[Fix]fix empty prompt_token_ids,update the parser's triggering condit… (#2891)

This commit is contained in:
luukunn
2025-07-22 16:13:05 +08:00
committed by GitHub
parent 89a485b69f
commit 920e6b3f60
3 changed files with 28 additions and 9 deletions

View File

@@ -111,6 +111,8 @@ class ErnieProcessor(BaseDataProcessor):
else:
request.prompt_token_ids = self.messages2ids(request.to_dict())
if len(request.prompt_token_ids) == 0:
raise ValueError("Invalid input: prompt_token_ids must be a non-empty sequence of token IDs")
if max_model_len is not None and len(request.prompt_token_ids) > max_model_len:
request.prompt_token_ids = request.prompt_token_ids[: max_model_len - 1]
if request.get("max_tokens") is None:
@@ -160,7 +162,9 @@ class ErnieProcessor(BaseDataProcessor):
req_id = request.get("request_id", None)
data_processor_logger.info(f"req_id:{req_id}, tokens:{tokens}, token_ids: {token_ids}")
else:
request["prompt_token_ids"] = self.messages2ids(request)
request['prompt_token_ids'] = self.messages2ids(request)
if len(request['prompt_token_ids']) == 0:
raise ValueError("Invalid input: prompt_token_ids must be a non-empty sequence of token IDs")
# truncate prompts that exceed the length limit
if max_model_len is not None and len(request["prompt_token_ids"]) > max_model_len:
@@ -184,7 +188,6 @@ class ErnieProcessor(BaseDataProcessor):
Returns:
Dict: response contain text fields
"""
req_id = response_dict.request_id
token_ids = response_dict.outputs.token_ids
@@ -228,6 +231,7 @@ class ErnieProcessor(BaseDataProcessor):
Returns:
Dict: response contain text fields
"""
enable_thinking = kwargs.get("enable_thinking")
token_ids = response_dict["outputs"]["token_ids"]
is_end = response_dict["finished"]
req_id = response_dict["request_id"]
@@ -237,8 +241,9 @@ class ErnieProcessor(BaseDataProcessor):
delta_text, _, previous_texts = self.ids2tokens(token_ids, req_id)
if is_end:
full_text = previous_texts + delta_text
if self.reasoning_parser:
reasoning_content, text = self.reasoning_parser.extract_reasoning_content(full_text, response_dict)
if enable_thinking and self.reasoning_parser:
reasoning_content, text = self.reasoning_parser.extract_reasoning_content(
full_text, response_dict)
response_dict["outputs"]["text"] = text
response_dict["outputs"]["reasoning_content"] = reasoning_content
else:

View File

@@ -27,6 +27,7 @@ from PIL import Image
from fastdeploy.entrypoints.chat_utils import parse_chat_messages
from fastdeploy.input.ernie_tokenizer import ErnieBotTokenizer
from fastdeploy.utils import data_processor_logger
from .image_preprocessor.image_preprocessor_adaptive import AdaptiveImageProcessor
from .process_video import read_frames_decord, read_video_decord
@@ -252,6 +253,8 @@ class DataProcessor:
image_message_list.append(item)
prompt_token_ids = self.apply_chat_template(request)
if len(prompt_token_ids) == 0:
raise ValueError("Invalid input: prompt_token_ids must be a non-empty sequence of token IDs")
image_start_index = 0
image_message_index = 0
for i in range(len(prompt_token_ids)):
@@ -503,4 +506,6 @@ class DataProcessor:
)
tokens = self.tokenizer.tokenize(prompt_token_str)
token_ids = self.tokenizer.convert_tokens_to_ids(tokens)
data_processor_logger.info(
f"req_id:{request.get('request_id', ''),} tokens: {tokens}, token_ids: {token_ids}")
return token_ids

View File

@@ -239,7 +239,11 @@ class DataProcessor(BaseDataProcessor):
task["enable_thinking"] = kwargs.get("enable_thinking", True)
request.prompt_token_ids = self.messages2ids(task)
else:
raise ValueError(f"The request should have `input_ids`, `text` or `messages`: {request}.")
raise ValueError(
f"The request should have `input_ids`, `text` or `messages`: {request}."
)
if len(request.prompt_token_ids) == 0:
raise ValueError("Invalid input: prompt_token_ids must be a non-empty sequence of token IDs")
if request.get("max_tokens") is None:
request.set(
"max_tokens",
@@ -283,8 +287,11 @@ class DataProcessor(BaseDataProcessor):
raise ValueError("This model does not support chat_template.")
request["prompt_token_ids"] = self.messages2ids(request)
else:
raise ValueError(f"Request must contain 'prompt_token_ids', 'prompt', or 'messages': {request}")
raise ValueError(
f"Request must contain 'prompt_token_ids', 'prompt', or 'messages': {request}"
)
if len(request['prompt_token_ids']) == 0:
raise ValueError("Invalid input: prompt_token_ids must be a non-empty sequence of token IDs")
if request.get("max_tokens") is None:
request["max_tokens"] = max(1, max_model_len - len(request["prompt_token_ids"]))
if request.get("temperature") < _SAMPLING_EPS:
@@ -335,6 +342,7 @@ class DataProcessor(BaseDataProcessor):
Returns:
Dict: response contain text fields
"""
enable_thinking = kwargs.get("enable_thinking")
token_ids = response_dict["outputs"]["token_ids"]
is_end = response_dict["finished"]
req_id = response_dict["request_id"]
@@ -344,8 +352,9 @@ class DataProcessor(BaseDataProcessor):
delta_text, _, previous_texts = self.ids2tokens(token_ids, req_id)
if is_end:
full_text = previous_texts + delta_text
if self.reasoning_parser:
reasoning_content, text = self.reasoning_parser.extract_reasoning_content(full_text, response_dict)
if enable_thinking and self.reasoning_parser:
reasoning_content, text = self.reasoning_parser.extract_reasoning_content(
full_text, response_dict)
response_dict["outputs"]["text"] = text
response_dict["outputs"]["reasoning_content"] = reasoning_content
else: