Sync v2.0 version of code to github repo

This commit is contained in:
Jiang-Jia-Jun
2025-06-29 23:29:37 +00:00
parent d151496038
commit 92c2cfa2e7
597 changed files with 78776 additions and 22905 deletions

View File

@@ -16,25 +16,28 @@
from __future__ import annotations
from dataclasses import dataclass
from typing import TYPE_CHECKING, Optional
import os
from dataclasses import dataclass, field
from typing import TYPE_CHECKING, List, Optional, Tuple
import paddle
from fastdeploy.model_executor.layers.attention.ops import (
append_attention, get_block_shape_and_split_kv_block)
append_attention, get_block_shape_and_split_kv_block,
init_signal_layerwise, open_shm_and_get_meta_signal)
if TYPE_CHECKING:
from paddle._typing.dtype_like import _DTypeLiteral
from fastdeploy.config import FDConfig
from fastdeploy.model_executor.layers.attention import Attention
from fastdeploy.model_executor.layers.attention.base_attention_backend import \
AttentionBackend
from fastdeploy.worker.model_runner import ForwardMeta
from fastdeploy.model_executor.layers.attention.base_attention_backend import (
AttentionBackend, AttentionMetadata)
from fastdeploy.worker.forward_meta import ForwardMeta
@dataclass
class AppendAttentionMetadata:
class AppendAttentionMetadata(AttentionMetadata):
"""
AppendAttentionMetadata
"""
@@ -60,40 +63,65 @@ class AppendAttentionMetadata:
decoder_block_shape_q: Optional[paddle.Tensor] = None
_fuse_kernel_compute_dtype: str = "bf16"
# pd_disaggregation
kv_signal_metadata: Optional[paddle.Tensor] = None
kv_signal_data_list: List[paddle.Tensor] = field(default_factory=list)
class AppendAttentionBackend(AttentionBackend):
"""
AppendAttentionBackend backend implementation.
"""
def __init__(
self,
model_runner: "ModelRunner",
):
def __init__(self, fd_config: FDConfig, kv_num_heads: int, num_heads: int,
head_dim: int) -> None:
"""
AppendAttentionBackend __init__
"""
super().__init__()
self.attention_metadata: AppendAttentionMetadata = None
self.block_size = model_runner.args.block_size
self.max_seq_len = model_runner.args.max_model_len
self.rope_theta = (10000.0 if model_runner.model_cfg.rope_theta is None
else model_runner.model_cfg.rope_theta)
self.rope_3d = getattr(model_runner.model_cfg, "rope_3d", False)
self.causal = getattr(model_runner.model_cfg, "causal", True)
self.speculate_method = model_runner.args.speculate_method
self.speculate_max_draft_token_num = model_runner.args.speculate_max_draft_tokens
self.num_heads = model_runner.model_cfg.num_attention_heads // model_runner.nranks
self.kv_num_heads = int(
model_runner.model_cfg.num_key_value_heads) // model_runner.nranks
self.block_size: int = fd_config.parallel_config.block_size
self.max_seq_len: int = fd_config.parallel_config.max_model_len
self.rope_theta: float = (10000.0
if fd_config.model_config.rope_theta is None
else fd_config.model_config.rope_theta)
self.rope_3d: bool = getattr(fd_config.model_config, "rope_3d", False)
self.causal: bool = getattr(fd_config.model_config, "causal", True)
self.speculative_method: str = fd_config.speculative_config.method
self.use_speculate: bool = self.speculative_method is not None
self.speculate_max_draft_token_num: int = fd_config.speculative_config.num_speculative_tokens
self.keep_pd_step_flag: bool = fd_config.speculative_config.model_type == "mtp"
self.rank: int = fd_config.parallel_config.tensor_parallel_rank
self.kv_num_heads: int = kv_num_heads
self.num_heads: int = num_heads
self.head_dim: int = fd_config.model_config.head_dim
self.num_layers: int = fd_config.model_config.num_layers
self.max_partition_size: int = int(
os.getenv("FLAGS_max_partition_size", 32768))
