mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-16 21:51:31 +08:00
Add model YOLOR Support (#31)
* first commit for yolov7 * pybind for yolov7 * CPP README.md * CPP README.md * modified yolov7.cc * README.md * python file modify * delete license in fastdeploy/ * repush the conflict part * README.md modified * README.md modified * file path modified * file path modified * file path modified * file path modified * file path modified * README modified * README modified * move some helpers to private * add examples for yolov7 * api.md modified * api.md modified * api.md modified * YOLOv7 * yolov7 release link * yolov7 release link * yolov7 release link * copyright * change some helpers to private * change variables to const and fix documents. * gitignore * Transfer some funtions to private member of class * Transfer some funtions to private member of class * Merge from develop (#9) * Fix compile problem in different python version (#26) * fix some usage problem in linux * Fix compile problem Co-authored-by: root <root@bjyz-sys-gpu-kongming3.bjyz.baidu.com> * Add PaddleDetetion/PPYOLOE model support (#22) * add ppdet/ppyoloe * Add demo code and documents * add convert processor to vision (#27) * update .gitignore * Added checking for cmake include dir * fixed missing trt_backend option bug when init from trt * remove un-need data layout and add pre-check for dtype * changed RGB2BRG to BGR2RGB in ppcls model * add model_zoo yolov6 c++/python demo * fixed CMakeLists.txt typos * update yolov6 cpp/README.md * add yolox c++/pybind and model_zoo demo * move some helpers to private * fixed CMakeLists.txt typos * add normalize with alpha and beta * add version notes for yolov5/yolov6/yolox * add copyright to yolov5.cc * revert normalize * fixed some bugs in yolox * fixed examples/CMakeLists.txt to avoid conflicts * add convert processor to vision * format examples/CMakeLists summary * Fix bug while the inference result is empty with YOLOv5 (#29) * Add multi-label function for yolov5 * Update README.md Update doc * Update fastdeploy_runtime.cc fix variable option.trt_max_shape wrong name * Update runtime_option.md Update resnet model dynamic shape setting name from images to x * Fix bug when inference result boxes are empty * Delete detection.py Co-authored-by: Jason <jiangjiajun@baidu.com> Co-authored-by: root <root@bjyz-sys-gpu-kongming3.bjyz.baidu.com> Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com> Co-authored-by: huangjianhui <852142024@qq.com> * first commit for yolor * for merge * Develop (#11) (#12) * Fix compile problem in different python version (#26) * fix some usage problem in linux * Fix compile problem Co-authored-by: root <root@bjyz-sys-gpu-kongming3.bjyz.baidu.com> * Add PaddleDetetion/PPYOLOE model support (#22) * add ppdet/ppyoloe * Add demo code and documents * add convert processor to vision (#27) * update .gitignore * Added checking for cmake include dir * fixed missing trt_backend option bug when init from trt * remove un-need data layout and add pre-check for dtype * changed RGB2BRG to BGR2RGB in ppcls model * add model_zoo yolov6 c++/python demo * fixed CMakeLists.txt typos * update yolov6 cpp/README.md * add yolox c++/pybind and model_zoo demo * move some helpers to private * fixed CMakeLists.txt typos * add normalize with alpha and beta * add version notes for yolov5/yolov6/yolox * add copyright to yolov5.cc * revert normalize * fixed some bugs in yolox * fixed examples/CMakeLists.txt to avoid conflicts * add convert processor to vision * format examples/CMakeLists summary * Fix bug while the inference result is empty with YOLOv5 (#29) * Add multi-label function for yolov5 * Update README.md Update doc * Update fastdeploy_runtime.cc fix variable option.trt_max_shape wrong name * Update runtime_option.md Update resnet model dynamic shape setting name from images to x * Fix bug when inference result boxes are empty * Delete detection.py Co-authored-by: Jason <jiangjiajun@baidu.com> Co-authored-by: root <root@bjyz-sys-gpu-kongming3.bjyz.baidu.com> Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com> Co-authored-by: huangjianhui <852142024@qq.com> Co-authored-by: Jason <jiangjiajun@baidu.com> Co-authored-by: root <root@bjyz-sys-gpu-kongming3.bjyz.baidu.com> Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com> Co-authored-by: huangjianhui <852142024@qq.com> * Develop (#13) * Fix compile problem in different python version (#26) * fix some usage problem in linux * Fix compile problem Co-authored-by: root <root@bjyz-sys-gpu-kongming3.bjyz.baidu.com> * Add PaddleDetetion/PPYOLOE model support (#22) * add ppdet/ppyoloe * Add demo code and documents * add convert processor to vision (#27) * update .gitignore * Added checking for cmake include dir * fixed missing trt_backend option bug when init from trt * remove un-need data layout and add pre-check for dtype * changed RGB2BRG to BGR2RGB in ppcls model * add model_zoo yolov6 c++/python demo * fixed CMakeLists.txt typos * update yolov6 cpp/README.md * add yolox c++/pybind and model_zoo demo * move some helpers to private * fixed CMakeLists.txt typos * add normalize with alpha and beta * add version notes for yolov5/yolov6/yolox * add copyright to yolov5.cc * revert