Sync v2.0 version of code to github repo

This commit is contained in:
Jiang-Jia-Jun
2025-06-29 23:29:37 +00:00
parent d151496038
commit 92c2cfa2e7
597 changed files with 78776 additions and 22905 deletions

View File

@@ -33,6 +33,7 @@ from fastdeploy.entrypoints.openai.protocol import (
ChatCompletionResponseStreamChoice,
ChatMessage,
UsageInfo,
PromptTokenUsageInfo,
ChatCompletionResponse,
ErrorResponse,
)
@@ -46,13 +47,7 @@ from fastdeploy.engine.request import RequestOutput
class OpenAIServingChat:
"""
Implementation of OpenAI-compatible chat completion API endpoints.
Handles both streaming and non-streaming chat completion requests.
Attributes:
engine_client: Client for communicating with the LLM engine
pid: Process ID for ZMQ communication
OpenAI-style chat completions serving
"""
def __init__(self, engine_client, pid):
@@ -64,16 +59,7 @@ class OpenAIServingChat:
request: ChatCompletionRequest
):
"""
Create chat completion based on the given request.
Args:
request (ChatCompletionRequest): Chat completion request parameters
Returns:
Union[AsyncGenerator, ChatCompletionResponse, ErrorResponse]:
- Streaming generator if request.stream=True
- Full completion response if request.stream=False
- ErrorResponse if validation fails
Create a new chat completion using the specified parameters.
"""
if request.user is not None:
request_id = f"chatcmpl-{request.user}-{uuid.uuid4()}"
@@ -84,33 +70,27 @@ class OpenAIServingChat:
try:
current_req_dict = request.to_dict_for_infer(request_id)
current_req_dict["arrival_time"] = time.time()
self.engine_client.format_and_add_data(current_req_dict)
except ValueError as e:
prompt_token_ids = self.engine_client.format_and_add_data(current_req_dict)
except Exception as e:
return ErrorResponse(code=400, message=str(e))
del current_req_dict
if request.stream:
return self.chat_completion_stream_generator(
request, request_id, request.model)
request, request_id,
request.model,
prompt_token_ids)
else:
try:
return await self.chat_completion_full_generator(
request, request_id, request.model)
except ValueError as e:
request, request_id,
request.model,
prompt_token_ids)
except Exception as e:
return ErrorResponse(code=400, message=str(e))
def _create_streaming_error_response(self, message: str) -> str:
"""
Create an error response in streaming format.
Args:
message (str): Error message to include
Returns:
str: JSON-formatted error response
"""
error_response = ErrorResponse(
code=400,
message=message,
@@ -121,25 +101,11 @@ class OpenAIServingChat:
self,
request: ChatCompletionRequest,
request_id: str,
model_name: str
model_name: str,
prompt_token_ids: list()
):
"""
Generator for streaming chat completion responses.
Args:
request (ChatCompletionRequest): Original request parameters
request_id (str): Unique request identifier
model_name (str): Name of the model being used
Yields:
str: Server-Sent Events (SSE) formatted chunks containing:
- Partial completion results
- Usage statistics (if enabled)
- Error messages (if any)
Note:
Uses ZMQ for inter-process communication with the engine.
Maintains streaming protocol compatibility with OpenAI API.
Streaming chat completion generator.
"""
created_time = int(time.time())
chunk_object_type: str = "chat.completion.chunk"
@@ -148,6 +114,7 @@ class OpenAIServingChat:
num_prompt_tokens = 0
num_choices = 1
max_streaming_response_tokens = 1
enable_thinking = None
if request.metadata is not None and request.metadata.get("max_streaming_response_tokens", 1) > 1:
max_streaming_response_tokens = request.metadata["max_streaming_response_tokens"]
@@ -172,23 +139,32 @@ class OpenAIServingChat:
)
dealer.write([b"", request_id.encode('utf-8')])
choices = []
current_waiting_time = 0
while num_choices > 0:
try:
raw_data = await asyncio.wait_for(dealer.read(), timeout=300)
raw_data = await asyncio.wait_for(dealer.read(), timeout=10)
current_waiting_time = 0
except asyncio.TimeoutError:
status, msg = self.engine_client.check_health()
if not status:
if choices:
chunk.choices = choices
yield f"data: {chunk.model_dump_json(exclude_unset=True)}\n\n"
raise ValueError(f"Engine is not healthy: {msg}")
else:
continue
current_waiting_time += 10
if current_waiting_time == 300:
status, msg = self.engine_client.check_health()
if not status:
if choices:
chunk.choices = choices
yield f"data: {chunk.model_dump_json(exclude_unset=True)}\n\n"
raise ValueError(f"Engine is not healthy: {msg}")
else:
current_waiting_time = 0
await asyncio.sleep(0.1)
continue
res = json.loads(raw_data[-1].decode('utf-8'))
if res.get("error_code", 200) != 200:
raise ValueError("{}".format(res["error_msg"]))
self.engine_client.data_processor.process_response_dict(res, stream=True)
if request.metadata is not None:
enable_thinking = request.metadata.get("enable_thinking")
self.engine_client.data_processor.process_response_dict(
res, stream=True, enable_thinking=enable_thinking)
if res['metrics']['first_token_time'] is not None:
arrival_time = res['metrics']['first_token_time']
@@ -196,15 +172,15 @@ class OpenAIServingChat:
else:
arrival_time = res['metrics']['arrival_time'] - inference_start_time
if first_iteration:
num_prompt_tokens = len(res["prompt_token_ids"])