# pd_disaggregation
self.use_pd_disaggregation: int = int(
os.getenv("FLAGS_use_pd_disaggregation", 0))
self.start_layer_index: int = fd_config.model_config.start_layer_index
self.device_id: int = os.getenv("CUDA_VISIBLE_DEVICES", None)
if fd_config.parallel_config.expert_parallel_rank is None:
fd_config.parallel_config.expert_parallel_rank = 0
device_id = self.rank + fd_config.parallel_config.tensor_parallel_degree * \
fd_config.parallel_config.expert_parallel_rank
if self.device_id is None:
self.device_id = device_id
else:
self.device_id = self.device_id.split(",")[device_id]
def init_attention_metadata(self, forward_meta: ForwardMeta):
"""Initialize attntion metadata hence all layers in the forward pass can reuse it."""
metadata = AppendAttentionMetadata()
metadata.encoder_block_shape_q = 64
metadata.decoder_block_shape_q = 16
metadata.max_partition_size = 32768
metadata.encoder_max_partition_size = 32768
metadata.max_partition_size = self.max_partition_size
metadata.encoder_max_partition_size = self.max_seq_len
metadata._dtype = paddle.get_default_dtype()
if metadata._dtype == "bfloat16":
metadata._fuse_kernel_compute_dtype = "bf16"
@@ -128,38 +156,51 @@ class AppendAttentionBackend(AttentionBackend):
self.block_size,
self.speculate_max_draft_token_num + 1,
)
self.attention_metadata = metadata
def get_attntion_meta(self):
# pd_disaggregation
metadata.kv_signal_data_list = [None] * self.num_layers
if self.use_pd_disaggregation:
metadata.kv_signal_metadata = open_shm_and_get_meta_signal(
self.rank, int(self.device_id), self.keep_pd_step_flag)
self.attention_metadata: AttentionMetadata = metadata
forward_meta.decoder_batch_ids.copy_(metadata.decoder_batch_ids, False)
forward_meta.decoder_tile_ids_per_batch.copy_(
metadata.decoder_tile_ids_per_batch, False)
def get_attntion_meta(self) -> AttentionMetadata:
"""get_attntion_meta"""
return self.attention_metadata
@staticmethod
def get_kv_cache_shape(
self,
max_num_blocks: int,
block_size: int,
kv_num_head: int,
head_dim: int,
):
) -> Tuple[int, int, int, int]:
"""
get_kv_cache_shape
Caculate kv cache shape
"""
return (max_num_blocks, kv_num_head, block_size, head_dim)
return (max_num_blocks, self.kv_num_heads, self.block_size,
self.head_dim)
def forward_mixed(
self,
q,
k,
v,
qkv,
q: paddle.Tensor,
k: paddle.Tensor,
v: paddle.Tensor,
qkv: paddle.Tensor,
layer: Attention,
forward_meta: ForwardMeta,
):
) -> paddle.Tensor:
"""
forward_mixed
"""
metadata = self.attention_metadata
if self.use_pd_disaggregation:
metadata.kv_signal_data_list[
layer.layer_id] = init_signal_layerwise(
metadata.kv_signal_metadata,
layer.layer_id + self.start_layer_index)
res = append_attention(
qkv,
forward_meta.caches[2 * layer.layer_id],
@@ -176,8 +217,8 @@ class AppendAttentionBackend(AttentionBackend):
metadata.kv_batch_ids,
metadata.kv_tile_ids_per_batch,
metadata.kv_num_blocks,
metadata.decoder_batch_ids,
metadata.decoder_tile_ids_per_batch,
forward_meta.decoder_batch_ids, # from buffer
forward_meta.decoder_tile_ids_per_batch, # from buffer
metadata.decoder_num_blocks,
metadata.set_max_lengths,
metadata.max_len_kv,
@@ -193,7 +234,7 @@ class AppendAttentionBackend(AttentionBackend):
getattr(layer, "cache_v_zp", None),
layer.linear_shift,
layer.linear_smooth,
None, # kv_signal_data,
metadata.kv_signal_data_list[layer.layer_id],
metadata._fuse_kernel_compute_dtype,
getattr(layer, "cache_quant_type_str", "none"),
layer.use_neox_rotary_style,
@@ -208,7 +249,6 @@ class AppendAttentionBackend(AttentionBackend):
metadata.encoder_max_partition_size,
self.speculate_max_draft_token_num + 1,
self.causal,
self.speculate_method is not None,
self.speculative_method is not None,
)[0]
return res