normalize * fixed some bugs in yolox * fixed examples/CMakeLists.txt to avoid conflicts * add convert processor to vision * format examples/CMakeLists summary * Fix bug while the inference result is empty with YOLOv5 (#29) * Add multi-label function for yolov5 * Update README.md Update doc * Update fastdeploy_runtime.cc fix variable option.trt_max_shape wrong name * Update runtime_option.md Update resnet model dynamic shape setting name from images to x * Fix bug when inference result boxes are empty * Delete detection.py Co-authored-by: Jason <jiangjiajun@baidu.com> Co-authored-by: root <root@bjyz-sys-gpu-kongming3.bjyz.baidu.com> Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com> Co-authored-by: huangjianhui <852142024@qq.com> * documents * documents * documents * documents * documents * documents * documents * documents * documents * documents * documents * documents * Develop (#14) * Fix compile problem in different python version (#26) * fix some usage problem in linux * Fix compile problem Co-authored-by: root <root@bjyz-sys-gpu-kongming3.bjyz.baidu.com> * Add PaddleDetetion/PPYOLOE model support (#22) * add ppdet/ppyoloe * Add demo code and documents * add convert processor to vision (#27) * update .gitignore * Added checking for cmake include dir * fixed missing trt_backend option bug when init from trt * remove un-need data layout and add pre-check for dtype * changed RGB2BRG to BGR2RGB in ppcls model * add model_zoo yolov6 c++/python demo * fixed CMakeLists.txt typos * update yolov6 cpp/README.md * add yolox c++/pybind and model_zoo demo * move some helpers to private * fixed CMakeLists.txt typos * add normalize with alpha and beta * add version notes for yolov5/yolov6/yolox * add copyright to yolov5.cc * revert normalize * fixed some bugs in yolox * fixed examples/CMakeLists.txt to avoid conflicts * add convert processor to vision * format examples/CMakeLists summary * Fix bug while the inference result is empty with YOLOv5 (#29) * Add multi-label function for yolov5 * Update README.md Update doc * Update fastdeploy_runtime.cc fix variable option.trt_max_shape wrong name * Update runtime_option.md Update resnet model dynamic shape setting name from images to x * Fix bug when inference result boxes are empty * Delete detection.py Co-authored-by: root <root@bjyz-sys-gpu-kongming3.bjyz.baidu.com> Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com> Co-authored-by: huangjianhui <852142024@qq.com> Co-authored-by: Jason <jiangjiajun@baidu.com> Co-authored-by: root <root@bjyz-sys-gpu-kongming3.bjyz.baidu.com> Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com> Co-authored-by: huangjianhui <852142024@qq.com> Co-authored-by: Jason <928090362@qq.com>
This commit is contained in:
2
.gitignore
vendored
2
.gitignore
vendored
@@ -11,4 +11,4 @@ fastdeploy.egg-info
|
||||
.setuptools-cmake-build
|
||||
fastdeploy/version.py
|
||||
fastdeploy/LICENSE*
|
||||
fastdeploy/ThirdPartyNotices*
|
||||
fastdeploy/ThirdPartyNotices*
|
||||
|
52
examples/vision/wongkinyiu_yolor.cc
Normal file
52
examples/vision/wongkinyiu_yolor.cc
Normal file
@@ -0,0 +1,52 @@
|
||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "fastdeploy/vision.h"
|
||||
|
||||
int main() {
|
||||
namespace vis = fastdeploy::vision;
|
||||
|
||||
std::string model_file = "../resources/models/yolor.onnx";
|
||||
std::string img_path = "../resources/images/horses.jpg";
|
||||
std::string vis_path = "../resources/outputs/wongkinyiu_yolor_vis_result.jpg";
|
||||
|
||||
auto model = vis::wongkinyiu::YOLOR(model_file);
|
||||
if (!model.Initialized()) {
|
||||
std::cerr << "Init Failed! Model: " << model_file << std::endl;
|
||||
return -1;
|
||||
} else {
|
||||
std::cout << "Init Done! Model:" << model_file << std::endl;
|
||||
}
|
||||
model.EnableDebug();
|
||||
|
||||
cv::Mat im = cv::imread(img_path);
|
||||
cv::Mat vis_im = im.clone();
|
||||
|
||||
vis::DetectionResult res;
|
||||
if (!model.Predict(&im, &res)) {
|
||||
std::cerr << "Prediction Failed." << std::endl;
|
||||
return -1;
|
||||
} else {
|
||||
std::cout << "Prediction Done!" << std::endl;
|
||||
}
|
||||
|
||||
// 输出预测框结果
|
||||
std::cout << res.Str() << std::endl;
|
||||
|
||||
// 可视化预测结果
|
||||
vis::Visualize::VisDetection(&vis_im, res);
|
||||
cv::imwrite(vis_path, vis_im);
|
||||
std::cout << "Detect Done! Saved: " << vis_path << std::endl;
|
||||
return 0;
|
||||
}
|
@@ -26,10 +26,10 @@
|
||||
#define FASTDEPLOY_DECL __declspec(dllexport)
|
||||
#else
|
||||
#define FASTDEPLOY_DECL __declspec(dllimport)
|
||||
#endif // FASTDEPLOY_LIB
|
||||
#endif // FASTDEPLOY_LIB
|
||||
#else
|
||||
#define FASTDEPLOY_DECL __attribute__((visibility("default")))
|
||||
#endif // _WIN32
|
||||
#endif // _WIN32
|
||||
|
||||
namespace fastdeploy {
|
||||
|
||||
@@ -42,7 +42,8 @@ class FASTDEPLOY_DECL FDLogger {
|
||||
}
|
||||
explicit FDLogger(bool verbose, const std::string& prefix = "[FastDeploy]");
|
||||
|
||||
template <typename T> FDLogger& operator<<(const T& val) {
|
||||
template <typename T>
|
||||
FDLogger& operator<<(const T& val) {
|
||||
if (!verbose_) {
|
||||
return *this;
|
||||
}
|
||||
@@ -72,10 +73,14 @@ class FASTDEPLOY_DECL FDLogger {
|
||||
FDLogger(true, "[ERROR]") \
|
||||