num_prompt_tokens = len(prompt_token_ids)
num_cached_tokens = res.get("num_cached_tokens", 0)
for i in range(num_choices):
choice = ChatCompletionResponseStreamChoice(
index=i,
delta=DeltaMessage(role="assistant", content="", reasoning_content="")
delta=DeltaMessage(role="assistant", content="", reasoning_content="", tool_calls=None)
)
if request.metadata is not None and request.metadata.get("training", False):
choice.delta.token_ids = list(res["prompt_token_ids"])
choice.delta.token_ids = prompt_token_ids
chunk = ChatCompletionStreamResponse(
id=request_id,
object=chunk_object_type,
@@ -216,7 +192,8 @@ class OpenAIServingChat:
chunk.usage = UsageInfo(
prompt_tokens=num_prompt_tokens,
completion_tokens=0,
total_tokens=num_prompt_tokens
total_tokens=num_prompt_tokens,
prompt_tokens_details=PromptTokenUsageInfo(cached_tokens=num_cached_tokens)
)
yield f"data: {chunk.model_dump_json(exclude_unset=True)} \n\n"
first_iteration = False
@@ -226,18 +203,21 @@ class OpenAIServingChat:
previous_num_tokens += len(output["token_ids"])
delta_message = DeltaMessage(content=delta_text, reasoning_content=output.get("reasoning_content"), \
token_ids=output.get("token_ids"))
token_ids=output.get("token_ids"), tool_calls=output.get("tool_call_content", []))
choice = ChatCompletionResponseStreamChoice(
index=output["index"],
index=0,
delta=delta_message,
arrival_time=arrival_time
)
if res["finished"]:
num_choices -= 1
work_process_metrics.e2e_request_latency.observe(time.time() - res["metrics"]["request_start_time"])
if request.max_tokens is None or output["index"] + 1 != request.max_tokens:
if request.max_tokens is None or previous_num_tokens != request.max_tokens:
choice.finish_reason = "stop"
if self.engine_client.reasoning_parser == "ernie_x1" and \
output.get("finish_reason", "") == "tool_calls":
choice.finish_reason = "tool_calls"
else:
choice.finish_reason = "length"
@@ -285,27 +265,15 @@ class OpenAIServingChat:
self,
request: ChatCompletionRequest,
request_id: str,
model_name: str
model_name: str,
prompt_token_ids: list()
):
"""
Generate complete chat response in one-shot mode.
Args:
request (ChatCompletionRequest): Original request parameters
request_id (str): Unique request identifier
model_name (str): Name of the model being used
Returns:
ChatCompletionResponse: Complete chat response with:
- Generated message
- Usage statistics
- Finish reason
Raises:
ValueError: If engine communication fails or times out
Full chat completion generator.
"""
created_time = int(time.time())
final_res = None
enable_thinking = None
try:
dealer = await aiozmq.create_zmq_stream(
zmq.DEALER,
@@ -314,20 +282,29 @@ class OpenAIServingChat:
dealer.write([b"", request_id.encode('utf-8')])
final_res = None
previous_num_tokens = 0
current_waiting_time = 0
while True:
try:
raw_data = await asyncio.wait_for(dealer.read(), timeout=300)
raw_data = await asyncio.wait_for(dealer.read(), timeout=10)
current_waiting_time = 0
except asyncio.TimeoutError:
status, msg = self.engine_client.check_health()
if not status:
raise ValueError(f"Engine is not healthy: {msg}")
else:
continue
current_waiting_time += 10
if current_waiting_time == 300:
status, msg = self.engine_client.check_health()
if not status:
raise ValueError(f"Engine is not healthy: {msg}")
else:
current_waiting_time = 0
await asyncio.sleep(0.1)
continue
data = json.loads(raw_data[-1].decode('utf-8'))
if data.get("error_code", 200) != 200:
raise ValueError("{}".format(data["error_msg"]))
data = self.engine_client.data_processor.process_response_dict(data, stream=False)
if request.metadata is not None:
enable_thinking = request.metadata.get("enable_thinking")
data = self.engine_client.data_processor.process_response_dict(
data, stream=False, enable_thinking=enable_thinking)
# api_server_logger.debug(f"Client {request_id} received: {data}")
previous_num_tokens += len(data["outputs"]["token_ids"])
if data["finished"]:
@@ -342,27 +319,31 @@ class OpenAIServingChat:
role="assistant",
content=output["text"],
reasoning_content=output.get("reasoning_content"),
tool_calls=output.get("tool_call_content"),
token_ids=output.get("token_ids")
)
choice = ChatCompletionResponseChoice(
index=output["index"],
index=0,
message=message,
finish_reason=None
)
if request.max_tokens is None or output["index"] + 1 != request.max_tokens:
if request.max_tokens is None or previous_num_tokens != request.max_tokens:
choice.finish_reason = "stop"
if self.engine_client.reasoning_parser == "ernie_x1" and \
output.get("finish_reason", "") == "tool_calls":
choice.finish_reason = "tool_calls"
else:
choice.finish_reason = "length"
choices.append(choice)
num_prompt_tokens = len(final_res["prompt_token_ids"])
num_prompt_tokens = len(prompt_token_ids)
num_generated_tokens = previous_num_tokens
usage = UsageInfo(
prompt_tokens=num_prompt_tokens,
completion_tokens=num_generated_tokens,
total_tokens=num_prompt_tokens + num_generated_tokens
total_tokens=num_prompt_tokens + num_generated_tokens,
prompt_tokens_details=PromptTokenUsageInfo(cached_tokens=final_res.get("num_cached_tokens", 0))
)
work_process_metrics.e2e_request_latency.observe(time.time() - final_res["metrics"]["request_start_time"])
return ChatCompletionResponse(