Sync v2.0 version of code to github repo

This commit is contained in:
Jiang-Jia-Jun
2025-06-29 23:29:37 +00:00
parent d151496038
commit 92c2cfa2e7
597 changed files with 78776 additions and 22905 deletions

View File

@@ -1,21 +1,28 @@
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
import json
import os
from datetime import datetime
from typing import Any, Dict, List, Literal, Optional
from fastdeploy import envs
from fastdeploy.platforms import current_platform
from fastdeploy.scheduler import SchedulerConfig
from fastdeploy.utils import (check_unified_ckpt, get_host_ip,
from fastdeploy.utils import (ceil_div, check_unified_ckpt, get_host_ip,
is_port_available, llm_logger)
TaskOption = Literal["generate"]
@@ -23,37 +30,37 @@ TaskOption = Literal["generate"]
class ModelConfig:
"""
Configuration class for model settings and parameters.
Configuration class for the model.
Attributes:
model_dir (str): Path to the model directory
is_unified_ckpt (bool): Whether the checkpoint uses unified format
model_name_or_path (str): Model identifier or path
dynamic_load_weight (int): Dynamic weight loading flag
"""
Attributes:
model_dir (str): Directory path to the model.
is_unified_ckpt (bool): Flag indicating if the checkpoint is unified.
model_name_or_path (str): Name or path of the model.
"""
def __init__(self,
model_name_or_path: str,
config_json_file: str = "config.json",
dynamic_load_weight: int = 0,
quantization: str = None,
download_dir: Optional[str] = None):
"""
Initialize model configuration.
Initialize the ModelConfig class.
Args:
model_name_or_path (str): Model identifier or path
config_json_file (str): Model config file name (default: 'config.json')
dynamic_load_weight (int): Dynamic weight loading mode (default: 0)
download_dir (Optional[str]): Directory for downloaded models (default: None)
model_name_or_path (str): Name or path of the model.
config_json_file (str): Path to the configuration JSON file. Default is 'config.json'.
download_dir (Optional[str]): Directory to download model files. Default is None.
"""
self.model_dir = model_name_or_path
self.is_unified_ckpt = check_unified_ckpt(self.model_dir)
self.dynamic_load_weight = dynamic_load_weight
self.quantization = quantization
config_file = os.path.join(model_name_or_path, config_json_file)
if os.path.isfile(model_name_or_path):
try:
from paddlenlp.transformers import AutoConfig
from paddleformers.transformers import AutoConfig
config = AutoConfig.from_pretrained(model_name_or_path)
config_dict = {
k: v
@@ -63,10 +70,10 @@ Attributes:
setattr(self, key, value)
except Exception:
llm_logger.error(
"Don't support the current model, you can use `paddlenlp` to register your model."
"Don't support the current model, you can use `paddleformers` to register your model."
)
raise ValueError(
"Don't support the current model, you can use `paddlenlp` to register your model."
"Don't support the current model, you can use `paddleformers` to register your model."
)
else:
with open(config_file, "r", encoding="utf-8") as f:
@@ -85,12 +92,9 @@ Attributes:
def override_name_from_config(self):
"""
Update attribute names from model configuration.
Handles special cases like:
- Renaming infer_model_mp_num to tensor_parallel_size
- Adjusting num_hidden_layers based on remove_tail_layer
- Setting default mla_use_absorb value
Override attribute names from the exported model's configuration.
"""
if not self.is_unified_ckpt and hasattr(self, "infer_model_mp_num"):
self.tensor_parallel_size = self.infer_model_mp_num
del self.infer_model_mp_num
@@ -107,27 +111,19 @@ Attributes:
if not hasattr(self, "mla_use_absorb"):
self.mla_use_absorb = False
if not hasattr(self, "head_dim"):
assert hasattr(self, "hidden_size") and hasattr(
self, "num_attention_heads")
self.head_dim = self.hidden_size // self.num_attention_heads
def read_from_env(self):
"""
Load configuration from environment variables.
Sets default values if env vars not found.
