mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-14 12:55:06 +08:00
[Model] Support DINO & DETR and add PaddleDetectionModel class (#1837)
* 添加paddleclas模型 * 更新README_CN * 更新README_CN * 更新README * update get_model.sh * update get_models.sh * update paddleseg models * update paddle_seg models * update paddle_seg models * modified test resources * update benchmark_gpu_trt.sh * add paddle detection * add paddledetection to benchmark * modified benchmark cmakelists * update benchmark scripts * modified benchmark function calling * modified paddledetection documents * add PaddleDetectonModel * reset examples/paddledetection * resolve conflict * update pybind * resolve conflict * fix bug * delete debug mode * update checkarch log * update trt inputs example * Update README.md --------- Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
This commit is contained in:
@@ -1,6 +1,5 @@
|
|||||||
PROJECT(infer_demo C CXX)
|
PROJECT(infer_demo C CXX)
|
||||||
CMAKE_MINIMUM_REQUIRED (VERSION 3.10)
|
CMAKE_MINIMUM_REQUIRED (VERSION 3.10)
|
||||||
|
|
||||||
# specify the decompress directory of FastDeploy SDK
|
# specify the decompress directory of FastDeploy SDK
|
||||||
option(FASTDEPLOY_INSTALL_DIR "Path of downloaded fastdeploy sdk.")
|
option(FASTDEPLOY_INSTALL_DIR "Path of downloaded fastdeploy sdk.")
|
||||||
include(${FASTDEPLOY_INSTALL_DIR}/utils/gflags.cmake)
|
include(${FASTDEPLOY_INSTALL_DIR}/utils/gflags.cmake)
|
||||||
@@ -39,6 +38,8 @@ add_executable(benchmark_retinanet ${PROJECT_SOURCE_DIR}/benchmark_retinanet.cc)
|
|||||||
add_executable(benchmark_tood ${PROJECT_SOURCE_DIR}/benchmark_tood.cc)
|
add_executable(benchmark_tood ${PROJECT_SOURCE_DIR}/benchmark_tood.cc)
|
||||||
add_executable(benchmark_ttfnet ${PROJECT_SOURCE_DIR}/benchmark_ttfnet.cc)
|
add_executable(benchmark_ttfnet ${PROJECT_SOURCE_DIR}/benchmark_ttfnet.cc)
|
||||||
add_executable(benchmark ${PROJECT_SOURCE_DIR}/benchmark.cc)
|
add_executable(benchmark ${PROJECT_SOURCE_DIR}/benchmark.cc)
|
||||||
|
add_executable(benchmark_ppdet ${PROJECT_SOURCE_DIR}/benchmark_ppdet.cc)
|
||||||
|
add_executable(benchmark_dino ${PROJECT_SOURCE_DIR}/benchmark_dino.cc)
|
||||||
|
|
||||||
if(UNIX AND (NOT APPLE) AND (NOT ANDROID))
|
if(UNIX AND (NOT APPLE) AND (NOT ANDROID))
|
||||||
target_link_libraries(benchmark_yolov5 ${FASTDEPLOY_LIBS} gflags pthread)
|
target_link_libraries(benchmark_yolov5 ${FASTDEPLOY_LIBS} gflags pthread)
|
||||||
@@ -72,6 +73,8 @@ if(UNIX AND (NOT APPLE) AND (NOT ANDROID))
|
|||||||
target_link_libraries(benchmark_tood ${FASTDEPLOY_LIBS} gflags pthread)
|
target_link_libraries(benchmark_tood ${FASTDEPLOY_LIBS} gflags pthread)
|
||||||
target_link_libraries(benchmark_ttfnet ${FASTDEPLOY_LIBS} gflags pthread)
|
target_link_libraries(benchmark_ttfnet ${FASTDEPLOY_LIBS} gflags pthread)
|
||||||
target_link_libraries(benchmark ${FASTDEPLOY_LIBS} gflags pthread)
|
target_link_libraries(benchmark ${FASTDEPLOY_LIBS} gflags pthread)
|
||||||
|
target_link_libraries(benchmark_ppdet ${FASTDEPLOY_LIBS} gflags pthread)
|
||||||
|
target_link_libraries(benchmark_dino ${FASTDEPLOY_LIBS} gflags pthread)
|
||||||
else()
|
else()
|
||||||
