Sync v2.0 version of code to github repo

This commit is contained in:
Jiang-Jia-Jun
2025-06-29 23:29:37 +00:00
parent d151496038
commit 92c2cfa2e7
597 changed files with 78776 additions and 22905 deletions

View File

@@ -13,8 +13,11 @@
# See the License for the specific language governing permissions and
# limitations under the License.
"""
from typing import Any, Dict, Optional
from fastdeploy.engine.config import ModelConfig
from fastdeploy.reasoning import ReasoningParserManager
class InputPreprocessor:
"""
@@ -24,6 +27,9 @@ class InputPreprocessor:
key in the Hugging Face Transformers' model registry (https://huggingface.co/models).
The model will be downloaded from the Hugging Face model hub if necessary.
If a path is provided, the model will be loaded from that path.
reasoning_parser (str, optional):
Reasoning parser type. Defaults to None.
Flag specifies the reasoning parser to use for extracting reasoning content from the model output
enable_mm (bool, optional):
Whether to use the multi-modal model processor. Defaults to False.
@@ -32,15 +38,21 @@ class InputPreprocessor:
If the model name is not found in the Hugging Face Transformers' model registry and the path does not
exist.
"""
def __init__(
self,
model_name_or_path: str,
reasoning_parser: str = None,
limit_mm_per_prompt: Optional[Dict[str, Any]] = None,
mm_processor_kwargs: Optional[Dict[str, Any]] = None,
enable_mm: bool = False,
) -> None:
self.model_name_or_path = model_name_or_path
self.reasoning_parser = reasoning_parser
self.enable_mm = enable_mm
self.limit_mm_per_prompt = limit_mm_per_prompt
self.mm_processor_kwargs = mm_processor_kwargs
def create_processor(self):
"""
@@ -53,7 +65,33 @@ class InputPreprocessor:
Returns:
DataProcessor or MultiModalRegistry.Processor (Union[DataProcessor, MultiModalRegistry.Processor]): 数据处理器。
"""
reasoning_parser_obj = None
if self.reasoning_parser:
reasoning_parser_obj = ReasoningParserManager.get_reasoning_parser(
self.reasoning_parser)
architectures = ModelConfig(self.model_name_or_path).architectures
from fastdeploy.input.text_processor import DataProcessor
self.processor = DataProcessor(model_name_or_path=self.model_name_or_path)
if not self.enable_mm:
if "Ernie4_5_MoeForCausalLM" not in architectures \
and "Ernie4_5_ForCausalLM" not in architectures:
from fastdeploy.input.text_processor import DataProcessor
self.processor = DataProcessor(
model_name_or_path=self.model_name_or_path, reasoning_parser_obj=reasoning_parser_obj)
else:
from fastdeploy.input.ernie_processor import ErnieProcessor
self.processor = ErnieProcessor(
model_name_or_path=self.model_name_or_path, reasoning_parser_obj=reasoning_parser_obj)
else:
if not architectures.startswith(
"Ernie4_5_VLMoeForConditionalGeneration"):
raise ValueError(
f"Model {self.model_name_or_path} is not a valid Ernie4_5_VLMoe model."
)
else:
from fastdeploy.input.ernie_vl_processor import \
ErnieMoEVLProcessor
self.processor = ErnieMoEVLProcessor(
model_name_or_path=self.model_name_or_path,
limit_mm_per_prompt=self.limit_mm_per_prompt,
mm_processor_kwargs=self.mm_processor_kwargs,
reasoning_parser_obj=reasoning_parser_obj)
return self.processor