<< __REL_FILE__ << "(" << __LINE__ << ")::" << __FUNCTION__ << "\t"
|
||||
|
||||
#define FDASSERT(condition, message) \
|
||||
if (!(condition)) { \
|
||||
FDERROR << message << std::endl; \
|
||||
std::abort(); \
|
||||
#define FDERROR \
|
||||
FDLogger(true, "[ERROR]") << __REL_FILE__ << "(" << __LINE__ \
|
||||
<< ")::" << __FUNCTION__ << "\t"
|
||||
|
||||
#define FDASSERT(condition, message) \
|
||||
if (!(condition)) { \
|
||||
FDERROR << message << std::endl; \
|
||||
std::abort(); \
|
||||
}
|
||||
|
||||
} // namespace fastdeploy
|
||||
} // namespace fastdeploy
|
||||
|
@@ -15,12 +15,13 @@
|
||||
|
||||
#include "fastdeploy/core/config.h"
|
||||
#ifdef ENABLE_VISION
|
||||
#include "fastdeploy/vision/megvii/yolox.h"
|
||||
#include "fastdeploy/vision/meituan/yolov6.h"
|
||||
#include "fastdeploy/vision/ppcls/model.h"
|
||||
#include "fastdeploy/vision/ppdet/ppyoloe.h"
|
||||
#include "fastdeploy/vision/ultralytics/yolov5.h"
|
||||
#include "fastdeploy/vision/wongkinyiu/yolor.h"
|
||||
#include "fastdeploy/vision/wongkinyiu/yolov7.h"
|
||||
#include "fastdeploy/vision/meituan/yolov6.h"
|
||||
#include "fastdeploy/vision/megvii/yolox.h"
|
||||
#endif
|
||||
|
||||
#include "fastdeploy/vision/visualize/visualize.h"
|
||||
|
@@ -46,6 +46,6 @@ class FASTDEPLOY_DECL Model : public FastDeployModel {
|
||||
std::vector<std::shared_ptr<Processor>> processors_;
|
||||
std::string config_file_;
|
||||
};
|
||||
} // namespace ppcls
|
||||
} // namespace vision
|
||||
} // namespace fastdeploy
|
||||
} // namespace ppcls
|
||||
} // namespace vision
|
||||
} // namespace fastdeploy
|
||||
|
@@ -27,4 +27,4 @@ void BindPPCls(pybind11::module& m) {
|
||||
return res;
|
||||
});
|
||||
}
|
||||
} // namespace fastdeploy
|
||||
} // namespace fastdeploy
|
||||
|
@@ -56,6 +56,6 @@ void Visualize::VisDetection(cv::Mat* im, const DetectionResult& result,
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace vision
|
||||
} // namespace fastdeploy
|
||||
} // namespace vision
|
||||
} // namespace fastdeploy
|
||||
#endif
|
||||
|
@@ -114,3 +114,101 @@ class YOLOv7(FastDeployModel):
|
||||
assert isinstance(
|
||||
value, float), "The value to set `max_wh` must be type of float."
|
||||
self._model.max_wh = value
|
||||
|
||||
|
||||
class YOLOR(FastDeployModel):
|
||||
def __init__(self,
|
||||
model_file,
|
||||
params_file="",
|
||||
runtime_option=None,
|
||||
model_format=Frontend.ONNX):
|
||||
# 调用基函数进行backend_option的初始化
|
||||
# 初始化后的option保存在self._runtime_option
|
||||
super(YOLOR, self).__init__(runtime_option)
|
||||
|
||||
self._model = C.vision.wongkinyiu.YOLOR(
|
||||
model_file, params_file, self._runtime_option, model_format)
|
||||
# 通过self.initialized判断整个模型的初始化是否成功
|
||||
assert self.initialized, "YOLOR initialize failed."
|
||||
|
||||
def predict(self, input_image, conf_threshold=0.25, nms_iou_threshold=0.5):
|
||||
return self._model.predict(input_image, conf_threshold,
|
||||
nms_iou_threshold)
|
||||
|
||||
# 一些跟YOLOR模型有关的属性封装
|
||||
# 多数是预处理相关,可通过修改如model.size = [1280, 1280]改变预处理时resize的大小(前提是模型支持)
|
||||
@property
|
||||
def size(self):
|
||||
return self._model.size
|
||||
|
||||
@property
|
||||
def padding_value(self):
|
||||
return self._model.padding_value
|
||||
|
||||
@property
|
||||
def is_no_pad(self):
|
||||
return self._model.is_no_pad
|
||||
|
||||
@property
|
||||
def is_mini_pad(self):
|
||||
return self._model.is_mini_pad
|
||||
|
||||
@property
|
||||
def is_scale_up(self):
|
||||
return self._model.is_scale_up
|
||||
|
||||
@property
|
||||
def stride(self):
|
||||
return self._model.stride
|
||||
|
||||
@property
|
||||
def max_wh(self):
|
||||
return self._model.max_wh
|
||||
|
||||
@size.setter
|
||||
def size(self, wh):
|
||||
assert isinstance(wh, [list, tuple]),\
|
||||
"The value to set `size` must be type of tuple or list."
|
||||
assert len(wh) == 2,\
|
||||
"The value to set `size` must contatins 2 elements means [width, height], but now it contains {} elements.".format(
|
||||
len(wh))
|
||||
self._model.size = wh
|
||||
|
||||
@padding_value.setter
|
||||
def padding_value(self, value):
|
||||
assert isinstance(
|
||||
value,
|
||||
list), "The value to set `padding_value` must be type of list."
|
||||
self._model.padding_value = value
|
||||
|
||||
@is_no_pad.setter
|
||||
def is_no_pad(self, value):
|
||||
assert isinstance(
|
||||
value, bool), "The value to set `is_no_pad` must be type of bool."
|
||||
self._model.is_no_pad = value
|
||||
|
||||
@is_mini_pad.setter
|
||||
def is_mini_pad(self, value):
|
||||
assert isinstance(
|
||||
value,
|
||||
bool), "The value to set `is_mini_pad` must be type of bool."
|
||||
self._model.is_mini_pad = value
|
||||
|
||||
@is_scale_up.setter
|
||||
def is_scale_up(self, value):
|
||||
assert isinstance(
|
||||
value,
|
||||
bool), "The value to set `is_scale_up` must be type of bool."
|
||||
self._model.is_scale_up = value
|
||||
|
||||
@stride.setter
|
||||
def stride(self, value):
|
||||
assert isinstance(
|
||||
value, int), "The value to set `stride` must be type of int."
|
||||
self._model.stride = value
|
||||
|
||||
@max_wh.setter
|
||||
def max_wh(self, value):
|
||||
assert isinstance(
|
||||
value, float), "The value to set `max_wh` must be type of float."