Reads:
- MAX_STOP_SEQS_NUM (default: 5)
- STOP_SEQS_MAX_LEN (default: 8)
- ELLM_DYNAMIC_QUANT_TYPE (default: 'default')
- ELLM_DYNAMIC_USE_STOP_SEQS (default: 0)
- COMPRESSION_RATIO (default: 1.0)
- ROPE_THETA (default: 10000)
"""
self.max_stop_seqs_num = int(os.getenv("MAX_STOP_SEQS_NUM", "5"))
self.stop_seqs_max_len = int(os.getenv("STOP_SEQS_MAX_LEN", "8"))
Read configuration information from environment variables and update the object's attributes.
self.ellm_dynamic_quant_type = os.getenv("ELLM_DYNAMIC_QUANT_TYPE",
"default")
# Whether to use stop sequences in dynamic graph inference
self.ellm_dynamic_use_stop_seqs = int(
os.getenv("ELLM_DYNAMIC_USE_STOP_SEQS", "0")) == 1
If an attribute is not present or is an empty string in the environment variables, use the default value.
"""
self.max_stop_seqs_num = int(envs.FD_MAX_STOP_SEQS_NUM)
self.stop_seqs_max_len = int(envs.FD_STOP_SEQS_MAX_LEN)
def reset_config_value(key, value):
if not hasattr(self, key.lower()):
@@ -144,13 +140,12 @@ Attributes:
reset_config_value("ROPE_THETA", 10000)
def _get_download_model(self, model_name, model_type="default"):
# TODO: Implement dynamic graph for self-downloading models
# TODO: Provide dynamic graph for self-downloading and save to the specified download directory.
pass
def print(self):
"""
Print current model configuration.
Logs all attributes and their values.
Print all configuration information.
"""
llm_logger.info("Model Configuration Information :")
for k, v in self.__dict__.items():
@@ -161,19 +156,18 @@ Attributes:
class CacheConfig:
"""
Configuration for key-value cache management.
Configuration for the KV cache.
Attributes:
block_size (int): Tokens per cache block
gpu_memory_utilization (float): GPU memory usage fraction (0-1)
cache_dtype (str): Data type for cache (default: 'bfloat16')
num_gpu_blocks_override (Optional[int]): Manual GPU blocks override
kv_cache_ratio (float): Max blocks ratio (default: 0.75)
enc_dec_block_num (int): Encoder-decoder blocks count
enable_prefix_caching (bool): Prefix caching enable flag
total_block_num (int): Total available blocks
prefill_kvcache_block_num (int): Blocks allocated for prefill
"""
Attributes:
block_size (int): Size of a cache block in number of tokens.
gpu_memory_utilization (float): Fraction of GPU memory to use for model execution.
cache_dtype (str): Data type for kv cache storage. Default is 'bfloat16'.
num_gpu_blocks_override (Optional[int]): Number of GPU blocks to use.
Overrides profiled num_gpu_blocks if provided.
kv_cache_ratio (float): Ratio for calculating the maximum block number.
enc_dec_block_num (int): Number of encoder-decoder blocks.
enable_prefix_caching (bool): Flag to enable prefix caching.
"""
def __init__(
self,
@@ -181,21 +175,31 @@ Attributes:
gpu_memory_utilization: float,
cache_dtype: str = "bfloat16",
num_gpu_blocks_override: Optional[int] = None,
swap_space: Optional[int] = None,
kv_cache_ratio: float = 0.75,
enc_dec_block_num: int = 2,
enable_prefix_caching: bool = False,
tensor_parallel_size: int = 1,
enable_prefix_caching=False,
enable_ssd_cache=False,
model_cfg=None,
cache_queue_port=None,
enable_chunked_prefill=False,
rdma_comm_ports=None,
cache_transfer_protocol=None,
pd_comm_port=None,
):
"""
Initialize cache configuration.
Initialize the CacheConfig class.
Args:
block_size (int): Tokens per cache block
gpu_memory_utilization (float): GPU memory usage target (0-1)
cache_dtype (str): Cache data type (default: 'bfloat16')
num_gpu_blocks_override (Optional[int]): Manual GPU blocks setting
kv_cache_ratio (float): Max blocks ratio (default: 0.75)
enc_dec_block_num (int): Encoder-decoder blocks count
enable_prefix_caching (bool): Enable prefix sharing
block_size (int): Size of a cache block in number of tokens.
gpu_memory_utilization (float): Fraction of GPU memory to use.
cache_dtype (str): Data type for cache storage. Default is 'bfloat16'.
num_gpu_blocks_override (Optional[int]): Override for number of GPU blocks.
num_cpu_blocks (Optional[int]): Number of CPU blocks.
kv_cache_ratio (float): Ratio for max block calculation.
enc_dec_block_num (int): Number of encoder-decoder blocks.
enable_prefix_caching (bool): Enable prefix caching.