target_link_libraries(benchmark_yolov5 ${FASTDEPLOY_LIBS} gflags)
|
target_link_libraries(benchmark_yolov5 ${FASTDEPLOY_LIBS} gflags)
|
||||||
target_link_libraries(benchmark_ppyolov5 ${FASTDEPLOY_LIBS} gflags)
|
target_link_libraries(benchmark_ppyolov5 ${FASTDEPLOY_LIBS} gflags)
|
||||||
@@ -104,6 +107,8 @@ else()
|
|||||||
target_link_libraries(benchmark_tood ${FASTDEPLOY_LIBS} gflags)
|
target_link_libraries(benchmark_tood ${FASTDEPLOY_LIBS} gflags)
|
||||||
target_link_libraries(benchmark_ttfnet ${FASTDEPLOY_LIBS} gflags)
|
target_link_libraries(benchmark_ttfnet ${FASTDEPLOY_LIBS} gflags)
|
||||||
target_link_libraries(benchmark ${FASTDEPLOY_LIBS} gflags)
|
target_link_libraries(benchmark ${FASTDEPLOY_LIBS} gflags)
|
||||||
|
target_link_libraries(benchmark_ppdet ${FASTDEPLOY_LIBS} gflags)
|
||||||
|
target_link_libraries(benchmark_dino ${FASTDEPLOY_LIBS} gflags)
|
||||||
endif()
|
endif()
|
||||||
# only for Android ADB test
|
# only for Android ADB test
|
||||||
if(ANDROID)
|
if(ANDROID)
|
||||||
|
@@ -186,6 +186,10 @@ benchmark: ./benchmark -[info|diff|check|dump|mem] -model xxx -config_path xxx -
|
|||||||
```bash
|
```bash
|
||||||
./benchmark --model ResNet50_vd_infer --config_path config/config.gpu.paddle_trt.fp16.txt --trt_shapes 1,3,224,224:1,3,224,224:1,3,224,224 --names inputs --dtypes FP32
|
./benchmark --model ResNet50_vd_infer --config_path config/config.gpu.paddle_trt.fp16.txt --trt_shapes 1,3,224,224:1,3,224,224:1,3,224,224 --names inputs --dtypes FP32
|
||||||
```
|
```
|
||||||
|
- TensorRT/Paddle-TRT多输入示例:
|
||||||
|
```bash
|
||||||
|
./benchmark --model rtdetr_r50vd_6x_coco --trt_shapes 1,2:1,2:1,2:1,3,640,640:1,3,640,640:1,3,640,640:1,2:1,2:1,2 --names im_shape:image:scale_factor --shapes 1,2:1,3,640,640:1,2 --config_path config/config.gpu.paddle_trt.fp32.txt --dtypes FP32:FP32:FP32
|
||||||
|
```
|
||||||
- 支持FD全部后端和全部模型格式:--model_file, --params_file(optional), --model_format
|
- 支持FD全部后端和全部模型格式:--model_file, --params_file(optional), --model_format
|
||||||
```bash
|
```bash
|
||||||
# ONNX模型示例
|
# ONNX模型示例
|
||||||
@@ -206,4 +210,4 @@ benchmark: ./benchmark -[info|diff|check|dump|mem] -model xxx -config_path xxx -
|
|||||||
- 显示模型的输入信息: --info
|
- 显示模型的输入信息: --info
|
||||||
```bash
|
```bash
|
||||||
./benchmark --info --model picodet_l_640_coco_lcnet --config_path config/config.arm.lite.fp32.txt
|
./benchmark --info --model picodet_l_640_coco_lcnet --config_path config/config.arm.lite.fp32.txt
|
||||||
```
|
```
|
||||||
|
118
benchmark/cpp/benchmark_dino.cc
Normal file
118
benchmark/cpp/benchmark_dino.cc
Normal file
@@ -0,0 +1,118 @@
|
|||||||
|
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
//
|
||||||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
// you may not use this file except in compliance with the License.
|
||||||
|
// You may obtain a copy of the License at
|
||||||
|
//
|
||||||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
//
|
||||||
|
// Unless required by applicable law or agreed to in writing, software
|
||||||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
// See the License for the specific language governing permissions and
|
||||||
|
// limitations under the License.
