Sync v2.0 version of code to github repo

This commit is contained in:
Jiang-Jia-Jun
2025-06-29 23:29:37 +00:00
parent d151496038
commit 92c2cfa2e7
597 changed files with 78776 additions and 22905 deletions

View File

@@ -13,12 +13,13 @@
# See the License for the specific language governing permissions and
# limitations under the License.
"""
import json
from dataclasses import asdict, dataclass
from dataclasses import fields as dataclass_fields
from typing import Any, Dict, List, Optional
from fastdeploy.engine.config import (CacheConfig, Config, ModelConfig,
ParallelConfig, SpeculativeConfig,
TaskOption)
from fastdeploy.scheduler.config import SchedulerConfig
from fastdeploy.utils import FlexibleArgumentParser
@@ -34,7 +35,7 @@ def nullable_str(x: str) -> Optional[str]:
@dataclass
class EngineArgs:
# Model configuration parameters
model: str = ""
model: str = "baidu/ernie-45-turbo"
"""
The name or path of the model to be used.
"""
@@ -70,6 +71,14 @@ class EngineArgs:
"""
Additional keyword arguments for the multi-modal processor.
"""
limit_mm_per_prompt: Optional[Dict[str, Any]] = None
"""
Limitation of numbers of multi-modal data.
"""
reasoning_parser: str = None
"""
specifies the reasoning parser to use for extracting reasoning content from the model output
"""
enable_mm: bool = False
"""
Flags to enable multi-modal model
@@ -82,6 +91,15 @@ class EngineArgs:
"""
dynamic load weight
"""
quantization: str = None
guided_decoding_backend: str = "off"
"""
Guided decoding backend.
"""
guided_decoding_disable_any_whitespace: bool = False
"""
Disable any whitespace in guided decoding.
"""
# Inference configuration parameters
gpu_memory_utilization: float = 0.9
@@ -109,6 +127,16 @@ class EngineArgs:
List of IP addresses for nodes in the cluster.
"""
swap_space: float = None
"""
The amount of CPU memory to offload to.
"""
cache_queue_port: int = 8003
"""
Port for cache queue.
"""
# System configuration parameters
use_warmup: int = 0
"""
@@ -119,51 +147,150 @@ class EngineArgs:
Flag to enable prefix caching.
"""
engine_worker_queue_port: int = 8002
"""
Port for worker queue communication.
"""
splitwise_role: str = "mixed"
"""
Splitwise role: prefill, decode or mixed
"""
data_parallel_size: int = 1
"""
Number of data parallelism.
"""
enable_expert_parallel: bool = False
"""
Enable expert parallelism.
"""
cache_transfer_protocol: str = "ipc"
"""
Protocol to use for cache transfer.
"""
pd_comm_port: Optional[List[int]] = None
"""
Port for splitwise communication.
"""
innode_prefill_ports: Optional[List[int]] = None
"""
Ports for innode dispatch request.
"""
rdma_comm_ports: Optional[List[int]] = None
"""
Ports for rdma communication.
"""
enable_chunked_prefill: bool = False
"""
Flag to enable chunked prefilling.
"""
max_num_partial_prefills: int = 1
"""
For chunked prefill, the max number of concurrent partial prefills.
"""
max_long_partial_prefills: int = 1
"""
For chunked prefill, the maximum number of prompts longer than long-prefill-token-threshold
that will be prefilled concurrently.
"""
long_prefill_token_threshold: int = 0
"""
For chunked prefill, a request is considered long if the prompt is longer than this number of tokens.