"""
self.block_size = block_size
self.gpu_memory_utilization = gpu_memory_utilization
@@ -203,20 +207,74 @@ Attributes:
self.kv_cache_ratio = kv_cache_ratio
self.enc_dec_block_num = enc_dec_block_num
self.cache_dtype = cache_dtype
if hasattr(model_cfg, "quantization_config"):
self.cache_dtype = model_cfg.quantization_config.get(
"kv_cache_quant_type", cache_dtype)
self.enable_chunked_prefill = enable_chunked_prefill
self.rdma_comm_ports = rdma_comm_ports
self.cache_transfer_protocol = cache_transfer_protocol
self.pd_comm_port = pd_comm_port
if rdma_comm_ports is not None and isinstance(rdma_comm_ports, str):
self.rdma_comm_ports = rdma_comm_ports.split(',')
if pd_comm_port is not None and isinstance(pd_comm_port, str):
self.pd_comm_port = [int(port) for port in pd_comm_port.split(",")]
self.enable_prefix_caching = enable_prefix_caching
if swap_space is None:
self.enable_hierarchical_cache = False
else:
self.enable_hierarchical_cache = True
self.enable_ssd_cache = enable_ssd_cache
self.model_cfg = model_cfg
self.cache_queue_port = cache_queue_port
self.swap_space = swap_space
if (hasattr(self.model_cfg, "num_key_value_heads")
and hasattr(self.model_cfg, "num_key_value_heads")
and self.model_cfg.num_key_value_heads is not None
and int(self.model_cfg.num_key_value_heads) > 0):
kv_num_head = int(self.model_cfg.num_key_value_heads)
else:
kv_num_head = self.model_cfg.num_attention_heads
self.model_cfg.kv_num_head = kv_num_head
# TODO check name
if "int4" in self.cache_dtype.lower(
) or "float4" in self.cache_dtype.lower():
byte_size = 0.5
self.cache_dtype = "uint8"
elif "int8" in self.cache_dtype.lower(
) or "float8" in self.cache_dtype.lower():
self.cache_dtype = "uint8"
byte_size = 1
else:
byte_size = 2
self.each_token_cache_space = int(
self.model_cfg.num_layers * kv_num_head * self.model_cfg.head_dim *
byte_size)
self.bytes_per_block = int(self.each_token_cache_space *
self.block_size)
self.bytes_per_layer_per_block = int(
self.block_size * self.model_cfg.kv_num_head *
self.model_cfg.head_dim // tensor_parallel_size * byte_size)
if self.swap_space is None:
self.num_cpu_blocks = 0
else:
self.num_cpu_blocks = int(self.swap_space * 1024**3 /
self.bytes_per_block)
self._verify_args()
def metrics_info(self):
"""
Convert config to metrics dictionary.
Returns:
Dict[str, str]: Key-value pairs of all config attributes
"""
"""Convert cache_config to dict(key: str, value: str) for prometheus metrics info."""
return {key: str(value) for key, value in self.__dict__.items()}
def _verify_args(self):
"""Validate configuration arguments."""
if self.gpu_memory_utilization > 1.0:
raise ValueError(
"GPU memory utilization must be less than 1.0. Got "
@@ -227,46 +285,38 @@ Attributes:
def postprocess(self, num_total_tokens, number_of_tasks):
"""
Calculate block allocation based on tokens and tasks.
Args:
num_total_tokens (int): Total tokens to process
number_of_tasks (int): Number of parallel tasks
Sets:
dec_token_num (int): Decoder tokens per block
total_block_num (int): Total blocks needed
prefill_kvcache_block_num (int): Blocks for prefill phase
calculate block num
"""
self.dec_token_num = self.enc_dec_block_num * self.block_size
if self.num_gpu_blocks_override is not None:
self.total_block_num = self.num_gpu_blocks_override
self.prefill_kvcache_block_num= int(self.total_block_num * self.kv_cache_ratio)
self.prefill_kvcache_block_num = int(self.total_block_num *
self.kv_cache_ratio)
else:
length = num_total_tokens // number_of_tasks
block_num = (length + self.block_size - 1 + self.enc_dec_block_num) // self.block_size
self.total_block_num = block_num * number_of_tasks
self.prefill_kvcache_block_num= self.total_block_num
llm_logger.info(f"Doing profile, the total_block_num:{self.total_block_num}")
block_num = (length + self.block_size - 1 +
self.dec_token_num) // self.block_size
self.total_block_num = block_num * number_of_tasks
self.prefill_kvcache_block_num = self.total_block_num
llm_logger.info(
f"Doing profile, the total_block_num:{self.total_block_num}")
def reset(self, num_gpu_blocks):
"""
Reset GPU block allocation.
