删除无用代码,更新python脚本

This commit is contained in:
Zheng-Bicheng
2023-02-15 21:01:06 +08:00
parent 2b1631b563
commit 8c42b708f6
4 changed files with 122 additions and 8 deletions

View File

@@ -51,5 +51,5 @@ python tools/rknpu2/export.py --config_path tools/rknpu2/config/PP_TinyPose_256x
## 详细部署文档
- [模型详细介绍](../README_CN.md)
- [Python部署](python)
- [C++部署](cpp)
- [Python部署](./python)
- [C++部署](./cpp)

View File

@@ -0,0 +1,70 @@
[English](README.md) | 简体中文
# PP-TinyPose Python部署示例
在部署前,需确认以下两个步骤
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
- 2. 根据开发环境下载预编译部署库和samples代码参考[FastDeploy预编译库](../../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
本目录下提供`pptinypose_infer.py`快速完成PP-TinyPose在NPU加速部署的`单图单人关键点检测`示例。执行如下脚本即可完成
>> **注意**: PP-Tinypose单模型目前只支持单图单人关键点检测因此输入的图片应只包含一个人或者进行过裁剪的图像。多人关键点检测请参考[PP-TinyPose Pipeline](../../../det_keypoint_unite/python/README.md)
```bash
# 下载PP-TinyPose模型文件和测试图片
wget https://bj.bcebos.com/paddlehub/fastdeploy/hrnet_demo.jpg
# CPU推理
python pptinypose_infer.py --tinypose_model_dir PP_TinyPose_256x192_infer --image hrnet_demo.jpg
```
运行完成可视化结果如下图所示
<div align="center">
<img src="https://user-images.githubusercontent.com/16222477/196386764-dd51ad56-c410-4c54-9580-643f282f5a83.jpeg", width=359px, height=423px />
</div>
## PP-TinyPose Python接口
```python
fd.vision.keypointdetection.PPTinyPose(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
```
PP-TinyPose模型加载和初始化其中model_file, params_file以及config_file为训练模型导出的Paddle inference文件具体请参考其文档说明[模型导出](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.5/deploy/EXPORT_MODEL.md)
**参数**
> * **model_file**(str): 模型文件路径
> * **params_file**(str): 参数文件路径
> * **config_file**(str): 推理部署配置文件
> * **runtime_option**(RuntimeOption): 后端推理配置默认为None即采用默认配置
> * **model_format**(ModelFormat): 模型格式默认为Paddle格式
### predict函数
> ```python
> PPTinyPose.predict(input_image)
> ```
>
> 模型预测结口,输入图像直接输出检测结果。
>
> **参数**
>
> > * **input_image**(np.ndarray): 输入数据注意需为HWCBGR格式
> **返回**
>
> > 返回`fastdeploy.vision.KeyPointDetectionResult`结构体,结构体说明参考文档[视觉模型预测结果](../../../../../docs/api/vision_results/)
### 类成员属性
#### 后处理参数
用户可按照自己的实际需求,修改下列后处理参数,从而影响最终的推理和部署效果
> > * **use_dark**(bool): 是否使用DARK进行后处理[参考论文](https://arxiv.org/abs/1910.06278)
## 其它文档
- [PP-TinyPose 模型介绍](..)
- [PP-TinyPose C++部署](../cpp)
- [模型预测结果说明](../../../../../docs/api/vision_results/)
- [如何切换模型推理后端引擎](../../../../../docs/cn/faq/how_to_change_backend.md)

View File

@@ -0,0 +1,50 @@
import fastdeploy as fd
import cv2
import os
def parse_arguments():
import argparse
import ast
parser = argparse.ArgumentParser()
parser.add_argument(
"--tinypose_model_dir",
required=True,
help="path of paddletinypose model directory")
parser.add_argument(
"--image", required=True, help="path of test image file.")
return parser.parse_args()
def build_tinypose_option(args):
option = fd.RuntimeOption()
option.use_rknpu()
return option
args = parse_arguments()
tinypose_model_file = os.path.join(args.tinypose_model_dir, "PP_TinyPose_256x192_infer_rk3588_unquantized.rknn")
tinypose_params_file = os.path.join(args.tinypose_model_dir, "")
tinypose_config_file = os.path.join(args.tinypose_model_dir, "infer_cfg.yml")
# 配置runtime加载模型
runtime_option = build_tinypose_option(args)
tinypose_model = fd.vision.keypointdetection.PPTinyPose(
tinypose_model_file,
tinypose_params_file,
tinypose_config_file,
runtime_option=runtime_option,
model_format=fd.ModelFormat.RKNN)
tinypose_model.disable_normalize()
tinypose_model.disable_permute()
# 预测图片检测结果
im = cv2.imread(args.image)
tinypose_result = tinypose_model.predict(im)
print("Paddle TinyPose Result:\n", tinypose_result)
# 预测结果可视化
vis_im = fd.vision.vis_keypoint_detection(
im, tinypose_result, conf_threshold=0.5)
cv2.imwrite("visualized_result.jpg", vis_im)
print("TinyPose visualized result save in ./visualized_result.jpg")