|
||||
self._model.max_wh = value
|
||||
|
@@ -17,7 +17,7 @@
|
||||
namespace fastdeploy {
|
||||
void BindWongkinyiu(pybind11::module& m) {
|
||||
auto wongkinyiu_module =
|
||||
m.def_submodule("wongkinyiu", "https://github.com/WongKinYiu/yolov7");
|
||||
m.def_submodule("wongkinyiu", "https://github.com/WongKinYiu");
|
||||
pybind11::class_<vision::wongkinyiu::YOLOv7, FastDeployModel>(
|
||||
wongkinyiu_module, "YOLOv7")
|
||||
.def(pybind11::init<std::string, std::string, RuntimeOption, Frontend>())
|
||||
@@ -37,5 +37,24 @@ void BindWongkinyiu(pybind11::module& m) {
|
||||
.def_readwrite("is_scale_up", &vision::wongkinyiu::YOLOv7::is_scale_up)
|
||||
.def_readwrite("stride", &vision::wongkinyiu::YOLOv7::stride)
|
||||
.def_readwrite("max_wh", &vision::wongkinyiu::YOLOv7::max_wh);
|
||||
|
||||
pybind11::class_<vision::wongkinyiu::YOLOR, FastDeployModel>(
|
||||
wongkinyiu_module, "YOLOR")
|
||||
.def(pybind11::init<std::string, std::string, RuntimeOption, Frontend>())
|
||||
.def("predict",
|
||||
[](vision::wongkinyiu::YOLOR& self, pybind11::array& data,
|
||||
float conf_threshold, float nms_iou_threshold) {
|
||||
auto mat = PyArrayToCvMat(data);
|
||||
vision::DetectionResult res;
|
||||
self.Predict(&mat, &res, conf_threshold, nms_iou_threshold);
|
||||
return res;
|
||||
})
|
||||
.def_readwrite("size", &vision::wongkinyiu::YOLOR::size)
|
||||
.def_readwrite("padding_value", &vision::wongkinyiu::YOLOR::padding_value)
|
||||
.def_readwrite("is_mini_pad", &vision::wongkinyiu::YOLOR::is_mini_pad)
|
||||
.def_readwrite("is_no_pad", &vision::wongkinyiu::YOLOR::is_no_pad)
|
||||
.def_readwrite("is_scale_up", &vision::wongkinyiu::YOLOR::is_scale_up)
|
||||
.def_readwrite("stride", &vision::wongkinyiu::YOLOR::stride)
|
||||
.def_readwrite("max_wh", &vision::wongkinyiu::YOLOR::max_wh);
|
||||
}
|
||||
} // namespace fastdeploy
|
||||
|
243
fastdeploy/vision/wongkinyiu/yolor.cc
Normal file
243
fastdeploy/vision/wongkinyiu/yolor.cc
Normal file
@@ -0,0 +1,243 @@
|
||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "fastdeploy/vision/wongkinyiu/yolor.h"
|
||||
#include "fastdeploy/utils/perf.h"
|
||||
#include "fastdeploy/vision/utils/utils.h"
|
||||
|
||||
namespace fastdeploy {
|
||||
namespace vision {
|
||||
namespace wongkinyiu {
|
||||
|
||||
void YOLOR::LetterBox(Mat* mat, const std::vector<int>& size,
|
||||
const std::vector<float>& color, bool _auto,
|
||||
bool scale_fill, bool scale_up, int stride) {
|
||||
float scale =
|
||||
std::min(size[1] * 1.0 / mat->Height(), size[0] * 1.0 / mat->Width());
|
||||
if (!scale_up) {
|
||||
scale = std::min(scale, 1.0f);
|
||||
}
|
||||
|
||||
int resize_h = int(round(mat->Height() * scale));
|
||||
int resize_w = int(round(mat->Width() * scale));
|
||||
|
||||
int pad_w = size[0] - resize_w;
|
||||
int pad_h = size[1] - resize_h;
|
||||
if (_auto) {
|
||||
pad_h = pad_h % stride;
|
||||
pad_w = pad_w % stride;
|
||||
} else if (scale_fill) {
|
||||
pad_h = 0;
|
||||
pad_w = 0;
|
||||
resize_h = size[1];
|
||||
resize_w = size[0];
|
||||
}
|
||||
Resize::Run(mat, resize_w, resize_h);
|
||||
if (pad_h > 0 || pad_w > 0) {
|
||||
float half_h = pad_h * 1.0 / 2;
|
||||
int top = int(round(half_h - 0.1));
|
||||
int bottom = int(round(half_h + 0.1));
|
||||
float half_w = pad_w * 1.0 / 2;
|
||||
int left = int(round(half_w - 0.1));
|
||||
int right = int(round(half_w + 0.1));
|
||||
Pad::Run(mat, top, bottom, left, right, color);
|
||||
}
|
||||
}
|
||||
|
||||
YOLOR::YOLOR(const std::string& model_file, const std::string& params_file,
|
||||
const RuntimeOption& custom_option, const Frontend& model_format) {
|
||||
if (model_format == Frontend::ONNX) {
|
||||
valid_cpu_backends = {Backend::ORT}; // 指定可用的CPU后端
|
||||
valid_gpu_backends = {Backend::ORT, Backend::TRT}; // 指定可用的GPU后端
|
||||
} else {
|
||||
valid_cpu_backends = {Backend::PDINFER, Backend::ORT};
|
||||
valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT};
|
||||
}
|
||||
runtime_option = custom_option;
|
||||
runtime_option.model_format = model_format;
|
||||
runtime_option.model_file = model_file;
|
||||
runtime_option.params_file = params_file;
|
||||
initialized = Initialize();
|
||||
}
|
||||
|
||||
bool YOLOR::Initialize() {
