Sync v2.0 version of code to github repo

This commit is contained in:
Jiang-Jia-Jun
2025-06-29 23:29:37 +00:00
parent d151496038
commit 92c2cfa2e7
597 changed files with 78776 additions and 22905 deletions

View File

@@ -26,44 +26,31 @@ from typing import Optional, Union, cast, TypeVar, List
import uuid
from fastapi import Request
from fastdeploy.entrypoints.openai.protocol import ErrorResponse, CompletionRequest, CompletionResponse, CompletionStreamResponse, CompletionResponseStreamChoice, CompletionResponseChoice,UsageInfo
from fastdeploy.entrypoints.openai.protocol import (
ErrorResponse,
CompletionRequest,
CompletionResponse,
CompletionStreamResponse,
CompletionResponseStreamChoice,
CompletionResponseChoice,
UsageInfo,
DeltaToolCall,
DeltaFunctionCall,
ToolCall,
FunctionCall
)
from fastdeploy.utils import api_server_logger
from fastdeploy.engine.request import RequestOutput
class OpenAIServingCompletion:
"""
Implementation of OpenAI-compatible text completion API endpoints.
Handles both streaming and non-streaming text completion requests.
Attributes:
engine_client: Client for communicating with the LLM engine
pid: Process ID for ZMQ communication
"""
def __init__(self, engine_client, pid):
"""
Initialize the completion service.
Args:
engine_client: Client for engine communication
pid: Process ID for ZMQ routing
"""
self.engine_client = engine_client
self.pid = pid
async def create_completion(self, request: CompletionRequest):
"""
Create text completion based on the given request.
Args:
request (CompletionRequest): Completion request parameters
Returns:
Union[AsyncGenerator, CompletionResponse, ErrorResponse]:
- Streaming generator if request.stream=True
- Full completion response if request.stream=False
- ErrorResponse if validation fails
Create a completion for the given prompt.
"""
created_time = int(time.time())
if request.user is not None:
@@ -97,14 +84,16 @@ class OpenAIServingCompletion:
num_choices = len(request_prompts)
api_server_logger.info(f"start inference for request {num_choices}")
prompt_batched_token_ids = []
try:
for idx, prompt in enumerate(request_prompts):
request_id_idx = f"{request_id}-{idx}"
current_req_dict = request.to_dict_for_infer(request_id_idx, prompt)
try:
current_req_dict["arrival_time"] = time.time()
self.engine_client.format_and_add_data(current_req_dict)
prompt_batched_token_ids.append(
self.engine_client.format_and_add_data(current_req_dict)
)
except Exception as e:
return ErrorResponse(message=str(e), code=400)
@@ -116,7 +105,8 @@ class OpenAIServingCompletion:
num_choices = num_choices,
request_id=request_id,
created_time=created_time,
model_name=request.model
model_name=request.model,
prompt_batched_token_ids=prompt_batched_token_ids
)
else:
try:
@@ -125,12 +115,13 @@ class OpenAIServingCompletion:
num_choices=num_choices,
request_id=request_id,
created_time=created_time,
model_name=request.model
model_name=request.model,
prompt_batched_token_ids=prompt_batched_token_ids
)
except ValueError as e:
except Exception as e:
return ErrorResponse(code=400, message=str(e))
except ValueError as e:
except Exception as e:
return ErrorResponse(message=str(e), code=400)
@@ -141,25 +132,10 @@ class OpenAIServingCompletion:
request_id: str,
created_time: int,
model_name: str,
prompt_batched_token_ids: list()
):
"""
Generate complete text response in one-shot mode.
Args:
request (CompletionRequest): Original request parameters
num_choices (int): Number of prompt variations
request_id (str): Unique request identifier
created_time (int): Unix timestamp of creation
model_name (str): Name of the model being used
Returns:
CompletionResponse: Complete text response with:
- Generated text
- Usage statistics
- Finish reason
Raises:
ValueError: If engine communication fails or times out
Process the full completion request with multiple choices.
"""
dealer = None
try:
@@ -175,22 +151,28 @@ class OpenAIServingCompletion:
valid_results = [dict()] * num_choices
output_tokens = [0] * num_choices
current_waiting_time = 0
while num_choices > 0:
try:
raw_data = await asyncio.wait_for(dealer.read(), timeout=300)
raw_data = await asyncio.wait_for(dealer.read(), timeout=10)
current_waiting_time = 0
except asyncio.TimeoutError:
status, msg = self.engine_client.check_health()
if not status:
raise ValueError(f"Engine is not healthy: {msg}")
else:
continue
current_waiting_time += 10
if current_waiting_time == 300:
status, msg = self.engine_client.check_health()
if not status:
raise ValueError(f"Engine is not healthy: {msg}")
else:
current_waiting_time = 0
await asyncio.sleep(0.1)
continue
data = json.loads(raw_data[-1].decode("utf-8"))
rid = int(data["request_id"].split("-")[-1])
if data.get("error_code", 200) != 200:
raise ValueError("{}".format(data["error_msg"]))
