv_buffer(
|
||||
layer, forward_meta.out_cache_loc, k, v
|
||||
)
|
||||
layer, forward_meta.out_cache_loc, k, v)
|
||||
|
||||
use_gqa = layer.tp_q_head_num != layer.tp_k_head_num
|
||||
|
||||
q_ = q.view([-1, layer.tp_q_head_num, layer.qk_head_dim])
|
||||
o_ = o.view([-1, layer.tp_q_head_num, layer.v_head_dim])
|
||||
q_ = q.view([-1, layer.self.num_heads, layer.qk_head_dim])
|
||||
o_ = o.view([-1, layer.self.num_heads, layer.v_head_dim])
|
||||
|
||||
causal = True
|
||||
|
||||
@@ -264,31 +249,29 @@ class PaddleNativeAttnBackend(AttentionBackend):
|
||||
|
||||
def forward_decode(
|
||||
self,
|
||||
q,
|
||||
k,
|
||||
v,
|
||||
q: paddle.Tensor,
|
||||
k: paddle.Tensor,
|
||||
v: paddle.Tensor,
|
||||
layer: paddle.nn.Layer,
|
||||
forward_meta: ForwardMeta,
|
||||
):
|
||||
) -> paddle.Tensor:
|
||||
"""
|
||||
Run the decoding attention forward by using paddle native sdpa op.
|
||||
"""
|
||||
q = q.reshape([-1, layer.tp_q_head_num * layer.qk_head_dim])
|
||||
q = q.reshape([-1, layer.self.num_heads * layer.qk_head_dim])
|
||||
|
||||
if layer.qk_head_dim != layer.v_head_dim:
|
||||
o = q.new_empty(
|
||||
(q.shape[0], layer.tp_q_head_num * layer.v_head_dim))
|
||||
(q.shape[0], layer.self.num_heads * layer.v_head_dim))
|
||||
else:
|
||||
o = paddle.empty_like(q)
|
||||
|
||||
forward_meta.token_to_kv_pool.set_kv_buffer(
|
||||
layer, forward_meta.out_cache_loc, k, v
|
||||
)
|
||||
forward_meta.token_to_kv_pool.set_kv_buffer(layer,
|
||||
forward_meta.out_cache_loc,
|
||||
k, v)
|
||||
|
||||
use_gqa = layer.tp_q_head_num != layer.tp_k_head_num
|
||||
|
||||
q_ = q.view([-1, layer.tp_q_head_num, layer.qk_head_dim])
|
||||
o_ = o.view([-1, layer.tp_q_head_num, layer.v_head_dim])
|
||||
q_ = q.view([-1, layer.self.num_heads, layer.qk_head_dim])
|
||||
o_ = o.view([-1, layer.self.num_heads, layer.v_head_dim])
|
||||
|
||||
self._run_sdpa_forward_decode(
|
||||
q_,
|
||||
|
Reference in New Issue
Block a user