"""
static_decode_blocks: int = 2
"""
additional decode block num
"""
scheduler_name: str = "local"
"""
Scheduler name to be used
"""
scheduler_name: str = "local"
scheduler_max_size: int = -1
"""
Size of scheduler
"""
scheduler_max_size: int = -1
scheduler_ttl: int = 900
"""
TTL of request
"""
scheduler_ttl: int = 900
"""
Timeout for waiting for response
"""
scheduler_wait_response_timeout: float = 0.001
scheduler_host: str = "127.0.0.1"
"""
Host of redis
"""
scheduler_host: str = "127.0.0.1"
scheduler_port: int = 6379
"""
Port of redis
"""
scheduler_port: int = 6379
scheduler_db: int = 0
"""
DB of redis
"""
scheduler_db: int = 0
scheduler_password: Optional[str] = None
"""
Password of redis
"""
scheduler_password: Optional[str] = None
scheduler_topic: str = "default"
"""
Topic of scheduler
"""
scheduler_topic: str = "default"
scheduler_min_load_score: float = 3
"""
Max write time of redis
Minimum load score for task assignment
"""
scheduler_load_shards_num: int = 1
"""
Number of shards for load balancing table
"""
scheduler_sync_period: int = 5
"""
SplitWise Use, node load sync period
"""
scheduler_expire_period: int = 3000
"""
SplitWise Use, node will not be scheduled after expire_period ms not sync load
"""
scheduler_release_load_expire_period: int = 600
"""
SplitWise Use, scheduler will release req load after expire period(s)
"""
scheduler_reader_parallel: int = 4
"""
SplitWise Use, Results Reader Sync Parallel
"""
scheduler_writer_parallel: int = 4
"""
SplitWise Use, Results Writer Sync Parallel
"""
scheduler_reader_batch_size: int = 200
"""
SplitWise Use, Results Reader Batch Size
"""
scheduler_writer_batch_size: int = 200
"""
SplitWise Use, Results Writer Batch Size
"""
enable_static_graph_inference: bool = False
"""
Whether to use static mode
"""
use_cudagraph: bool = False
"""
Flags to enable Cuda Graph
"""
max_capture_batch_size: int = 64
"""
Maximum Batch Size for Cuda Graph Capture
NOTE: Now only support to capture continuous batch size,
Example:
max_capture_batch_size=64, FastDeploy will capture graphs for batches [1,64].
"""
scheduler_remote_write_time: int = 3
def __post_init__(self):
"""
@@ -214,20 +341,32 @@ class EngineArgs:
default=EngineArgs.use_warmup,
help="Flag to indicate whether to use warm-up before inference.")
model_group.add_argument(
"--mm_processor_kwargs",
default=None,
"--limit-mm-per-prompt",
default=EngineArgs.limit_mm_per_prompt,
type=json.loads,
help="Limitation of numbers of multi-modal data.")
model_group.add_argument(
"--mm-processor-kwargs",
default=EngineArgs.mm_processor_kwargs,
type=json.loads,
help="Additional keyword arguments for the multi-modal processor.")
model_group.add_argument("--enable-mm",
action='store_true',
default=EngineArgs.enable_mm,
help="Flag to enable multi-modal model.")
model_group.add_argument("--reasoning-parser",
type=str,
default=EngineArgs.reasoning_parser,
help="Flag specifies the reasoning parser to use for extracting "\
"reasoning content from the model output")
model_group.add_argument(
"--speculative_config",
default=None,
"--speculative-config",
type=json.loads,
default=EngineArgs.speculative_config,
help="Configuration for speculative execution.")
model_group.add_argument(
"--dynamic_load_weight",
"--dynamic-load-weight",
type=int,
default=EngineArgs.dynamic_load_weight,
help="Flag to indicate whether to load weight dynamically.")
@@ -236,6 +375,39 @@ class EngineArgs:
type=int,
default=EngineArgs.engine_worker_queue_port,
help="port for engine worker queue")
model_group.add_argument("--quantization",
type=str,
default=EngineArgs.quantization,
help="Quantization name for the model, currentlly support " \
"'wint8', 'wint4'," \
"default is None. The priority of this configuration "\
"is lower than that of the config file. " \
"More complex quantization methods need to be configured via the config file.")
model_group.add_argument(
"--enable-static-graph-inference",
action='store_true',
default=EngineArgs.enable_static_graph_inference,
help="Whether to use static mode; if enabled, " \
"'paddle.to_static' will be used to convert dynamic to static.")
model_group.add_argument("--use-cudagraph",
action='store_true',
default=EngineArgs.use_cudagraph,
help="Flags to enable cuda graph.")
model_group.add_argument("--max-capture-batch-size",
type=int,
default=EngineArgs.max_capture_batch_size,
help="Maximum of Batch Size for Warm Up.")
model_group.add_argument("--guided-decoding-backend",
type=str,
default=EngineArgs.guided_decoding_backend,
help="Guided Decoding Backend")
model_group.add_argument(
"--guided-decoding-disable-any-whitespace",
type=str,
default=EngineArgs.guided_decoding_disable_any_whitespace,
help=
"Disabled any whitespaces when using guided decoding backend XGrammar."
