Fix outputs order of tensorrt (#18)

* fix trt output order

* Update trt_backend.cc
This commit is contained in:
Jason
2022-07-14 19:19:56 +08:00
committed by GitHub
parent de7c06a309
commit 90061e11f5
4 changed files with 50 additions and 24 deletions

View File

@@ -52,7 +52,7 @@ std::vector<int> toVec(const nvinfer1::Dims& dim) {
return out;
}
bool TrtBackend::InitFromTrt(const std::string& trt_engine_file,
bool TrtBackend::InitFromTrt(const std::string& trt_engine_file,
const TrtBackendOption& option) {
if (initialized_) {
FDERROR << "TrtBackend is already initlized, cannot initialize again."
@@ -139,17 +139,6 @@ bool TrtBackend::InitFromOnnx(const std::string& model_file,
}
cudaSetDevice(option.gpu_id);
if (option.serialize_file != "") {
std::ifstream fin(option.serialize_file, std::ios::binary | std::ios::in);
if (fin) {
FDLogger() << "Detect serialized TensorRT Engine file in "
<< option.serialize_file << ", will load it directly."
<< std::endl;
fin.close();
return InitFromTrt(option.serialize_file);
}
}
std::string onnx_content = "";
if (!from_memory_buffer) {
std::ifstream fin(model_file.c_str(), std::ios::binary | std::ios::in);
@@ -167,6 +156,29 @@ bool TrtBackend::InitFromOnnx(const std::string& model_file,
onnx_content = model_file;
}
// This part of code will record the original outputs order
// because the converted tensorrt network may exist wrong order of outputs
outputs_order_.clear();
auto onnx_reader =
paddle2onnx::OnnxReader(onnx_content.c_str(), onnx_content.size());
for (int i = 0; i < onnx_reader.NumOutputs(); ++i) {
std::string name(
onnx_reader.output_names[i],
onnx_reader.output_names[i] + strlen(onnx_reader.output_names[i]));
outputs_order_[name] = i;
}
if (option.serialize_file != "") {
std::ifstream fin(option.serialize_file, std::ios::binary | std::ios::in);
if (fin) {
FDLogger() << "Detect serialized TensorRT Engine file in "
<< option.serialize_file << ", will load it directly."
<< std::endl;
fin.close();
return InitFromTrt(option.serialize_file);
}
}
if (!CreateTrtEngine(onnx_content, option)) {
return false;
}
@@ -251,13 +263,20 @@ void TrtBackend::AllocateBufferInDynamicShape(
for (size_t i = 0; i < outputs_desc_.size(); ++i) {
auto idx = engine_->getBindingIndex(outputs_desc_[i].name.c_str());
auto output_dims = context_->getBindingDimensions(idx);
(*outputs)[i].dtype = GetFDDataType(outputs_desc_[i].dtype);
(*outputs)[i].shape.assign(output_dims.d,
output_dims.d + output_dims.nbDims);
(*outputs)[i].name = outputs_desc_[i].name;
(*outputs)[i].data.resize(volume(output_dims) *
TrtDataTypeSize(outputs_desc_[i].dtype));
if ((*outputs)[i].Nbytes() >
// find the original index of output
auto iter = outputs_order_.find(outputs_desc_[i].name);
FDASSERT(iter != outputs_order_.end(),
"Cannot find output:" + outputs_desc_[i].name +
" of tensorrt network from the original model.");
auto ori_idx = iter->second;
(*outputs)[ori_idx].dtype = GetFDDataType(outputs_desc_[i].dtype);
(*outputs)[ori_idx].shape.assign(output_dims.d,
output_dims.d + output_dims.nbDims);
(*outputs)[ori_idx].name = outputs_desc_[i].name;
(*outputs)[ori_idx].data.resize(volume(output_dims) *
TrtDataTypeSize(outputs_desc_[i].dtype));
if ((*outputs)[ori_idx].Nbytes() >
outputs_buffer_[outputs_desc_[i].name].nbBytes()) {
outputs_buffer_[outputs_desc_[i].name].resize(output_dims);
bindings_[idx] = outputs_buffer_[outputs_desc_[i].name].data();