self.engine_client.data_processor.process_response_dict(
data, stream=False
)
data, stream=False)
output_tokens[rid] += len(data["outputs"]["token_ids"])
if data.get("finished", False):
data["output_token_ids"] = output_tokens[rid]
@@ -202,7 +184,8 @@ class OpenAIServingCompletion:
request=request,
request_id=request_id,
created_time=created_time,
model_name=model_name
model_name=model_name,
prompt_batched_token_ids=prompt_batched_token_ids
)
except Exception as e:
api_server_logger.error(
@@ -220,27 +203,11 @@ class OpenAIServingCompletion:
num_choices: int,
request_id: str,
created_time: int,
model_name: str
model_name: str,
prompt_batched_token_ids: list()
):
"""
Generator for streaming text completion responses.
Args:
request (CompletionRequest): Original request parameters
num_choices (int): Number of prompt variations
request_id (str): Unique request identifier
created_time (int): Unix timestamp of creation
model_name (str): Name of the model being used
Yields:
str: Server-Sent Events (SSE) formatted chunks containing:
- Partial completion results
- Usage statistics (if enabled)
- Error messages (if any)
Note:
Uses ZMQ for inter-process communication with the engine.
Maintains streaming protocol compatibility with OpenAI API.
Process the stream completion request.
"""
try:
dealer = await aiozmq.create_zmq_stream(
@@ -259,16 +226,21 @@ class OpenAIServingCompletion:
max_streaming_response_tokens = request.suffix["max_streaming_response_tokens"]
choices = []
current_waiting_time = 0
while num_choices > 0:
try:
raw_data = await asyncio.wait_for(dealer.read(), timeout=300)
raw_data = await asyncio.wait_for(dealer.read(), timeout=10)
current_waiting_time = 0
except asyncio.TimeoutError:
status, msg = self.engine_client.check_health()
if not status:
raise ValueError(f"Engine is not healthy: {msg}")
else:
continue
current_waiting_time += 10
if current_waiting_time == 300:
status, msg = self.engine_client.check_health()
if not status:
raise ValueError(f"Engine is not healthy: {msg}")
else:
current_waiting_time = 0
await asyncio.sleep(0.1)
continue
res = json.loads(raw_data[-1].decode('utf-8'))
@@ -285,14 +257,15 @@ class OpenAIServingCompletion:
choices=[CompletionResponseStreamChoice(
index=idx,
text="",
token_ids=list(res["prompt_token_ids"])
token_ids=list(prompt_batched_token_ids[idx])
)]
)
yield f"data: {chunk.model_dump_json(exclude_unset=True)}\n\n"
first_iteration[idx] = False
self.engine_client.data_processor.process_response_dict(res, stream=True)
self.engine_client.data_processor.process_response_dict(
res, stream=True)
if res['metrics'].get('first_token_time') is not None:
arrival_time = res['metrics']['first_token_time']
inference_start_time[idx] = res['metrics']['inference_start_time']
@@ -306,12 +279,16 @@ class OpenAIServingCompletion:
index=idx,
text=output["text"],
token_ids=output.get("token_ids"),
tool_calls=output.get("tool_call_content"),
reasoning_content=output.get("reasoning_content"),
arrival_time=arrival_time
))
if res["finished"]:
if request.max_tokens is None or output_tokens[idx] + 1 != request.max_tokens:
chunk.choices[0].finish_reason = "stop"
if self.engine_client.reasoning_parser == "ernie_x1" and \
output.get("finish_reason", "") == "tool_calls":
chunk.choices[0].finish_reason = "tool_calls"
else:
chunk.choices[0].finish_reason = "length"
@@ -337,7 +314,7 @@ class OpenAIServingCompletion:
model=model_name,
choices=[],
usage=UsageInfo(
prompt_tokens=len(res.get("prompt_token_ids", [])),
prompt_tokens=len(prompt_batched_token_ids[idx]),
completion_tokens=output_tokens[idx]
)
)
@@ -360,28 +337,15 @@ class OpenAIServingCompletion:
request_id: str,
created_time: int,
model_name: str,
prompt_batched_token_ids: list()
) -> CompletionResponse:
"""
Convert raw engine outputs to OpenAI-compatible completion response.
Args:
final_res_batch (List[RequestOutput]): Batch of engine responses
request (CompletionRequest): Original request parameters
request_id (str): Unique request identifier
created_time (int): Unix timestamp of creation
model_name (str): Name of the model being used
Returns:
CompletionResponse: Formatted completion response with:
- Generated text choices
- Token usage statistics
"""
choices: List[CompletionResponseChoice] = []
num_prompt_tokens = 0
num_generated_tokens = 0
for final_res in final_res_batch:
prompt_token_ids = final_res["prompt_token_ids"]
for idx in range(len(final_res_batch)):
final_res = final_res_batch[idx]
prompt_token_ids = prompt_batched_token_ids[idx]
assert prompt_token_ids is not None
prompt_text = final_res["prompt"]
@@ -402,6 +366,7 @@ class OpenAIServingCompletion:
index=len(choices),
text=output_text,
reasoning_content=output.get('reasoning_content'),
tool_calls=output.get("tool_call_content"),
logprobs=None,
finish_reason=None
)