)
# Parallel processing parameters group
parallel_group = parser.add_argument_group("Parallel Configuration")
@@ -264,11 +436,38 @@ class EngineArgs:
type=float,
default=EngineArgs.gpu_memory_utilization,
help="Fraction of GPU memory to be utilized.")
parallel_group.add_argument(
"--kv-cache-ratio",
parallel_group.add_argument("--data-parallel-size",
type=int,
default=EngineArgs.data_parallel_size,
help="Degree of data parallelism.")
parallel_group.add_argument("--enable-expert-parallel",
action='store_true',
default=EngineArgs.enable_expert_parallel,
help="Enable expert parallelism.")
# CacheConfig parameters group
cache_group = parser.add_argument_group("Cache Configuration")
cache_group.add_argument("--kv-cache-ratio",
type=float,
default=EngineArgs.kv_cache_ratio,
help="Ratio of tokens to process in a block.")
cache_group.add_argument(
"--swap-space",
type=float,
default=EngineArgs.kv_cache_ratio,
help="Ratio of tokens to process in a block.")
default=EngineArgs.swap_space,
help="The amount of CPU memory to offload to.")
cache_group.add_argument("--cache-queue-port",
type=int,
default=EngineArgs.cache_queue_port,
help="port for cache queue")
cache_group.add_argument("--static-decode-blocks",
type=int,
default=EngineArgs.static_decode_blocks,
help="Static decoding blocks num.")
# Cluster system parameters group
system_group = parser.add_argument_group("System Configuration")
@@ -285,18 +484,60 @@ class EngineArgs:
# Performance tuning parameters group
perf_group = parser.add_argument_group("Performance Tuning")
perf_group.add_argument("--enable-prefix-caching",
action='store_true',
default=EngineArgs.enable_prefix_caching,
help="Flag to enable prefix caching.")
perf_group.add_argument("--splitwise-role",
type=str,
default=EngineArgs.splitwise_role,
help="Role of splitwise. Default is \
'mixed'. (prefill, decode, mixed)")
perf_group.add_argument("--innode-prefill-ports",
type=lambda s: s.split(",") if s else None,
default=EngineArgs.innode_prefill_ports,
help="port for innode prefill")
perf_group.add_argument("--enable-chunked-prefill",
action='store_true',
default=EngineArgs.enable_chunked_prefill,
help="Flag to enable chunked prefill.")
perf_group.add_argument("--max-num-partial-prefills",
type=int,
default=EngineArgs.max_num_partial_prefills,
help="For chunked prefill, Maximum number \
of concurrent partial prefill requests.")
perf_group.add_argument(
"--enable-prefix-caching",
action='store_true',
default=EngineArgs.enable_prefix_caching,
help="Flag to enable prefix caching."
)
"--max-long-partial-prefills",
type=int,
default=EngineArgs.max_long_partial_prefills,
help=
("For chunked prefill, the maximum number of prompts longer than long-prefill-token-threshold"
"that will be prefilled concurrently."))
perf_group.add_argument(
"--enable-chunked-prefill",
action='store_true',
default=EngineArgs.enable_chunked_prefill,
help="Flag to enable chunked prefill."
)
"--long-prefill-token-threshold",
type=int,
default=EngineArgs.long_prefill_token_threshold,
help=("For chunked prefill, the threshold number of"
" tokens for a prompt to be considered long."))
perf_group.add_argument(
"--cache-transfer-protocol",
type=str,
default=EngineArgs.cache_transfer_protocol,
help="support protocol list, comma separated, default is ipc")
perf_group.add_argument("--pd-comm-port",
type=lambda s: s.split(",") if s else None,
default=EngineArgs.pd_comm_port,
help="port for splitwise communication.")
perf_group.add_argument("--rdma-comm-ports",
type=lambda s: s.split(",") if s else None,
default=EngineArgs.rdma_comm_ports,
help="ports for rdma communication.")