Args:
num_gpu_blocks (int): New total blocks count
Updates:
total_block_num (int)
prefill_kvcache_block_num (int)
reset gpu block number
"""
self.total_block_num = num_gpu_blocks
self.prefill_kvcache_block_num= int(self.total_block_num * self.kv_cache_ratio)
llm_logger.info((f"Reset block num, the total_block_num:{self.total_block_num},"
f" prefill_kvcache_block_num:{self.prefill_kvcache_block_num}"))
self.total_block_num = num_gpu_blocks
self.prefill_kvcache_block_num = int(self.total_block_num *
self.kv_cache_ratio)
llm_logger.info(
(f"Reset block num, the total_block_num:{self.total_block_num},"
f" prefill_kvcache_block_num:{self.prefill_kvcache_block_num}"))
def print(self):
"""Print current cache configuration."""
"""
print all config
"""
llm_logger.info("Cache Configuration Information :")
for k, v in self.__dict__.items():
llm_logger.info("{:<20}:{:<6}{}".format(k, "", v))
@@ -274,38 +324,182 @@ Attributes:
"=============================================================")
class SpeculativeConfig:
"""
Speculative Decoding Configuration class.
Attributes:
method (Optional[str]): Method used for speculative decoding.
num_speculative_tokens (int): Maximum draft tokens, default is 1.
model_name_or_path (Optional[str]): Path of the model.
quantization (str): Quantization method for draft model, default is WINT8.
max_model_len: Optional[int]: Maximum model length for draft model.
"""
def __init__(self,
method: Optional[str] = None,
num_speculative_tokens: Optional[int] = 1,
model: Optional[str] = None,
quantization: Optional[str] = "WINT8",
max_model_len: Optional[int] = None,
**kwargs):
self.model_name_or_path = model
self.method = method
self.num_speculative_tokens = num_speculative_tokens
self.quantization = quantization
self.max_model_len = max_model_len
# Fixed now
self.num_gpu_block_expand_ratio = 1
self.num_extra_cache_layer = 0
for key, value in kwargs.items():
try:
setattr(self, key, value)
except Exception:
continue
self.read_model_config()
self.reset()
def read_model_config(self):
"""
Read configuration from file.
"""
self.model_config = {}
if not self.enabled_speculative_decoding():
return
self.is_unified_ckpt = check_unified_ckpt(self.model_name_or_path)
if self.model_name_or_path is None:
return
self.config_path = os.path.join(self.model_name_or_path, "config.json")
if os.path.exists(self.config_path):
self.model_config = json.load(
open(self.config_path, 'r', encoding='utf-8'))
def reset(self):
"""
Reset configuration.
"""
def reset_value(cls, value_name, key=None, default=None):
if key is not None and key in cls.model_config:
setattr(cls, value_name, cls.model_config[key])
elif getattr(cls, value_name, None) is None:
setattr(cls, value_name, default)
if not self.enabled_speculative_decoding():
return
# NOTE(liuzichang): We will support multi-layer in future
if self.method in ["mtp"]:
self.num_extra_cache_layer = 1
def enabled_speculative_decoding(self):
"""
Check if speculative decoding is enabled.
"""
if self.method is None:
return False
return True
def to_json_string(self):
"""
Convert speculative_config to json string.
"""
return json.dumps({
key: value
for key, value in self.__dict__.items() if value is not None
})
def print(self):
"""
print all config
"""
llm_logger.info("Speculative Decoding Configuration Information :")
for k, v in self.__dict__.items():
llm_logger.info("{:<20}:{:<6}{}".format(k, "", v))
llm_logger.info(
"=============================================================")
class ParallelConfig:
"""
Configuration for parallelism.
Attributes:
tensor_parallel_size (int): Size of tensor parallelism.
data_parallel_size (int): Size of data parallelism.
local_data_parallel_id (int): ID of local data parallel.
enable_expert_parallel (bool): Whether to enable expert parallel.
"""
def __init__(
self,
tensor_parallel_size: int = 1,
data_parallel_size: int = 1,
enable_expert_parallel: bool = False,
):
"""
Initialize the ParallelConfig class.
Args:
tensor_parallel_size (int): Size of tensor parallelism.
data_parallel_size (int): Size of data parallelism.
local_data_parallel_id (int): ID of local data parallel.
enable_expert_parallel (bool): Whether to enable expert parallel.