|
||||
// parameters for preprocess
|
||||
size = {640, 640};
|
||||
padding_value = {114.0, 114.0, 114.0};
|
||||
is_mini_pad = false;
|
||||
is_no_pad = false;
|
||||
is_scale_up = false;
|
||||
stride = 32;
|
||||
max_wh = 7680.0;
|
||||
|
||||
if (!InitRuntime()) {
|
||||
FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
bool YOLOR::Preprocess(Mat* mat, FDTensor* output,
|
||||
std::map<std::string, std::array<float, 2>>* im_info) {
|
||||
// process after image load
|
||||
double ratio = (size[0] * 1.0) / std::max(static_cast<float>(mat->Height()),
|
||||
static_cast<float>(mat->Width()));
|
||||
if (ratio != 1.0) {
|
||||
int interp = cv::INTER_AREA;
|
||||
if (ratio > 1.0) {
|
||||
interp = cv::INTER_LINEAR;
|
||||
}
|
||||
int resize_h = int(mat->Height() * ratio);
|
||||
int resize_w = int(mat->Width() * ratio);
|
||||
Resize::Run(mat, resize_w, resize_h, -1, -1, interp);
|
||||
}
|
||||
// yolor's preprocess steps
|
||||
// 1. letterbox
|
||||
// 2. BGR->RGB
|
||||
// 3. HWC->CHW
|
||||
YOLOR::LetterBox(mat, size, padding_value, is_mini_pad, is_no_pad,
|
||||
is_scale_up, stride);
|
||||
BGR2RGB::Run(mat);
|
||||
Normalize::Run(mat, std::vector<float>(mat->Channels(), 0.0),
|
||||
std::vector<float>(mat->Channels(), 1.0));
|
||||
|
||||
// Record output shape of preprocessed image
|
||||
(*im_info)["output_shape"] = {static_cast<float>(mat->Height()),
|
||||
static_cast<float>(mat->Width())};
|
||||
|
||||
HWC2CHW::Run(mat);
|
||||
Cast::Run(mat, "float");
|
||||
mat->ShareWithTensor(output);
|
||||
output->shape.insert(output->shape.begin(), 1); // reshape to n, h, w, c
|
||||
return true;
|
||||
}
|
||||
|
||||
bool YOLOR::Postprocess(
|
||||
FDTensor& infer_result, DetectionResult* result,
|
||||
const std::map<std::string, std::array<float, 2>>& im_info,
|
||||
float conf_threshold, float nms_iou_threshold) {
|
||||
FDASSERT(infer_result.shape[0] == 1, "Only support batch =1 now.");
|
||||
result->Clear();
|
||||
result->Reserve(infer_result.shape[1]);
|
||||
if (infer_result.dtype != FDDataType::FP32) {
|
||||
FDERROR << "Only support post process with float32 data." << std::endl;
|
||||
return false;
|
||||
}
|
||||
float* data = static_cast<float*>(infer_result.Data());
|
||||
for (size_t i = 0; i < infer_result.shape[1]; ++i) {
|
||||
int s = i * infer_result.shape[2];
|
||||
float confidence = data[s + 4];
|
||||
float* max_class_score =
|
||||
std::max_element(data + s + 5, data + s + infer_result.shape[2]);
|
||||
confidence *= (*max_class_score);
|
||||
// filter boxes by conf_threshold
|
||||
if (confidence <= conf_threshold) {
|
||||
continue;
|
||||
}
|
||||
int32_t label_id = std::distance(data + s + 5, max_class_score);
|
||||
// convert from [x, y, w, h] to [x1, y1, x2, y2]
|
||||
result->boxes.emplace_back(std::array<float, 4>{
|
||||
data[s] - data[s + 2] / 2.0f + label_id * max_wh,
|
||||
data[s + 1] - data[s + 3] / 2.0f + label_id * max_wh,
|
||||
data[s + 0] + data[s + 2] / 2.0f + label_id * max_wh,
|
||||
data[s + 1] + data[s + 3] / 2.0f + label_id * max_wh});
|
||||
result->label_ids.push_back(label_id);
|
||||
result->scores.push_back(confidence);
|
||||
}
|
||||
utils::NMS(result, nms_iou_threshold);
|
||||
|
||||
// scale the boxes to the origin image shape
|
||||
auto iter_out = im_info.find("output_shape");
|
||||
auto iter_ipt = im_info.find("input_shape");
|
||||
FDASSERT(iter_out != im_info.end() && iter_ipt != im_info.end(),
|
||||
"Cannot find input_shape or output_shape from im_info.");
|
||||
float out_h = iter_out->second[0];
|
||||
float out_w = iter_out->second[1];
|
||||
float ipt_h = iter_ipt->second[0];
|
||||
float ipt_w = iter_ipt->second[1];
|
||||
float scale = std::min(out_h / ipt_h, out_w / ipt_w);
|
||||
for (size_t i = 0; i < result->boxes.size(); ++i) {
|
||||
float pad_h = (out_h - ipt_h * scale) / 2;
|
||||
float pad_w = (out_w - ipt_w * scale) / 2;
|
||||
int32_t label_id = (result->label_ids)[i];
|
||||
// clip box
|
||||
result->boxes[i][0] = result->boxes[i][0] - max_wh * label_id;
|
||||
result->boxes[i][1] = result->boxes[i][1] - max_wh * label_id;
|
||||
result->boxes[i][2] = result->boxes[i][2] - max_wh * label_id;
|
||||
result->boxes[i][3] = result->boxes[i][3] - max_wh * label_id;