# Scheduler parameters group
scheduler_group = parser.add_argument_group("Scheduler")
@@ -320,14 +561,6 @@ class EngineArgs:
help=
f"TTL of request. Default is {EngineArgs.scheduler_ttl} seconds. (local,global)"
)
scheduler_group.add_argument(
"--scheduler-wait-response-timeout",
type=float,
default=EngineArgs.scheduler_wait_response_timeout,
help=
("Timeout for waiting for response. Default is "
f"{EngineArgs.scheduler_wait_response_timeout} seconds. (local,global)"
))
scheduler_group.add_argument(
"--scheduler-host",
default=EngineArgs.scheduler_host,
@@ -359,12 +592,62 @@ class EngineArgs:
f"Topic of scheduler. Defaule is {EngineArgs.scheduler_topic}. (global)"
)
scheduler_group.add_argument(
"--scheduler-remote-write-time",
type=int,
default=EngineArgs.scheduler_remote_write_time,
"--scheduler-min-load-score",
type=float,
default=EngineArgs.scheduler_min_load_score,
help=
f"Max write time of redis. Default is {EngineArgs.scheduler_remote_write_time} seconds (global)"
f"Minimum load score for task assignment. Default is {EngineArgs.scheduler_min_load_score} (global)"
)
scheduler_group.add_argument(
"--scheduler-load-shards-num",
type=int,
default=EngineArgs.scheduler_load_shards_num,
help=("Number of shards for load balancing table. Default is "
f"{EngineArgs.scheduler_load_shards_num} (global)"))
scheduler_group.add_argument(
"--scheduler-sync-period",
type=int,
default=EngineArgs.scheduler_sync_period,
help=f"SplitWise Use, node load sync period, "
f"Default is {EngineArgs.scheduler_sync_period}ms. (global)")
scheduler_group.add_argument(
"--scheduler-expire-period",
type=int,
default=EngineArgs.scheduler_expire_period,
help=f"SplitWise Use, node will not be scheduled after "
f"expire-period ms not sync load, Default is "
f"{EngineArgs.scheduler_expire_period}ms. (global)")
scheduler_group.add_argument(
"--scheduler-release-load-expire-period",
type=int,
default=EngineArgs.scheduler_release_load_expire_period,
help=f"SplitWise Use, scheduler will release req load after "
f"expire period(s). Default is "
f"{EngineArgs.scheduler_release_load_expire_period}. (global)")
scheduler_group.add_argument(
"--scheduler-reader-parallel",
type=int,
default=EngineArgs.scheduler_reader_parallel,
help=f"SplitWise Use, Results Reader Sync Parallel, "
f"Default is {EngineArgs.scheduler_reader_parallel}. (global)")
scheduler_group.add_argument(
"--scheduler-writer-parallel",
type=int,
default=EngineArgs.scheduler_writer_parallel,
help=f"SplitWise Use, Results Writer Sync Parallel, "
f"Default is {EngineArgs.scheduler_writer_parallel}. (global)")
scheduler_group.add_argument(
"--scheduler-reader-batch-size",
type=int,
default=EngineArgs.scheduler_reader_batch_size,
help=f"SplitWise Use, Results Reader Batch Size, "
f"Default is {EngineArgs.scheduler_reader_batch_size}. (global)")
scheduler_group.add_argument(
"--scheduler-writer-batch-size",
type=int,
default=EngineArgs.scheduler_writer_batch_size,
help=f"SplitWise Use, Results Writer Batch Size, "
f"Default is {EngineArgs.scheduler_writer_batch_size}. (global)")
return parser
@@ -385,18 +668,37 @@ class EngineArgs:
"""
return ModelConfig(model_name_or_path=self.model,
config_json_file=self.model_config_name,
dynamic_load_weight=self.dynamic_load_weight)
dynamic_load_weight=self.dynamic_load_weight,
quantization=self.quantization)
def create_cache_config(self) -> CacheConfig:
def create_cache_config(self, model_cfg) -> CacheConfig:
"""
Create and return a CacheConfig object based on the current settings.