"""
self.tensor_parallel_size = tensor_parallel_size
self.data_parallel_size = data_parallel_size
self.enable_expert_parallel = enable_expert_parallel
self.expert_parallel_size = data_parallel_size
self.local_data_parallel_id = 0
def print(self):
"""
print all config
"""
llm_logger.info("Parallel Configuration Information :")
for k, v in self.__dict__.items():
llm_logger.info("{:<20}:{:<6}{}".format(k, "", v))
llm_logger.info("==================")
class Config:
"""
Main engine configuration class combining all components.
Initial configuration class.
Attributes:
model_config (ModelConfig): Model settings
cache_config (CacheConfig): Cache management settings
scheduler_config (SchedulerConfig): Task scheduling settings
model_name_or_path (str): Model identifier/path
tokenizer (str): Tokenizer identifier
tensor_parallel_size (int): Parallelism degree (default: 8)
nnode (int): Node count (default: 1)
max_model_len (int): Max sequence length (default: 8192)
max_num_seqs (int): Max concurrent sequences (default: 8)
max_num_batched_tokens (Optional[int]): Max batched tokens
pod_ips (Optional[List[str]]): Cluster node IPs
mm_processor_kwargs (Optional[Dict]): Multi-modal processor args
speculative_config (Optional[Dict]): Speculative execution settings
use_warmup (bool): Warmup enable flag
enable_mm (bool): Multi-modal enable flag
enable_chunked_prefill (bool): Chunked prefill enable flag
device_ids (str): GPU device IDs
tp_num_per_node (int): Tensor parallelism per node
host_ip (str): Current host IP
paddle_commit_id (str): PaddlePaddle version
"""
Attributes:
model_config (ModelConfig): Model configuration object.
cache_config (CacheConfig): Cache configuration object.
model_name_or_path (str): Directory path to the model or the model name.
tokenizer (Optional[str]): Default is the model.
max_num_batched_tokens (Optional[int]): Maximum number of batched tokens.
tensor_parallel_size (int): Tensor parallel size.
nnode (int): Number of nodes.
max_model_len (int): Maximum model length. Default is 8192.
max_num_seqs (int): Maximum number of sequences. Default is 8.
mm_processor_kwargs (Optional[Dict[str, Any]]): Additional arguments for multi-modal processor.
speculative_config (Optional[Dict[str, Any]]): Speculative execution configuration.
use_warmup (bool): Flag to use warmup.
engine_worker_queue_port (int): Port for engine worker queue.
enable_mm (bool): Flag to enable multi-modal processing.
reasoning_parser(str): Flag specifies the reasoning parser to use for
extracting reasoning content from the model output
splitwise_role (str): Splitwise role.
innode_prefill_ports (Optional[List[int]]): Innode prefill ports.
Temporary configuration, will be removed in the future.
"""
def __init__(
self,
model_config: ModelConfig,
cache_config: CacheConfig,
scheduler_config: SchedulerConfig,
parallel_config: ParallelConfig,
model_name_or_path: str = None,
tokenizer: str = None,
tensor_parallel_size: int = 8,
@@ -314,38 +508,57 @@ Attributes:
max_num_seqs: int = 8,
max_num_batched_tokens: Optional[int] = None,
pod_ips: Optional[List[str]] = None,
mm_processor_kwargs: Optional[Dict[str, Any]] = None,
speculative_config: Optional[Dict[str, Any]] = None,
use_warmup: bool = False,
engine_worker_queue_port: int = 8002,
limit_mm_per_prompt: Optional[Dict[str, Any]] = None,
mm_processor_kwargs: Optional[Dict[str, Any]] = None,
enable_mm: bool = False,
enable_chunked_prefill: bool = False,
splitwise_role: str = "mixed",
innode_prefill_ports: Optional[List[int]] = None,
max_num_partial_prefills: int = 1,
max_long_partial_prefills: int = 1,
long_prefill_token_threshold: int = 0,
reasoning_parser: str = None,
enable_static_graph_inference: bool = False,
use_cudagraph: bool = False,
max_capture_batch_size: int = 64,
guided_decoding_backend: Optional[str] = None,
disable_any_whitespace: bool = False,
):
"""
Initialize engine configuration.
Initialize the Config class.