|
||||
result->boxes[i][0] = std::max((result->boxes[i][0] - pad_w) / scale, 0.0f);
|
||||
result->boxes[i][1] = std::max((result->boxes[i][1] - pad_h) / scale, 0.0f);
|
||||
result->boxes[i][2] = std::max((result->boxes[i][2] - pad_w) / scale, 0.0f);
|
||||
result->boxes[i][3] = std::max((result->boxes[i][3] - pad_h) / scale, 0.0f);
|
||||
result->boxes[i][0] = std::min(result->boxes[i][0], ipt_w);
|
||||
result->boxes[i][1] = std::min(result->boxes[i][1], ipt_h);
|
||||
result->boxes[i][2] = std::min(result->boxes[i][2], ipt_w);
|
||||
result->boxes[i][3] = std::min(result->boxes[i][3], ipt_h);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
bool YOLOR::Predict(cv::Mat* im, DetectionResult* result, float conf_threshold,
|
||||
float nms_iou_threshold) {
|
||||
#ifdef FASTDEPLOY_DEBUG
|
||||
TIMERECORD_START(0)
|
||||
#endif
|
||||
|
||||
Mat mat(*im);
|
||||
std::vector<FDTensor> input_tensors(1);
|
||||
|
||||
std::map<std::string, std::array<float, 2>> im_info;
|
||||
|
||||
// Record the shape of image and the shape of preprocessed image
|
||||
im_info["input_shape"] = {static_cast<float>(mat.Height()),
|
||||
static_cast<float>(mat.Width())};
|
||||
im_info["output_shape"] = {static_cast<float>(mat.Height()),
|
||||
static_cast<float>(mat.Width())};
|
||||
|
||||
if (!Preprocess(&mat, &input_tensors[0], &im_info)) {
|
||||
FDERROR << "Failed to preprocess input image." << std::endl;
|
||||
return false;
|
||||
}
|
||||
|
||||
#ifdef FASTDEPLOY_DEBUG
|
||||
TIMERECORD_END(0, "Preprocess")
|
||||
TIMERECORD_START(1)
|
||||
#endif
|
||||
|
||||
input_tensors[0].name = InputInfoOfRuntime(0).name;
|
||||
std::vector<FDTensor> output_tensors;
|
||||
if (!Infer(input_tensors, &output_tensors)) {
|
||||
FDERROR << "Failed to inference." << std::endl;
|
||||
return false;
|
||||
}
|
||||
#ifdef FASTDEPLOY_DEBUG
|
||||
TIMERECORD_END(1, "Inference")
|
||||
TIMERECORD_START(2)
|
||||
#endif
|
||||
|
||||
if (!Postprocess(output_tensors[0], result, im_info, conf_threshold,
|
||||
nms_iou_threshold)) {
|
||||
FDERROR << "Failed to post process." << std::endl;
|
||||
return false;
|
||||
}
|
||||
|
||||
#ifdef FASTDEPLOY_DEBUG
|
||||
TIMERECORD_END(2, "Postprocess")
|
||||
#endif
|
||||
return true;
|
||||
}
|
||||
|
||||
} // namespace wongkinyiu
|
||||
} // namespace vision
|
||||
} // namespace fastdeploy
|
95
fastdeploy/vision/wongkinyiu/yolor.h
Normal file
95
fastdeploy/vision/wongkinyiu/yolor.h
Normal file
@@ -0,0 +1,95 @@
|
||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#pragma once
|
||||
#include "fastdeploy/fastdeploy_model.h"
|
||||
#include "fastdeploy/vision/common/processors/transform.h"
|
||||
#include "fastdeploy/vision/common/result.h"
|
||||
|
||||
namespace fastdeploy {
|
||||
namespace vision {
|
||||
namespace wongkinyiu {
|
||||
|
||||
class FASTDEPLOY_DECL YOLOR : public FastDeployModel {
|
||||
public:
|
||||
// 当model_format为ONNX时,无需指定params_file
|
||||
// 当model_format为Paddle时,则需同时指定model_file & params_file
|
||||
YOLOR(const std::string& model_file, const std::string& params_file = "",
|
||||
const RuntimeOption& custom_option = RuntimeOption(),
|
||||
const Frontend& model_format = Frontend::ONNX);
|
||||
|
||||
// 定义模型的名称
|
||||
virtual std::string ModelName() const { return "WongKinYiu/yolor"; }
|
||||
|
||||
// 模型预测接口,即用户调用的接口
|
||||
// im 为用户的输入数据,目前对于CV均定义为cv::Mat
|
||||
// result 为模型预测的输出结构体
|
||||
// conf_threshold 为后处理的参数
|
||||
// nms_iou_threshold 为后处理的参数
|
||||
virtual bool Predict(cv::Mat* im, DetectionResult* result,
|
||||
float conf_threshold = 0.25,
|
||||
float nms_iou_threshold = 0.5);
|
||||
|
||||
// 以下为模型在预测时的一些参数,基本是前后处理所需
|
||||
// 用户在创建模型后,可根据模型的要求,以及自己的需求
|
||||
// 对参数进行修改
|
||||
// tuple of (width, height)
|
||||
std::vector<int> size;
|
||||
// padding value, size should be same with Channels
|
||||
std::vector<float> padding_value;
|
||||
// only pad to the minimum rectange which height and width is times of stride
|
||||
bool is_mini_pad;
|
||||
// while is_mini_pad = false and is_no_pad = true, will resize the image to
|
||||
// the set size
|
||||
bool is_no_pad;
|
||||
// if is_scale_up is false, the input image only can be zoom out, the maximum