"""
return CacheConfig(
block_size=self.block_size,
tensor_parallel_size=self.tensor_parallel_size,
gpu_memory_utilization=self.gpu_memory_utilization,
num_gpu_blocks_override=self.num_gpu_blocks_override,
kv_cache_ratio=self.kv_cache_ratio,
enable_prefix_caching=self.enable_prefix_caching)
enable_prefix_caching=self.enable_prefix_caching,
swap_space=self.swap_space,
cache_queue_port=self.cache_queue_port,
model_cfg=model_cfg,
enable_chunked_prefill=self.enable_chunked_prefill,
enc_dec_block_num=self.static_decode_blocks,
rdma_comm_ports=self.rdma_comm_ports,
cache_transfer_protocol=self.cache_transfer_protocol,
pd_comm_port=self.pd_comm_port,
)
def create_speculative_config(self) -> SpeculativeConfig:
"""
"""
if self.speculative_config is not None:
return SpeculativeConfig(**self.speculative_config)
else:
return SpeculativeConfig()
def create_scheduler_config(self) -> SchedulerConfig:
"""
@@ -404,14 +706,32 @@ class EngineArgs:
"""
prefix = "scheduler_"
prefix_len = len(prefix)
extra_params = [
"max_model_len", "enable_chunked_prefill",
"max_num_partial_prefills", "max_long_partial_prefills",
"long_prefill_token_threshold"
]
all = asdict(self)
params = dict()
for k, v in all.items():
if k[:prefix_len] == prefix:
params[k[prefix_len:]] = v
elif k in extra_params:
params[k] = v
return SchedulerConfig(**params)
def create_parallel_config(self) -> ParallelConfig:
"""
Create and return a ParallelConfig object based on the current settings.
"""
return ParallelConfig(
tensor_parallel_size=self.tensor_parallel_size,
enable_expert_parallel=self.enable_expert_parallel,
data_parallel_size=self.data_parallel_size,
)
def create_engine_config(self) -> Config:
"""
Create and return a Config object based on the current settings.
@@ -426,22 +746,37 @@ class EngineArgs:
else:
self.max_num_batched_tokens = self.max_model_len
scheduler_cfg = self.create_scheduler_config()
speculative_cfg = self.create_speculative_config()
return Config(
model_name_or_path=self.model,
model_config=model_cfg,
scheduler_config=scheduler_cfg,
tokenizer=self.tokenizer,
cache_config=self.create_cache_config(),
cache_config=self.create_cache_config(model_cfg),
parallel_config=self.create_parallel_config(),
max_model_len=self.max_model_len,
tensor_parallel_size=self.tensor_parallel_size,
max_num_seqs=self.max_num_seqs,
mm_processor_kwargs=self.mm_processor_kwargs,
speculative_config=self.speculative_config,
speculative_config=speculative_cfg,
max_num_batched_tokens=self.max_num_batched_tokens,
nnode=self.nnode,
pod_ips=self.pod_ips,
use_warmup=self.use_warmup,
engine_worker_queue_port=self.engine_worker_queue_port,
limit_mm_per_prompt=self.limit_mm_per_prompt,
mm_processor_kwargs=self.mm_processor_kwargs,
enable_mm=self.enable_mm,
enable_chunked_prefill=self.enable_chunked_prefill,
reasoning_parser=self.reasoning_parser,
splitwise_role=self.splitwise_role,
innode_prefill_ports=self.innode_prefill_ports,
max_num_partial_prefills=self.max_num_partial_prefills,
max_long_partial_prefills=self.max_long_partial_prefills,
long_prefill_token_threshold=self.long_prefill_token_threshold,
enable_static_graph_inference=self.enable_static_graph_inference,
use_cudagraph=self.use_cudagraph,
max_capture_batch_size=self.max_capture_batch_size,
guided_decoding_backend=self.guided_decoding_backend,
disable_any_whitespace=self.guided_decoding_disable_any_whitespace,
)