Args:
model_config (ModelConfig): Model settings
cache_config (CacheConfig): Cache settings
scheduler_config (SchedulerConfig): Scheduler settings
model_name_or_path (str): Model identifier (default: None)
tokenizer (str): Tokenizer identifier (default: None)
tensor_parallel_size (int): Parallelism degree (default: 8)
nnode (int): Node count (default: 1)
max_model_len (int): Max sequence length (default: 8192)
max_num_seqs (int): Max concurrent sequences (default: 8)
max_num_batched_tokens (Optional[int]): Max batched tokens (default: None)
pod_ips (Optional[List[str]]): Cluster node IPs (default: None)
mm_processor_kwargs (Optional[Dict]): Multi-modal args (default: None)
speculative_config (Optional[Dict]): Speculative settings (default: None)
use_warmup (bool): Warmup flag (default: False)
engine_worker_queue_port (int): Worker queue port (default: 8002)
enable_mm (bool): Multi-modal flag (default: False)
enable_chunked_prefill (bool): Chunked prefill flag (default: False)
model_config (ModelConfig): Model configuration object.
cache_config (CacheConfig): Cache configuration object.
parallel_config (ParallelConfig): Parallel configuration object.
scheduler_config (SchedulerConfig): Scheduler configuration object.
model_name_or_path (str): Model directory path or model name.
tokenizer (str): Default is the model.
tensor_parallel_size (int): Tensor parallel size. Default is 8.
nnode (int): Number of nodes. Default is 1.
max_model_len (int): Maximum model length. Default is 8192.
max_num_seqs (int): Maximum number of sequences. Default is 8.
max_num_batched_tokens (Optional[int]): Maximum number of batched tokens. Default is None.
pod_ips (Optional[List[str]]): List of POD IPs. Default is None.
mm_processor_kwargs (Optional[Dict[str, Any]]): Additional arguments for multi-modal processor. Default is None.
speculative_config (Optional[Dict[str, Any]]): Speculative execution configuration. Default is None.
use_warmup (bool): Flag to use warmup. Default is False.
engine_worker_queue_port (int): Engine worker queue port. Default is 8002.
enable_mm (bool): Flag to enable multi-modal processing. Default is False.
splitwise_role (str): Splitwise role. Default is "mixed".
innode_prefill_ports (Optional[List[int]]): Innode prefill ports. Default is None.
reasoning_parser (str): Flag specifies the reasoning parser to use for
extracting reasoning content from the model output. Default is None.
guided_decoding_backend(str): Guided decoding backend. Default is None.
disable_any_whitespace(bool): Disable any whitespace when using guided decoding.
Default is False.
"""
self.model_config = model_config
self.cache_config = cache_config
self.scheduler_config = scheduler_config
self.parallel_config = parallel_config
self.model_name_or_path = model_name_or_path
self.tokenizer = tokenizer
self.max_num_batched_tokens = max_num_batched_tokens
@@ -354,20 +567,56 @@ Attributes:
self.pod_ips = pod_ips
self.max_model_len = max_model_len
self.max_num_seqs = max_num_seqs
self.limit_mm_per_prompt = limit_mm_per_prompt
self.mm_processor_kwargs = mm_processor_kwargs
self.enable_mm = enable_mm
self.speculative_config = speculative_config
self.use_warmup = use_warmup
self.enable_chunked_prefill = enable_chunked_prefill
self.splitwise_role = splitwise_role
self.innode_prefill_ports = innode_prefill_ports
self.max_num_partial_prefills = max_num_partial_prefills
self.max_long_partial_prefills = max_long_partial_prefills
self.long_prefill_token_threshold = long_prefill_token_threshold
self.reasoning_parser = reasoning_parser
self.enable_static_graph_inference = enable_static_graph_inference
self.use_cudagraph = use_cudagraph
self.max_capture_batch_size = max_capture_batch_size
self.guided_decoding_backend = guided_decoding_backend
self.disable_any_whitespace = disable_any_whitespace
if self.innode_prefill_ports is not None:
if not isinstance(self.innode_prefill_ports, list):
ports = str(self.innode_prefill_ports).split(',')
self.innode_prefill_ports = [int(port) for port in ports]
assert self.splitwise_role in ["mixed", "prefill", "decode"]
# TODO
self.max_prefill_batch = 3
if current_platform.is_xpu():
self.max_prefill_batch = 1
if enable_mm:
self.max_prefill_batch = 1 # TODO: Currently multi-modal prefill only supports parallelism=1 (needs optimization)