|
||||||
|
|
||||||
|
#include "flags.h"
|
||||||
|
#include "macros.h"
|
||||||
|
#include "option.h"
|
||||||
|
|
||||||
|
namespace vision = fastdeploy::vision;
|
||||||
|
namespace benchmark = fastdeploy::benchmark;
|
||||||
|
|
||||||
|
DEFINE_bool(no_nms, false, "Whether the model contains nms.");
|
||||||
|
|
||||||
|
int main(int argc, char* argv[]) {
|
||||||
|
#if defined(ENABLE_BENCHMARK) && defined(ENABLE_VISION)
|
||||||
|
// Initialization
|
||||||
|
auto option = fastdeploy::RuntimeOption();
|
||||||
|
if (!CreateRuntimeOption(&option, argc, argv, true)) {
|
||||||
|
return -1;
|
||||||
|
}
|
||||||
|
auto im = cv::imread(FLAGS_image);
|
||||||
|
std::unordered_map<std::string, std::string> config_info;
|
||||||
|
benchmark::ResultManager::LoadBenchmarkConfig(FLAGS_config_path,
|
||||||
|
&config_info);
|
||||||
|
std::string model_name, params_name, config_name;
|
||||||
|
auto model_format = fastdeploy::ModelFormat::PADDLE;
|
||||||
|
if (!UpdateModelResourceName(&model_name, ¶ms_name, &config_name,
|
||||||
|
&model_format, config_info)) {
|
||||||
|
return -1;
|
||||||
|
}
|
||||||
|
auto model_file = FLAGS_model + sep + model_name;
|
||||||
|
auto params_file = FLAGS_model + sep + params_name;
|
||||||
|
auto config_file = FLAGS_model + sep + config_name;
|
||||||
|
if (config_info["backend"] == "paddle_trt") {
|
||||||
|
option.paddle_infer_option.collect_trt_shape = true;
|
||||||
|
}
|
||||||
|
if (config_info["backend"] == "paddle_trt" ||
|
||||||
|
config_info["backend"] == "trt") {
|
||||||
|
option.trt_option.SetShape("im_shape",{1,2},{1,2},{1,2});
|
||||||
|
option.trt_option.SetShape("image", {1, 3, 320,320},{1, 3, 640, 640},
|
||||||
|
{1, 3, 1280, 1280});
|
||||||
|
option.trt_option.SetShape("scale_factor", {1, 2}, {1, 2},
|
||||||
|
{1, 2});
|
||||||
|
}
|
||||||
|
auto model_ppdet = vision::detection::PaddleDetectionModel(
|
||||||
|
model_file, params_file, config_file, option, model_format);
|
||||||
|
vision::DetectionResult res;
|
||||||
|
if (config_info["precision_compare"] == "true") {
|
||||||
|
// Run once at least
|
||||||
|
model_ppdet.Predict(im, &res);
|
||||||
|
// 1. Test result diff
|
||||||
|
std::cout << "=============== Test result diff =================\n";
|
||||||
|
// Save result to -> disk.
|
||||||
|
std::string det_result_path = "ppdet_result.txt";
|
||||||
|
benchmark::ResultManager::SaveDetectionResult(res, det_result_path);
|
||||||
|
// Load result from <- disk.
|
||||||
|
vision::DetectionResult res_loaded;
|
||||||
|
benchmark::ResultManager::LoadDetectionResult(&res_loaded, det_result_path);
|
||||||
|
// Calculate diff between two results.
|
||||||
|
auto det_diff =
|
||||||
|
benchmark::ResultManager::CalculateDiffStatis(res, res_loaded);
|
||||||
|
std::cout << "Boxes diff: mean=" << det_diff.boxes.mean
|
||||||
|
<< ", max=" << det_diff.boxes.max
|
||||||
|
<< ", min=" << det_diff.boxes.min << std::endl;
|
||||||
|
std::cout << "Label_ids diff: mean=" << det_diff.labels.mean
|
||||||
|
<< ", max=" << det_diff.labels.max
|
||||||
|
<< ", min=" << det_diff.labels.min << std::endl;
|
||||||
|
// 2. Test tensor diff
|
||||||
|
std::cout << "=============== Test tensor diff =================\n";
|
||||||
|
std::vector<vision::DetectionResult> batch_res;
|
||||||
|
std::vector<fastdeploy::FDTensor> input_tensors, output_tensors;
|
||||||
|
std::vector<cv::Mat> imgs;
|
||||||
|
imgs.push_back(im);
|
||||||
|
std::vector<vision::FDMat> fd_images = vision::WrapMat(imgs);
|
||||||
|
|
||||||
|
model_ppdet.GetPreprocessor().Run(&fd_images, &input_tensors);
|
||||||
|
input_tensors[0].name = "image";
|
||||||
|
input_tensors[1].name = "scale_factor";
|
||||||
|
input_tensors[2].name = "im_shape";
|
||||||
|
input_tensors.pop_back();
|
||||||
|
model_ppdet.Infer(input_tensors, &output_tensors);
|
||||||
|
model_ppdet.GetPostprocessor().Run(output_tensors, &batch_res);
|
||||||
|
// Save tensor to -> disk.
