Sync v2.0 version of code to github repo

This commit is contained in:
Jiang-Jia-Jun
2025-06-29 23:29:37 +00:00
parent d151496038
commit 92c2cfa2e7
597 changed files with 78776 additions and 22905 deletions

View File

@@ -0,0 +1,269 @@
// Copyright © 2024 PaddlePaddle Name. All Rights Reserved.
//
// This code is partially inspired by and references the implementation found in
// FlashInfer. Specifically, the implementation of Top-p Sampling functionality
// in this code is inspired by the logic of FlashInfers
// flashinfer.sampling.top_p_sampling_from_probs function. For more details on
// FlashInfers documentation, please refer to:
// https://docs.flashinfer.ai/generated/flashinfer.sampling.top_p_sampling_from_probs.html#flashinfer-sampling-top-p-sampling-from_probs
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <cuda_device_runtime_api.h>
#include <cuda_runtime.h>
#include <cstdint>
#include <iostream>
#include <sstream>
#include <stdexcept>
#include <vector>
#include <curand.h>
#include <curand_kernel.h>
#include <curand_philox4x32_x.h>
/******************* utils *******************/
#define STR_HELPER(x) #x
#define STR(x) STR_HELPER(x)
#ifndef NDEBUG
#define CUDA_CALL(func, ...) \
{ \
cudaError_t e = (func); \
if (e != cudaSuccess) { \
std::cerr << "CUDA Error: " << cudaGetErrorString(e) << " (" << e \
<< ") " << __FILE__ << ": line " << __LINE__ \
<< " at function " << STR(func) << std::endl; \
return e; \
} \
}
#else
#define CUDA_CALL(func, ...) \
{ \
cudaError_t e = (func); \
if (e != cudaSuccess) { \
return e; \
} \
}
#endif
#define DISPATCH_DETERMINISTIC(deterministic, DETERMINISTIC, ...) \
if (deterministic) { \
constexpr bool DETERMINISTIC = true; \
__VA_ARGS__ \
} else { \
constexpr bool DETERMINISTIC = false; \
__VA_ARGS__ \
}
#define DISPATCH_ALIGNED_VEC_SIZE(aligned_vec_size, ALIGNED_VEC_SIZE, ...) \
switch (aligned_vec_size) { \
case 16: { \
constexpr size_t ALIGNED_VEC_SIZE = 16; \
__VA_ARGS__ \
break; \
} \
case 8: { \
constexpr size_t ALIGNED_VEC_SIZE = 8; \
__VA_ARGS__ \
break; \
} \
case 4: { \
constexpr size_t ALIGNED_VEC_SIZE = 4; \
__VA_ARGS__ \
break; \
} \
case 2: { \
constexpr size_t ALIGNED_VEC_SIZE = 2; \
__VA_ARGS__ \
break; \
} \
case 1: { \
constexpr size_t ALIGNED_VEC_SIZE = 1; \
__VA_ARGS__ \
break; \
} \
default: { \
std::ostringstream err_msg; \
err_msg << "Unsupported aligned_vec_size: " << aligned_vec_size; \
throw std::invalid_argument(err_msg.str()); \
} \
}
/******************* vec_t<float> *******************/
#define SAMPLING_INLINE inline __attribute__((always_inline)) __device__
template <typename float_t, size_t vec_size> struct vec_t {
SAMPLING_INLINE float_t &operator[](size_t i);
SAMPLING_INLINE const float_t &operator[](size_t i) const;
SAMPLING_INLINE void fill(float_t val);
SAMPLING_INLINE void load(const float_t *ptr);
SAMPLING_INLINE void store(float_t *ptr) const;
template <typename T>
SAMPLING_INLINE void cast_from(const vec_t<T, vec_size> &src);
template <typename T> SAMPLING_INLINE void cast_load(const T *ptr);
template <typename T> SAMPLING_INLINE void cast_store(T *ptr) const;
SAMPLING_INLINE static void memcpy(float_t *dst, const float_t *src);
SAMPLING_INLINE float_t *ptr();
};
// float x 1
template <> struct vec_t<float, 1> {
float data;
SAMPLING_INLINE float &operator[](size_t i) { return ((float *)(&data))[i]; }
SAMPLING_INLINE const float &operator[](size_t i) const {
return ((const float *)(&data))[i];
}
SAMPLING_INLINE float *ptr() { return reinterpret_cast<float *>(&data); }
SAMPLING_INLINE void fill(float val);
SAMPLING_INLINE void load(const float *ptr);
SAMPLING_INLINE void store(float *ptr) const;
template <typename T> SAMPLING_INLINE void cast_from(const vec_t<T, 1> &src) {
cast_from_impl(*this, src);
}
template <typename T> SAMPLING_INLINE void cast_load(const T *ptr) {
cast_load_impl(*this, ptr);
}
template <typename T> SAMPLING_INLINE void cast_store(T *ptr) const {
