Sync v2.0 version of code to github repo

This commit is contained in:
Jiang-Jia-Jun
2025-06-29 23:29:37 +00:00
parent d151496038
commit 92c2cfa2e7
597 changed files with 78776 additions and 22905 deletions

View File

@@ -16,7 +16,9 @@
from typing import Callable, Optional
from fastdeploy.config import LLMConfig
from paddle.jit.dy2static.utils import Backend
from fastdeploy.config import FDConfig
from fastdeploy.model_executor.graph_optimization.cudagraph_piecewise_backend import \
CudaGraphPiecewiseBackend
@@ -24,38 +26,39 @@ from fastdeploy.model_executor.graph_optimization.cudagraph_piecewise_backend im
class GraphOptBackend:
""" """
llm_config: LLMConfig
fd_config: FDConfig
cudagraph_piecewise_backend: Optional[CudaGraphPiecewiseBackend] = None
def __init__(self, runnable: Callable, llm_config: LLMConfig):
def __init__(self, runnable: Callable, fd_config: FDConfig):
self.runnable = runnable
self.llm_config = llm_config
self.fd_config = fd_config
def __call__(self, **kwargs):
# 1. TODO(gongshaotian): Static graph
if self.llm_config.graph_opt_config.graph_opt_level > 0:
self.max_captre_batch = fd_config.graph_opt_config.cudagraph_capture_sizes[
0]
if self.fd_config.graph_opt_config.graph_opt_level > 0:
# 1. Prepare cuda grpah input buffers (contain output of subgraphs)
# 2. Convert dynamic grpah to static graph
if self.llm_config.graph_opt_config.graph_opt_level > 1:
# with cinn
pass
else:
# not use cinn
pass
from paddle.jit import sot
backend = (Backend.CINN
if self.fd_config.graph_opt_config.graph_opt_level > 1
else Backend.PHI)
self.runnable = sot.symbolic_translate(self.runnable,
training=False,
backend=backend)
# 3. Split the static graph and get a list of callable obj
def __call__(self, **kwargs):
if not self.fd_config.graph_opt_config.use_cudagraph:
return self.runnable(**kwargs)
if self.cudagraph_piecewise_backend is None:
self.cudagraph_piecewise_backend = CudaGraphPiecewiseBackend(
fd_config=self.fd_config, runnable=self.runnable)
# 4. Get piecewise cuda grpah backend list
assert kwargs["forward_meta"].ids_remove_padding is not None
batch_size = kwargs["forward_meta"].ids_remove_padding.shape[0]
return self.runnable # Fake return value
# 2. Dynamic graph
if ((not kwargs["forward_meta"].step_use_cudagraph)
or (batch_size > self.max_captre_batch)):
return self.runnable(**kwargs)
else:
print(self.cudagraph_piecewise_backend is None)
if self.cudagraph_piecewise_backend is None:
self.cudagraph_piecewise_backend = CudaGraphPiecewiseBackend(
llm_config=self.llm_config, runnable=self.runnable)
# TODO(gongshaotian): handling kwargs
assert kwargs["input_ids"] is not None
return self.cudagraph_piecewise_backend.__call__(**kwargs)