|
||||||
|
auto& tensor_dump = output_tensors[0];
|
||||||
|
std::string det_tensor_path = "ppdet_tensor.txt";
|
||||||
|
benchmark::ResultManager::SaveFDTensor(tensor_dump, det_tensor_path);
|
||||||
|
// Load tensor from <- disk.
|
||||||
|
fastdeploy::FDTensor tensor_loaded;
|
||||||
|
benchmark::ResultManager::LoadFDTensor(&tensor_loaded, det_tensor_path);
|
||||||
|
// Calculate diff between two tensors.
|
||||||
|
auto det_tensor_diff = benchmark::ResultManager::CalculateDiffStatis(
|
||||||
|
tensor_dump, tensor_loaded);
|
||||||
|
std::cout << "Tensor diff: mean=" << det_tensor_diff.data.mean
|
||||||
|
<< ", max=" << det_tensor_diff.data.max
|
||||||
|
<< ", min=" << det_tensor_diff.data.min << std::endl;
|
||||||
|
}
|
||||||
|
// Run profiling
|
||||||
|
if (FLAGS_no_nms) {
|
||||||
|
model_ppdet.GetPostprocessor().ApplyNMS();
|
||||||
|
}
|
||||||
|
BENCHMARK_MODEL(model_ppdet, model_ppdet.Predict(im, &res))
|
||||||
|
auto vis_im = vision::VisDetection(im, res,0.3);
|
||||||
|
cv::imwrite("vis_result.jpg", vis_im);
|
||||||
|
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
|
||||||
|
#endif
|
||||||
|
|
||||||
|
return 0;
|
||||||
|
}
|
117
benchmark/cpp/benchmark_ppdet.cc
Normal file
117
benchmark/cpp/benchmark_ppdet.cc
Normal file
@@ -0,0 +1,117 @@
|
|||||||
|
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
//
|
||||||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
// you may not use this file except in compliance with the License.
|
||||||
|
// You may obtain a copy of the License at
|
||||||
|
//
|
||||||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
//
|
||||||
|
// Unless required by applicable law or agreed to in writing, software
|
||||||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
// See the License for the specific language governing permissions and
|
||||||
|
// limitations under the License.
|
||||||
|
|
||||||
|
#include "flags.h"
|
||||||
|
#include "macros.h"
|
||||||
|
#include "option.h"
|
||||||
|
|
||||||
|
namespace vision = fastdeploy::vision;
|
||||||
|
namespace benchmark = fastdeploy::benchmark;
|
||||||
|
|
||||||
|
DEFINE_bool(no_nms, false, "Whether the model contains nms.");
|
||||||
|
|
||||||
|
int main(int argc, char* argv[]) {
|
||||||
|
#if defined(ENABLE_BENCHMARK) && defined(ENABLE_VISION)
|
||||||
|
// Initialization
|
||||||
|
auto option = fastdeploy::RuntimeOption();
|
||||||
|
if (!CreateRuntimeOption(&option, argc, argv, true)) {
|
||||||
|
return -1;
|
||||||
|
}
|
||||||
|
auto im = cv::imread(FLAGS_image);
|
||||||
|
std::unordered_map<std::string, std::string> config_info;
|
||||||
|
benchmark::ResultManager::LoadBenchmarkConfig(FLAGS_config_path,
|
||||||
|
&config_info);
|
||||||
|
std::string model_name, params_name, config_name;
|
||||||
|
auto model_format = fastdeploy::ModelFormat::PADDLE;
|
||||||
|
if (!UpdateModelResourceName(&model_name, ¶ms_name, &config_name,
|
||||||
|
&model_format, config_info)) {
|
||||||
|
return -1;
|
||||||
|
}
|
||||||
|
auto model_file = FLAGS_model + sep + model_name;
|
||||||
|
auto params_file = FLAGS_model + sep + params_name;
|
||||||
|
auto config_file = FLAGS_model + sep + config_name;
|
||||||
|
if (config_info["backend"] == "paddle_trt") {
|
||||||
|
option.paddle_infer_option.collect_trt_shape = true;
|
||||||
|
}
|
||||||
|
if (config_info["backend"] == "paddle_trt" ||
|
||||||
|
config_info["backend"] == "trt") {
|
||||||
|
option.trt_option.SetShape("image", {1, 3, 640, 640}, {1, 3, 640, 640},
|
||||||
|
{1, 3, 640, 640});
|
||||||
|
option.trt_option.SetShape("scale_factor", {1, 2}, {1, 2},
|
||||||
|
{1, 2});
|
||||||
|
}
|
||||||
|
auto model_ppdet = vision::detection::PaddleDetectionModel(
|
||||||
|
model_file, params_file, config_file, option, model_format);
|
||||||
|
vision::DetectionResult res;
|
||||||
|
if (config_info["precision_compare"] == "true") {
|
||||||
|
// Run once at least
|
||||||
|
model_ppdet.Predict(im, &res);
|
||||||
|
// 1. Test result diff
|
||||||
|
std::cout << "=============== Test result diff =================\n";
|
||||||
|
// Save result to -> disk.