self.max_prefill_batch = 1 # TODO:当前多模prefill阶段只支持并行度为1,待优化
# TODO(@wufeisheng): TP and EP need to be supported simultaneously.
assert (self.tensor_parallel_size == 1
and self.parallel_config.expert_parallel_size
>= 1) or (self.tensor_parallel_size >= 1
and self.parallel_config.expert_parallel_size
== 1), "TP and EP cannot be enabled at the same time"
num_ranks = self.tensor_parallel_size * self.parallel_config.expert_parallel_size
if num_ranks > 8:
local_num_ranks = 8
self.nnode = ceil_div(num_ranks, local_num_ranks)
else:
local_num_ranks = num_ranks
self.engine_worker_queue_port = engine_worker_queue_port
self.device_ids = ",".join(
[str(i) for i in range(self.tensor_parallel_size)])
self.device_ids = ",".join([str(i) for i in range(min((self.tensor_parallel_size * \
self.parallel_config.expert_parallel_size), 8))])
self.device_ids = os.getenv("CUDA_VISIBLE_DEVICES", self.device_ids)
self.read_from_config()
@@ -377,45 +626,44 @@ Attributes:
def postprocess(self):
"""
Calculate derived parameters:
- Validates GPU device count matches tensor_parallel_size
- Computes tensor parallelism per node
- Gets host IP and Paddle version
- Sets default max_num_batched_tokens if not provided
- Initializes cache configuration
calculate some parameters
"""
if len(self.device_ids.split(',')) > self.tensor_parallel_size:
self.device_ids = ",".join(
self.device_ids.split(',')[:self.tensor_parallel_size:])
assert len(
self.device_ids.split(',')
) == self.tensor_parallel_size, f"The number of available GPUs is {len(self.device_ids.split(','))}, which is less than the tensor parallel required {self.tensor_parallel_size}."
assert self.tensor_parallel_size % self.nnode == 0, f"tensor_parallel_size: {self.tensor_parallel_size} should be divisible by nnode: {self.nnode}"
self.tp_num_per_node = self.tensor_parallel_size // self.nnode
total_rank = self.tensor_parallel_size * self.parallel_config.expert_parallel_size
assert self.device_ids.split(',').__len__() == min(total_rank, 8), \
f"invalid CUDA_VISIBLE_DEVICES, should be equal to {min(total_rank, 8)}"
self.local_device_ids = self.device_ids.split(
',')[:self.tensor_parallel_size]
assert self.tensor_parallel_size % self.nnode == 0, \
f"tensor_parallel_size: {self.tensor_parallel_size} should be divisible by nnode: {self.nnode}"
self.worker_num_per_node = total_rank // self.nnode
self.host_ip = get_host_ip()
import paddle
self.paddle_commit_id = paddle.version.commit
if self.max_num_batched_tokens is None:
if self.enable_chunked_prefill:
if self.cache_config.enable_chunked_prefill:
self.max_num_batched_tokens = 2048
else:
self.max_num_batched_tokens = self.max_model_len
self.cache_config.postprocess(self.max_num_batched_tokens, self.max_num_seqs)
if self.long_prefill_token_threshold == 0:
self.long_prefill_token_threshold = int(self.max_model_len * 0.04)
self.cache_config.postprocess(self.max_num_batched_tokens,
self.max_num_seqs)
self.cache_config.max_block_num_per_seq = int(
self.max_model_len // self.cache_config.block_size)
if self.guided_decoding_backend == "auto":
if self.enable_mm:
self.guided_decoding_backend = "off"
else:
self.guided_decoding_backend = "xgrammar"
def check(self):
"""
Validate configuration values:
- max_num_seqs <= 256
- engine_worker_queue_port available
- 1 <= tensor_parallel_size <= 8
- nnode >= 1
- max_model_len >= 16
- max_num_seqs >= 1
- Validates scheduler configuration
check the legality of config
"""
assert (
self.max_num_seqs <= 256
@@ -434,15 +682,66 @@ Attributes:
assert (
self.max_num_seqs
>= 1), f"max_num_seqs: {self.max_num_seqs} should be larger than 1"
assert (
self.max_num_batched_tokens >= self.max_num_seqs
), f"max_num_batched_tokens: {self.max_num_batched_tokens} " \
f"should be larger than or equal to max_num_seqs: {self.max_num_seqs}"
assert (self.max_num_batched_tokens <= self.max_model_len * self.max_num_seqs), \
f"max_num_batched_tokens: {self.max_num_batched_tokens} should be larger" \
f"than or equal to max_num_seqs: {self.max_num_seqs} * max_model_len: {self.max_model_len}"
assert (
self.max_num_partial_prefills >= 1