|
||||
// resize scale cannot exceed 1.0
|
||||
bool is_scale_up;
|
||||
// padding stride, for is_mini_pad
|
||||
int stride;
|
||||
// for offseting the boxes by classes when using NMS
|
||||
float max_wh;
|
||||
|
||||
private:
|
||||
// 初始化函数,包括初始化后端,以及其它模型推理需要涉及的操作
|
||||
bool Initialize();
|
||||
|
||||
// 输入图像预处理操作
|
||||
// Mat为FastDeploy定义的数据结构
|
||||
// FDTensor为预处理后的Tensor数据,传给后端进行推理
|
||||
// im_info为预处理过程保存的数据,在后处理中需要用到
|
||||
bool Preprocess(Mat* mat, FDTensor* outputs,
|
||||
std::map<std::string, std::array<float, 2>>* im_info);
|
||||
|
||||
// 后端推理结果后处理,输出给用户
|
||||
// infer_result 为后端推理后的输出Tensor
|
||||
// result 为模型预测的结果
|
||||
// im_info 为预处理记录的信息,后处理用于还原box
|
||||
// conf_threshold 后处理时过滤box的置信度阈值
|
||||
// nms_iou_threshold 后处理时NMS设定的iou阈值
|
||||
bool Postprocess(FDTensor& infer_result, DetectionResult* result,
|
||||
const std::map<std::string, std::array<float, 2>>& im_info,
|
||||
float conf_threshold, float nms_iou_threshold);
|
||||
|
||||
// 对图片进行LetterBox处理
|
||||
// mat 为读取到的原图
|
||||
// size 为输入模型的图像尺寸
|
||||
void LetterBox(Mat* mat, const std::vector<int>& size,
|
||||
const std::vector<float>& color, bool _auto,
|
||||
bool scale_fill = false, bool scale_up = true,
|
||||
int stride = 32);
|
||||
};
|
||||
} // namespace wongkinyiu
|
||||
} // namespace vision
|
||||
} // namespace fastdeploy
|
@@ -20,9 +20,9 @@ namespace fastdeploy {
|
||||
namespace vision {
|
||||
namespace wongkinyiu {
|
||||
|
||||
void LetterBox(Mat* mat, const std::vector<int>& size,
|
||||
const std::vector<float>& color, bool _auto,
|
||||
bool scale_fill = false, bool scale_up = true, int stride = 32) {
|
||||
void YOLOv7::LetterBox(Mat* mat, const std::vector<int>& size,
|
||||
const std::vector<float>& color, bool _auto,
|
||||
bool scale_fill, bool scale_up, int stride) {
|
||||
float scale =
|
||||
std::min(size[1] * 1.0 / mat->Height(), size[0] * 1.0 / mat->Width());
|
||||
if (!scale_up) {
|
||||
@@ -107,8 +107,8 @@ bool YOLOv7::Preprocess(Mat* mat, FDTensor* output,
|
||||
// 1. letterbox
|
||||
// 2. BGR->RGB
|
||||
// 3. HWC->CHW
|
||||
LetterBox(mat, size, padding_value, is_mini_pad, is_no_pad, is_scale_up,
|
||||
stride);
|
||||
YOLOv7::LetterBox(mat, size, padding_value, is_mini_pad, is_no_pad,
|
||||
is_scale_up, stride);
|
||||
BGR2RGB::Run(mat);
|
||||
Normalize::Run(mat, std::vector<float>(mat->Channels(), 0.0),
|
||||
std::vector<float>(mat->Channels(), 1.0));
|
||||
|
@@ -70,7 +70,7 @@ class FASTDEPLOY_DECL YOLOv7 : public FastDeployModel {
|
||||
// FDTensor为预处理后的Tensor数据,传给后端进行推理
|
||||
// im_info为预处理过程保存的数据,在后处理中需要用到
|
||||
bool Preprocess(Mat* mat, FDTensor* outputs,
|
||||
std::map<std::string, std::array<float, 2>>* im_info);
|
||||
std::map<std::string, std::array<float, 2>>* im_info);
|
||||
|
||||
// 后端推理结果后处理,输出给用户
|
||||
// infer_result 为后端推理后的输出Tensor
|
||||
@@ -78,10 +78,17 @@ class FASTDEPLOY_DECL YOLOv7 : public FastDeployModel {
|
||||
// im_info 为预处理记录的信息,后处理用于还原box
|
||||
// conf_threshold 后处理时过滤box的置信度阈值
|
||||
// nms_iou_threshold 后处理时NMS设定的iou阈值
|
||||
bool Postprocess(
|
||||
FDTensor& infer_result, DetectionResult* result,
|
||||
const std::map<std::string, std::array<float, 2>>& im_info,
|
||||
float conf_threshold, float nms_iou_threshold);
|
||||
bool Postprocess(FDTensor& infer_result, DetectionResult* result,
|
||||
const std::map<std::string, std::array<float, 2>>& im_info,
|
||||
float conf_threshold, float nms_iou_threshold);
|
||||
|
||||
// 对图片进行LetterBox处理
|
||||
// mat 为读取到的原图
|
||||
// size 为输入模型的图像尺寸
|
||||
void LetterBox(Mat* mat, const std::vector<int>& size,
|
||||
const std::vector<float>& color, bool _auto,
|
||||
bool scale_fill = false, bool scale_up = true,
|
||||
int stride = 32);
|
||||
};
|
||||
} // namespace wongkinyiu
|
||||
} // namespace vision
|
||||
|
66
model_zoo/vision/yolor/README.md
Normal file
66
model_zoo/vision/yolor/README.md
Normal file
@@ -0,0 +1,66 @@
|
||||
# 编译YOLOR示例
|
||||
|
||||
当前支持模型版本为:[YOLOR weights](https://github.com/WongKinYiu/yolor/releases/tag/weights)
|
||||
(tips: 如果使用 `git clone` 的方式下载仓库代码,请将分支切换(checkout)到 `paper` 分支).
|
||||
|
||||
本文档说明如何进行[YOLOR](https://github.com/WongKinYiu/yolor)的快速部署推理。本目录结构如下
|
||||
|
||||
```
|
||||
.