|
||||||
|
std::string det_result_path = "ppdet_result.txt";
|
||||||
|
benchmark::ResultManager::SaveDetectionResult(res, det_result_path);
|
||||||
|
// Load result from <- disk.
|
||||||
|
vision::DetectionResult res_loaded;
|
||||||
|
benchmark::ResultManager::LoadDetectionResult(&res_loaded, det_result_path);
|
||||||
|
// Calculate diff between two results.
|
||||||
|
auto det_diff =
|
||||||
|
benchmark::ResultManager::CalculateDiffStatis(res, res_loaded);
|
||||||
|
std::cout << "Boxes diff: mean=" << det_diff.boxes.mean
|
||||||
|
<< ", max=" << det_diff.boxes.max
|
||||||
|
<< ", min=" << det_diff.boxes.min << std::endl;
|
||||||
|
std::cout << "Label_ids diff: mean=" << det_diff.labels.mean
|
||||||
|
<< ", max=" << det_diff.labels.max
|
||||||
|
<< ", min=" << det_diff.labels.min << std::endl;
|
||||||
|
// 2. Test tensor diff
|
||||||
|
std::cout << "=============== Test tensor diff =================\n";
|
||||||
|
std::vector<vision::DetectionResult> batch_res;
|
||||||
|
std::vector<fastdeploy::FDTensor> input_tensors, output_tensors;
|
||||||
|
std::vector<cv::Mat> imgs;
|
||||||
|
imgs.push_back(im);
|
||||||
|
std::vector<vision::FDMat> fd_images = vision::WrapMat(imgs);
|
||||||
|
|
||||||
|
model_ppdet.GetPreprocessor().Run(&fd_images, &input_tensors);
|
||||||
|
input_tensors[0].name = "image";
|
||||||
|
input_tensors[1].name = "scale_factor";
|
||||||
|
input_tensors[2].name = "im_shape";
|
||||||
|
input_tensors.pop_back();
|
||||||
|
model_ppdet.Infer(input_tensors, &output_tensors);
|
||||||
|
model_ppdet.GetPostprocessor().Run(output_tensors, &batch_res);
|
||||||
|
// Save tensor to -> disk.
|
||||||
|
auto& tensor_dump = output_tensors[0];
|
||||||
|
std::string det_tensor_path = "ppdet_tensor.txt";
|
||||||
|
benchmark::ResultManager::SaveFDTensor(tensor_dump, det_tensor_path);
|
||||||
|
// Load tensor from <- disk.
|
||||||
|
fastdeploy::FDTensor tensor_loaded;
|
||||||
|
benchmark::ResultManager::LoadFDTensor(&tensor_loaded, det_tensor_path);
|
||||||
|
// Calculate diff between two tensors.