cast_store_impl(ptr, *this);
}
SAMPLING_INLINE static void memcpy(float *dst, const float *src);
};
SAMPLING_INLINE void vec_t<float, 1>::fill(float val) { data = val; }
SAMPLING_INLINE void vec_t<float, 1>::load(const float *ptr) { data = *ptr; }
SAMPLING_INLINE void vec_t<float, 1>::store(float *ptr) const { *ptr = data; }
SAMPLING_INLINE void vec_t<float, 1>::memcpy(float *dst, const float *src) {
*dst = *src;
}
// float x 2
template <> struct vec_t<float, 2> {
float2 data;
SAMPLING_INLINE float &operator[](size_t i) { return ((float *)(&data))[i]; }
SAMPLING_INLINE const float &operator[](size_t i) const {
return ((const float *)(&data))[i];
}
SAMPLING_INLINE float *ptr() { return reinterpret_cast<float *>(&data); }
SAMPLING_INLINE void fill(float val);
SAMPLING_INLINE void load(const float *ptr);
SAMPLING_INLINE void store(float *ptr) const;
template <typename T> SAMPLING_INLINE void cast_from(const vec_t<T, 2> &src) {
cast_from_impl(*this, src);
}
template <typename T> SAMPLING_INLINE void cast_load(const T *ptr) {
cast_load_impl(*this, ptr);
}
template <typename T> SAMPLING_INLINE void cast_store(T *ptr) const {
cast_store_impl(ptr, *this);
}
SAMPLING_INLINE static void memcpy(float *dst, const float *src);
};
SAMPLING_INLINE void vec_t<float, 2>::fill(float val) {
data = make_float2(val, val);
}
SAMPLING_INLINE void vec_t<float, 2>::load(const float *ptr) {
data = *((float2 *)ptr);
}
SAMPLING_INLINE void vec_t<float, 2>::store(float *ptr) const {
*((float2 *)ptr) = data;
}
SAMPLING_INLINE void vec_t<float, 2>::memcpy(float *dst, const float *src) {
*((float2 *)dst) = *((float2 *)src);
}
// float x 4 or more
template <size_t vec_size> struct vec_t<float, vec_size> {
float4 data[vec_size / 4];
SAMPLING_INLINE float &operator[](size_t i) { return ((float *)(data))[i]; }
SAMPLING_INLINE const float &operator[](size_t i) const {
return ((const float *)(data))[i];
}
SAMPLING_INLINE float *ptr() { return reinterpret_cast<float *>(&data); }
SAMPLING_INLINE void fill(float val) {
#pragma unroll
for (size_t i = 0; i < vec_size / 4; ++i) {
data[i] = make_float4(val, val, val, val);
}
}
SAMPLING_INLINE void load(const float *ptr) {
#pragma unroll
for (size_t i = 0; i < vec_size / 4; ++i) {
data[i] = ((float4 *)ptr)[i];
}
}
SAMPLING_INLINE void store(float *ptr) const {
#pragma unroll
for (size_t i = 0; i < vec_size / 4; ++i) {
((float4 *)ptr)[i] = data[i];
}
}
template <typename T>
SAMPLING_INLINE void cast_from(const vec_t<T, vec_size> &src) {
cast_from_impl(*this, src);
}
template <typename T> SAMPLING_INLINE void cast_load(const T *ptr) {
cast_load_impl(*this, ptr);
}
template <typename T> SAMPLING_INLINE void cast_store(T *ptr) const {
cast_store_impl(ptr, *this);
}
SAMPLING_INLINE static void memcpy(float *dst, const float *src) {
#pragma unroll
for (size_t i = 0; i < vec_size / 4; ++i) {
((float4 *)dst)[i] = ((float4 *)src)[i];
}
}
};
template <typename src_float_t, typename tgt_float_t, size_t vec_size>
SAMPLING_INLINE void cast_load_impl(vec_t<tgt_float_t, vec_size>& dst,
const src_float_t* src_ptr) {
if constexpr (std::is_same_v<src_float_t, tgt_float_t>) {
dst.load(src_ptr);
} else {
vec_t<src_float_t, vec_size> tmp;
tmp.load(src_ptr);
dst.cast_from(tmp);
}
}
inline std::pair<int, int> GetCudaComputeCapability() {
int device_id = 0;
cudaGetDevice(&device_id);
int major = 0, minor = 0;
cudaDeviceGetAttribute(&major, cudaDevAttrComputeCapabilityMajor, device_id);
cudaDeviceGetAttribute(&minor, cudaDevAttrComputeCapabilityMinor, device_id);
return std::make_pair(major, minor);
}
/******************* math *******************/
__forceinline__ __device__ float ptx_rcp(float x) {
float y;
asm volatile("rcp.approx.ftz.f32 %0, %1;" : "=f"(y) : "f"(x));
return y;
}
template <typename T1, typename T2>
__forceinline__ __device__ __host__ T1 ceil_div(const T1 x, const T2 y) {
return (x + y - 1) / y;
}