), f"max_num_partial_prefills: {self.max_num_partial_prefills} should be larger than or equal to 1"
assert (
self.max_long_partial_prefills >= 1
), f"max_long_partial_prefills: {self.max_long_partial_prefills} should be larger than or equal to 1"
assert (self.max_long_partial_prefills <= self.max_num_partial_prefills), \
f"max_long_partial_prefills: {self.max_long_partial_prefills} should " \
f"be less than or equal to max_num_partial_prefills: {self.max_num_partial_prefills}"
if not self.cache_config.enable_chunked_prefill:
assert (
self.max_num_batched_tokens >= self.max_model_len
), f"max_num_batched_tokens: {self.max_num_batched_tokens} " \
f"should be larger than or equal to max_model_len: {self.max_model_len}"
if self.max_num_partial_prefills > 1:
assert (self.cache_config.enable_chunked_prefill is True), \
"Chunked prefill must be enabled to set max_num_partial_prefills > 1"
assert (self.long_prefill_token_threshold < self.max_model_len), \
f"long_prefill_token_threshold: {self.long_prefill_token_threshold} should be less than"\
f" max_model_len: {self.max_model_len}"
if self.guided_decoding_backend is not None:
assert self.guided_decoding_backend in ["xgrammar", "XGrammar", "auto", "off"], \
f"Only support xgrammar、auto guided decoding backend, but got {self.guided_decoding_backend}."
if self.guided_decoding_backend != "off":
# TODO: mm support guided_decoding
assert self.enable_mm is False, "Multimodal model currently do not support guided_decoding"
# TODO: speculative decoding support guided_decoding
# TODO: xpu support guided_decoding
assert not current_platform.is_xpu(
), "XPU currently do not support guided_decoding"
try:
pass
except Exception as e:
raise Exception(
f"import XGrammar failed, please install XGrammar use `pip install xgrammar==0.1.19`. \n\t {e}"
)
self.scheduler_config.check()
def print(self, file=None):
"""
Print or save current configuration.
print all config
Args:
file (Optional[str]): File path to save config (default: None)
file (str): the path of file to save config
"""
llm_logger.info(
"=================== Configuration Information ===============")
@@ -450,7 +749,7 @@ Attributes:
if k == "generation_config" and v is not None:
for gck, gcv in v.to_dict().items():
llm_logger.info("{:<20}:{:<6}{}".format(gck, "", gcv))
elif k == "cache_config" or k == "model_config" or k == "scheduler_config":
elif k == "cache_config" or k == "model_config" or k == "scheduler_config" or k == "parallel_config":
v.print()
else:
llm_logger.info("{:<20}:{:<6}{}".format(k, "", v))
@@ -464,13 +763,36 @@ Attributes:
f.write("{:<20}:{:<6}{}\n".format(k, "", v))
f.close()
def init_cache_info(self):
"""
initialize cache info
"""
disaggregate_info = {}
if self.splitwise_role != "mixed":
disaggregate_info["role"] = self.splitwise_role
disaggregate_info["cache_info"] = dict()
current_protocol = self.cache_config.cache_transfer_protocol.split(
",")
disaggregate_info["transfer_protocol"] = current_protocol
for protocol in current_protocol:
if protocol == "ipc":
disaggregate_info["cache_info"][protocol] = {
"ip": self.host_ip,
"port": self.engine_worker_queue_port,
"device_ids": self.local_device_ids
}
elif protocol == "rdma":
disaggregate_info["cache_info"][protocol] = {
"ip": self.host_ip,
"port": self.cache_config.pd_comm_port[0],
"rdma_port": self.cache_config.rdma_comm_ports,
}
self.disaggregate_info = disaggregate_info
llm_logger.info(f"disaggregate_info: {self.disaggregate_info}")
def read_from_config(self):
"""
Update configuration from model JSON file.
Handles special cases:
- infer_model_block_size -> block_size
- return_full_hidden_states
- infer_model_dtype -> cache_dtype
reset model config from json file
"""
def reset_value(cls, value_name, key):
@@ -482,9 +804,9 @@ Attributes:
)
reset_value(self.cache_config, "block_size", "infer_model_block_size")
reset_value(self.model_config, "return_full_hidden_states", "return_full_hidden_states")
reset_value(self.model_config, "return_full_hidden_states",
"return_full_hidden_states")
reset_value(self.cache_config, "cache_dtype", "infer_model_dtype")
def __str__(self) -> str:
return json.dumps(self.__dict__, indent=4)