|
||||||
|
auto det_tensor_diff = benchmark::ResultManager::CalculateDiffStatis(
|
||||||
|
tensor_dump, tensor_loaded);
|
||||||
|
std::cout << "Tensor diff: mean=" << det_tensor_diff.data.mean
|
||||||
|
<< ", max=" << det_tensor_diff.data.max
|
||||||
|
<< ", min=" << det_tensor_diff.data.min << std::endl;
|
||||||
|
}
|
||||||
|
// Run profiling
|
||||||
|
if (FLAGS_no_nms) {
|
||||||
|
model_ppdet.GetPostprocessor().ApplyNMS();
|
||||||
|
}
|
||||||
|
BENCHMARK_MODEL(model_ppdet, model_ppdet.Predict(im, &res))
|
||||||
|
auto vis_im = vision::VisDetection(im, res,0.3);
|
||||||
|
cv::imwrite("vis_result.jpg", vis_im);
|
||||||
|
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
|
||||||
|
#endif
|
||||||
|
|
||||||
|
return 0;
|
||||||
|
}
|
2
fastdeploy/runtime/option_pybind.cc
Normal file → Executable file
2
fastdeploy/runtime/option_pybind.cc
Normal file → Executable file
@@ -43,6 +43,8 @@ void BindOption(pybind11::module& m) {
|
|||||||
.def("use_sophgo", &RuntimeOption::UseSophgo)
|
.def("use_sophgo", &RuntimeOption::UseSophgo)
|
||||||
.def("use_ascend", &RuntimeOption::UseAscend)
|
.def("use_ascend", &RuntimeOption::UseAscend)
|
||||||
.def("use_kunlunxin", &RuntimeOption::UseKunlunXin)
|
.def("use_kunlunxin", &RuntimeOption::UseKunlunXin)
|
||||||
|
.def("disable_valid_backend_check",&RuntimeOption::DisableValidBackendCheck)
|
||||||
|
.def("enable_valid_backend_check",&RuntimeOption::EnableValidBackendCheck)
|
||||||
.def_readwrite("paddle_lite_option", &RuntimeOption::paddle_lite_option)
|
.def_readwrite("paddle_lite_option", &RuntimeOption::paddle_lite_option)
|
||||||
.def_readwrite("openvino_option", &RuntimeOption::openvino_option)
|
.def_readwrite("openvino_option", &RuntimeOption::openvino_option)
|
||||||
.def_readwrite("ort_option", &RuntimeOption::ort_option)
|
.def_readwrite("ort_option", &RuntimeOption::ort_option)
|
||||||
|
17
fastdeploy/vision/detection/ppdet/base.cc
Normal file → Executable file
17
fastdeploy/vision/detection/ppdet/base.cc
Normal file → Executable file
@@ -18,6 +18,7 @@ PPDetBase::PPDetBase(const std::string& model_file,
|
|||||||
runtime_option.model_format = model_format;
|
runtime_option.model_format = model_format;
|
||||||
runtime_option.model_file = model_file;
|
runtime_option.model_file = model_file;
|
||||||
runtime_option.params_file = params_file;
|
runtime_option.params_file = params_file;
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
std::unique_ptr<PPDetBase> PPDetBase::Clone() const {
|
std::unique_ptr<PPDetBase> PPDetBase::Clone() const {
|
||||||
@@ -82,6 +83,22 @@ bool PPDetBase::BatchPredict(const std::vector<cv::Mat>& imgs,
|
|||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
bool PPDetBase::CheckArch(){
|
||||||
|
std::vector<std::string> archs = {"SOLOv2","YOLO","SSD","RetinaNet","RCNN","Face","GFL","YOLOX","YOLOv5","YOLOv6","YOLOv7","RTMDet","FCOS","TTFNet","TOOD","DETR"};
|
||||||
|
auto arch_ = preprocessor_.GetArch();
|
||||||
|
for (auto item : archs) {
|
||||||
|
if (arch_ == item) {
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
FDWARNING << "Please set model arch,"
|
||||||
|
<< "support value : SOLOv2, YOLO, SSD, RetinaNet, RCNN, Face , GFL , RTMDet ,"\
|
||||||
|
<<"FCOS , TTFNet , TOOD , DETR." << std::endl;
|
||||||
|
return false;
|
||||||
|
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
} // namespace detection
|
} // namespace detection
|
||||||
} // namespace vision
|
} // namespace vision
|
||||||
} // namespace fastdeploy
|
} // namespace fastdeploy
|
||||||
|
2
fastdeploy/vision/detection/ppdet/base.h
Normal file → Executable file
2
fastdeploy/vision/detection/ppdet/base.h
Normal file → Executable file
@@ -77,6 +77,7 @@ class FASTDEPLOY_DECL PPDetBase : public FastDeployModel {
|
|||||||
virtual bool BatchPredict(const std::vector<cv::Mat>& imgs,
|
virtual bool BatchPredict(const std::vector<cv::Mat>& imgs,
|
||||||
std::vector<DetectionResult>* results);
|
std::vector<DetectionResult>* results);
|
||||||
|
|
||||||
|
|
||||||
PaddleDetPreprocessor& GetPreprocessor() {
|
PaddleDetPreprocessor& GetPreprocessor() {
|
||||||
return preprocessor_;
|
