mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-11-03 11:02:01 +08:00
[Hackathon 182 Model] Update PPOCRV3 For RKNPU2 (#1403)
* update ppocrv3 for rknpu2 * add config * add config * detele unuseful * update useful results * Repair note * Repair note * fixed bugs * update
This commit is contained in:
@@ -13,22 +13,23 @@
|
||||
// limitations under the License.
|
||||
|
||||
#include "fastdeploy/vision/ocr/ppocr/rec_preprocessor.h"
|
||||
|
||||
#include "fastdeploy/function/concat.h"
|
||||
#include "fastdeploy/utils/perf.h"
|
||||
#include "fastdeploy/vision/ocr/ppocr/utils/ocr_utils.h"
|
||||
#include "fastdeploy/function/concat.h"
|
||||
|
||||
namespace fastdeploy {
|
||||
namespace vision {
|
||||
namespace ocr {
|
||||
|
||||
void OcrRecognizerResizeImage(FDMat* mat, float max_wh_ratio,
|
||||
const std::vector<int>& rec_image_shape, bool static_shape_infer) {
|
||||
const std::vector<int>& rec_image_shape,
|
||||
bool static_shape_infer) {
|
||||
int img_h, img_w;
|
||||
img_h = rec_image_shape[1];
|
||||
img_w = rec_image_shape[2];
|
||||
|
||||
if (!static_shape_infer) {
|
||||
|
||||
img_w = int(img_h * max_wh_ratio);
|
||||
float ratio = float(mat->Width()) / float(mat->Height());
|
||||
|
||||
@@ -43,23 +44,29 @@ void OcrRecognizerResizeImage(FDMat* mat, float max_wh_ratio,
|
||||
|
||||
} else {
|
||||
if (mat->Width() >= img_w) {
|
||||
Resize::Run(mat, img_w, img_h); // Reszie W to 320
|
||||
Resize::Run(mat, img_w, img_h); // Reszie W to 320
|
||||
} else {
|
||||
Resize::Run(mat, mat->Width(), img_h);
|
||||
Pad::Run(mat, 0, 0, 0, int(img_w - mat->Width()), {127, 127, 127});
|
||||
// Pad to 320
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
bool RecognizerPreprocessor::Run(std::vector<FDMat>* images, std::vector<FDTensor>* outputs) {
|
||||
bool RecognizerPreprocessor::Run(std::vector<FDMat>* images,
|
||||
std::vector<FDTensor>* outputs) {
|
||||
return Run(images, outputs, 0, images->size(), {});
|
||||
}
|
||||
|
||||
bool RecognizerPreprocessor::Run(std::vector<FDMat>* images, std::vector<FDTensor>* outputs,
|
||||
size_t start_index, size_t end_index, const std::vector<int>& indices) {
|
||||
if (images->size() == 0 || end_index <= start_index || end_index > images->size()) {
|
||||
FDERROR << "images->size() or index error. Correct is: 0 <= start_index < end_index <= images->size()" << std::endl;
|
||||
bool RecognizerPreprocessor::Run(std::vector<FDMat>* images,
|
||||
std::vector<FDTensor>* outputs,
|
||||
size_t start_index, size_t end_index,
|
||||
const std::vector<int>& indices) {
|
||||
if (images->size() == 0 || end_index <= start_index ||
|
||||
end_index > images->size()) {
|
||||
FDERROR << "images->size() or index error. Correct is: 0 <= start_index < "
|
||||
"end_index <= images->size()"
|
||||
<< std::endl;
|
||||
return false;
|
||||
}
|
||||
|
||||
@@ -67,7 +74,7 @@ bool RecognizerPreprocessor::Run(std::vector<FDMat>* images, std::vector<FDTenso
|
||||
int img_w = rec_image_shape_[2];
|
||||
float max_wh_ratio = img_w * 1.0 / img_h;
|
||||
float ori_wh_ratio;
|
||||
|
||||
|
||||
for (size_t i = start_index; i < end_index; ++i) {
|
||||
size_t real_index = i;
|
||||
if (indices.size() != 0) {
|
||||
@@ -84,20 +91,31 @@ bool RecognizerPreprocessor::Run(std::vector<FDMat>* images, std::vector<FDTenso
|
||||
real_index = indices[i];
|
||||
}
|
||||
FDMat* mat = &(images->at(real_index));
|
||||
OcrRecognizerResizeImage(mat, max_wh_ratio, rec_image_shape_, static_shape_infer_);
|
||||
NormalizeAndPermute::Run(mat, mean_, scale_, is_scale_);
|
||||
OcrRecognizerResizeImage(mat, max_wh_ratio, rec_image_shape_,
|
||||
static_shape_infer_);
|
||||
if (!disable_normalize_ && !disable_permute_) {
|
||||
NormalizeAndPermute::Run(mat, mean_, scale_, is_scale_);
|
||||
} else {
|
||||
if (!disable_normalize_) {
|
||||
Normalize::Run(mat, mean_, scale_, is_scale_);
|
||||
}
|
||||
if (!disable_permute_) {
|
||||
HWC2CHW::Run(mat);
|
||||
Cast::Run(mat, "float");
|
||||
}
|
||||
}
|
||||
}
|
||||
// Only have 1 output Tensor.
|
||||
outputs->resize(1);
|
||||
size_t tensor_size = end_index-start_index;
|
||||
size_t tensor_size = end_index - start_index;
|
||||
// Concat all the preprocessed data to a batch tensor
|
||||
std::vector<FDTensor> tensors(tensor_size);
|
||||
std::vector<FDTensor> tensors(tensor_size);
|
||||
for (size_t i = 0; i < tensor_size; ++i) {
|
||||
size_t real_index = i + start_index;
|
||||
if (indices.size() != 0) {
|
||||
real_index = indices[i + start_index];
|
||||
}
|
||||
|
||||
|
||||
(*images)[real_index].ShareWithTensor(&(tensors[i]));
|
||||
tensors[i].ExpandDim(0);
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user