return preprocessor_;
|
||||||
}
|
}
|
||||||
@@ -84,6 +85,7 @@ class FASTDEPLOY_DECL PPDetBase : public FastDeployModel {
|
|||||||
PaddleDetPostprocessor& GetPostprocessor() {
|
PaddleDetPostprocessor& GetPostprocessor() {
|
||||||
return postprocessor_;
|
return postprocessor_;
|
||||||
}
|
}
|
||||||
|
virtual bool CheckArch();
|
||||||
|
|
||||||
protected:
|
protected:
|
||||||
virtual bool Initialize();
|
virtual bool Initialize();
|
||||||
|
@@ -440,6 +440,29 @@ class FASTDEPLOY_DECL GFL : public PPDetBase {
|
|||||||
virtual std::string ModelName() const { return "PaddleDetection/GFL"; }
|
virtual std::string ModelName() const { return "PaddleDetection/GFL"; }
|
||||||
};
|
};
|
||||||
|
|
||||||
|
class FASTDEPLOY_DECL PaddleDetectionModel : public PPDetBase {
|
||||||
|
public:
|
||||||
|
PaddleDetectionModel(const std::string& model_file, const std::string& params_file,
|
||||||
|
const std::string& config_file,
|
||||||
|
const RuntimeOption& custom_option = RuntimeOption(),
|
||||||
|
const ModelFormat& model_format = ModelFormat::PADDLE)
|
||||||
|
: PPDetBase(model_file, params_file, config_file, custom_option,
|
||||||
|
model_format) {
|
||||||
|
CheckArch();
|
||||||
|
valid_cpu_backends = {Backend::OPENVINO, Backend::ORT, Backend::PDINFER,
|
||||||
|
Backend::LITE};
|
||||||
|
valid_gpu_backends = {Backend::ORT, Backend::PDINFER, Backend::TRT};
|
||||||
|
valid_timvx_backends = {Backend::LITE};
|
||||||
|
valid_kunlunxin_backends = {Backend::LITE};
|
||||||
|
valid_rknpu_backends = {Backend::RKNPU2};
|
||||||
|
valid_ascend_backends = {Backend::LITE};
|
||||||
|
valid_sophgonpu_backends = {Backend::SOPHGOTPU};
|
||||||
|
initialized = Initialize();
|
||||||
|
}
|
||||||
|
|
||||||
|
virtual std::string ModelName() const { return "PaddleDetectionModel"; }
|
||||||
|
};
|
||||||
|
|
||||||
class FASTDEPLOY_DECL PPYOLOER : public PPDetBase {
|
class FASTDEPLOY_DECL PPYOLOER : public PPDetBase {
|
||||||
public:
|
public:
|
||||||
PPYOLOER(const std::string& model_file, const std::string& params_file,
|
PPYOLOER(const std::string& model_file, const std::string& params_file,
|
||||||
|
7
fastdeploy/vision/detection/ppdet/ppdet_pybind.cc
Normal file → Executable file
7
fastdeploy/vision/detection/ppdet/ppdet_pybind.cc
Normal file → Executable file
@@ -238,7 +238,12 @@ void BindPPDet(pybind11::module& m) {
|
|||||||
m, "SOLOv2")
|
m, "SOLOv2")
|
||||||
.def(pybind11::init<std::string, std::string, std::string, RuntimeOption,
|
.def(pybind11::init<std::string, std::string, std::string, RuntimeOption,
|
||||||
ModelFormat>());
|
ModelFormat>());
|
||||||
|
|
||||||
|
pybind11::class_<vision::detection::PaddleDetectionModel, vision::detection::PPDetBase>(
|
||||||
|
m, "PaddleDetectionModel")
|
||||||
|
.def(pybind11::init<std::string, std::string, std::string, RuntimeOption,
|
||||||
|
ModelFormat>());
|
||||||
|
|
||||||
pybind11::class_<vision::detection::PPYOLOER, vision::detection::PPDetBase>(
|
pybind11::class_<vision::detection::PPYOLOER, vision::detection::PPDetBase>(
|
||||||
m, "PPYOLOER")
|
m, "PPYOLOER")
|
||||||
.def(pybind11::init<std::string, std::string, std::string, RuntimeOption,
|
.def(pybind11::init<std::string, std::string, std::string, RuntimeOption,
|
||||||
|
@@ -266,6 +266,16 @@ class RuntimeOption:
|
|||||||
"""
|
"""
|
||||||
return self._option.use_ascend()
|
return self._option.use_ascend()
|
||||||
|
|
||||||
|
def disable_valid_backend_check(self):
|
||||||
|
""" Disable checking validity of backend during inference
|
||||||
|
"""
|
||||||
|
return self._option.disable_valid_backend_check()
|
||||||
|
|
||||||
|
def enable_valid_backend_check(self):
|
||||||
|
"""Enable checking validity of backend during inference
|
||||||
|
"""
|
||||||
|
return self._option.enable_valid_backend_check()
|
||||||
|
|
||||||
def set_cpu_thread_num(self, thread_num=-1):
|
def set_cpu_thread_num(self, thread_num=-1):
|
||||||
"""Set number of threads if inference with CPU
|
"""Set number of threads if inference with CPU
|
||||||
|
|
||||||
|
@@ -800,6 +800,78 @@ class GFL(PPYOLOE):
|
|||||||
assert self.initialized, "GFL model initialize failed."
|
assert self.initialized, "GFL model initialize failed."
|
||||||
|
|
||||||
|
|
||||||
|
class PaddleDetectionModel(FastDeployModel):
|
||||||
|
def __init__(self,
|
||||||
|
model_file,
|
||||||
|
params_file,
|
||||||
|
config_file,
|
||||||
|
runtime_option=None,
|
||||||
|
model_format=ModelFormat.PADDLE):
|
||||||
|
"""Load a PaddleDetectionModel model exported by PaddleDetection.
|
||||||
|
|
||||||
|
:param model_file: (str)Path of model file, e.g ppyoloe/model.pdmodel
|
||||||
|
:param params_file: (str)Path of parameters file, e.g ppyoloe/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
|
||||||
|
:param config_file: (str)Path of configuration file for deployment, e.g ppyoloe/infer_cfg.yml
|
||||||
|
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
|
||||||
|
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
|
||||||
|
"""
|
||||||
|
super(PaddleDetectionModel, self).__init__(runtime_option)
|
||||||
|
|
||||||
|
self._model = C.vision.detection.PaddleDetectionModel(
|
||||||
|
model_file, params_file, config_file, self._runtime_option,
|
||||||
|
model_format)
|
||||||
|
assert self.initialized, "PaddleDetectionModel model initialize failed."
|
||||||
|
|
||||||
|
def predict(self, im):
|
||||||
|
"""Detect an input image
|
||||||
|
|
||||||
|
:param im: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
|
||||||
|
:return: DetectionResult
|
||||||
|
"""
|
||||||
|
|
||||||
|
assert im is not None, "The input image data is None."
|
||||||
|
return self._model.predict(im)
|
||||||
|
|
||||||
|
def batch_predict(self, images):
|
||||||
|
"""Detect a batch of input image list
|
||||||
|
|
||||||
|
:param im: (list of numpy.ndarray) The input image list, each element is a 3-D array with layout HWC, BGR format
|
||||||
|
:return list of DetectionResult
|
||||||
|
"""
|
||||||
|
|
||||||
|
return self._model.batch_predict(images)
|
||||||
|
|
||||||
|
def clone(self):
|
||||||
|
"""Clone PPYOLOE object
|
||||||
|
|
||||||
|
:return: a new PPYOLOE object
|
||||||
|
"""
|
||||||
|
|
||||||
|
class PPYOLOEClone(PPYOLOE):
|
||||||
|
def __init__(self, model):
|
||||||
|
self._model = model
|
||||||
|
|
||||||
|
clone_model = PPYOLOEClone(self._model.clone())
|
||||||
|
return clone_model
|
||||||
|
|
||||||
|
@property
|
||||||
|
def preprocessor(self):
|
||||||
|
"""Get PaddleDetPreprocessor object of the loaded model
|
||||||
|
|
||||||
|
:return PaddleDetPreprocessor
|
||||||
|
"""
|
||||||
|
return self._model.preprocessor
|
||||||
|
|
||||||
|
@property
|
||||||
|
def postprocessor(self):
|
||||||
|
"""Get PaddleDetPostprocessor object of the loaded model
|
||||||
|
|
||||||
|
:return PaddleDetPostprocessor
|
||||||
|
"""
|
||||||
|
return self._model.postprocessor
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
class PPYOLOER(PPYOLOE):
|
class PPYOLOER(PPYOLOE):
|
||||||
def __init__(self,
|
def __init__(self,
|
||||||
model_file,
|
model_file,
|
||||||
|
Reference in New Issue
Block a user