|
||||
├── cpp
|
||||
│ ├── CMakeLists.txt
|
||||
│ ├── README.md
|
||||
│ └── yolor.cc
|
||||
├── README.md
|
||||
└── yolor.py
|
||||
```
|
||||
|
||||
## 获取ONNX文件
|
||||
|
||||
- 手动获取
|
||||
|
||||
访问[YOLOR](https://github.com/WongKinYiu/yolor)官方github库,按照指引下载安装,下载`yolor.pt` 模型,利用 `models/export.py` 得到`onnx`格式文件。如果您导出的`onnx`模型出现精度不达标或者是数据维度的问题,可以参考[yolor#32](https://github.com/WongKinYiu/yolor/issues/32)的解决办法
|
||||
|
||||
```
|
||||
#下载yolor模型文件
|
||||
wget https://github.com/WongKinYiu/yolor/releases/download/weights/yolor-d6-paper-570.pt
|
||||
|
||||
# 导出onnx格式文件
|
||||
python models/export.py --weights PATH/TO/yolor-xx-xx-xx.pt --img-size 640
|
||||
|
||||
# 移动onnx文件到demo目录
|
||||
cp PATH/TO/yolor.onnx PATH/TO/model_zoo/vision/yolor/
|
||||
```
|
||||
|
||||
## 安装FastDeploy
|
||||
|
||||
使用如下命令安装FastDeploy,注意到此处安装的是`vision-cpu`,也可根据需求安装`vision-gpu`
|
||||
|
||||
```
|
||||
# 安装fastdeploy-python工具
|
||||
pip install fastdeploy-python
|
||||
|
||||
# 安装vision-cpu模块
|
||||
fastdeploy install vision-cpu
|
||||
```
|
||||
## Python部署
|
||||
|
||||
执行如下代码即会自动下载测试图片
|
||||
```
|
||||
python yolor.py
|
||||
```
|
||||
|
||||
执行完成后会将可视化结果保存在本地`vis_result.jpg`,同时输出检测结果如下
|
||||
```
|
||||
DetectionResult: [xmin, ymin, xmax, ymax, score, label_id]
|
||||
0.000000,185.201431, 315.673126, 410.071594, 0.959289, 17
|
||||
433.802826,211.603455, 595.489319, 346.425537, 0.952615, 17
|
||||
230.446854,195.618805, 418.365479, 362.712128, 0.884253, 17
|
||||
336.545624,208.555618, 457.704315, 323.543152, 0.788450, 17
|
||||
0.896423,183.936996, 154.788727, 304.916412, 0.672804, 17
|
||||
```
|
||||
|
||||
## 其它文档
|
||||
|
||||
- [C++部署](./cpp/README.md)
|
||||
- [YOLOR API文档](./api.md)
|
71
model_zoo/vision/yolor/api.md
Normal file
71
model_zoo/vision/yolor/api.md
Normal file
@@ -0,0 +1,71 @@
|
||||
# YOLOR API说明
|
||||
|
||||
## Python API
|
||||
|
||||
### YOLOR类
|
||||
```
|
||||
fastdeploy.vision.wongkinyiu.YOLOR(model_file, params_file=None, runtime_option=None, model_format=fd.Frontend.ONNX)
|
||||
```
|
||||
YOLOR模型加载和初始化,当model_format为`fd.Frontend.ONNX`时,只需提供model_file,如`yolor.onnx`;当model_format为`fd.Frontend.PADDLE`时,则需同时提供model_file和params_file。
|
||||
|
||||
**参数**
|
||||
|
||||
> * **model_file**(str): 模型文件路径
|
||||
> * **params_file**(str): 参数文件路径
|
||||
> * **runtime_option**(RuntimeOption): 后端推理配置,默认为None,即采用默认配置
|
||||
> * **model_format**(Frontend): 模型格式
|
||||
|
||||
#### predict函数
|
||||
> ```
|
||||
> YOLOR.predict(image_data, conf_threshold=0.25, nms_iou_threshold=0.5)
|
||||
> ```
|
||||
> 模型预测结口,输入图像直接输出检测结果。
|
||||
>
|
||||
> **参数**
|
||||
>
|
||||
> > * **image_data**(np.ndarray): 输入数据,注意需为HWC,BGR格式
|
||||
> > * **conf_threshold**(float): 检测框置信度过滤阈值
|
||||
> > * **nms_iou_threshold**(float): NMS处理过程中iou阈值
|
||||
|
||||
示例代码参考[yolor.py](./yolor.py)
|
||||
|
||||
|
||||
## C++ API
|
||||
|
||||
### YOLOR类
|
||||
```
|
||||
fastdeploy::vision::wongkinyiu::YOLOR(
|
||||
const string& model_file,
|
||||
const string& params_file = "",
|
||||
const RuntimeOption& runtime_option = RuntimeOption(),
|
||||
const Frontend& model_format = Frontend::ONNX)
|
||||
```
|
||||
YOLOR模型加载和初始化,当model_format为`Frontend::ONNX`时,只需提供model_file,如`yolor.onnx`;当model_format为`Frontend::PADDLE`时,则需同时提供model_file和params_file。
|
||||
|
||||
**参数**
|
||||
|
||||
> * **model_file**(str): 模型文件路径
|
||||
> * **params_file**(str): 参数文件路径
|
||||
> * **runtime_option**(RuntimeOption): 后端推理配置,默认为None,即采用默认配置
|
||||
> * **model_format**(Frontend): 模型格式
|
||||
|
||||
#### Predict函数
|
||||
> ```
|
||||
> YOLOR::Predict(cv::Mat* im, DetectionResult* result,
|
||||
> float conf_threshold = 0.25,
|
||||
> float nms_iou_threshold = 0.5)
|
||||
> ```
|
||||
> 模型预测接口,输入图像直接输出检测结果。
|
||||
>
|
||||
> **参数**
|
||||
>
|
||||
> > * **im**: 输入图像,注意需为HWC,BGR格式
|
||||
> > * **result**: 检测结果,包括检测框,各个框的置信度
|
||||
> > * **conf_threshold**: 检测框置信度过滤阈值
|
||||
> > * **nms_iou_threshold**: NMS处理过程中iou阈值
|
||||
|
||||
示例代码参考[cpp/yolor.cc](cpp/yolor.cc)
|
||||
|
||||
## 其它API使用
|
||||
|
||||
- [模型部署RuntimeOption配置](../../../docs/api/runtime_option.md)
|
17
model_zoo/vision/yolor/cpp/CMakeLists.txt
Normal file
17
model_zoo/vision/yolor/cpp/CMakeLists.txt
Normal file
@@ -0,0 +1,17 @@
|
||||
PROJECT(yolor_demo C CXX)
|
||||
CMAKE_MINIMUM_REQUIRED (VERSION 3.16)
|
||||
|
||||
# 在低版本ABI环境中,通过如下代码进行兼容性编译
|
||||
# add_definitions(-D_GLIBCXX_USE_CXX11_ABI=0)
|
||||
|
||||
# 指定下载解压后的fastdeploy库路径
|
||||
set(FASTDEPLOY_INSTALL_DIR ${PROJECT_SOURCE_DIR}/fastdeploy-linux-x64-0.3.0/)
|
||||
|
||||
include(${FASTDEPLOY_INSTALL_DIR}/FastDeploy.cmake)
|
||||
|
||||
# 添加FastDeploy依赖头文件
|
||||
include_directories(${FASTDEPLOY_INCS})
|
||||
|
||||
add_executable(yolor_demo ${PROJECT_SOURCE_DIR}/yolor.cc)
|
||||
# 添加FastDeploy库依赖
|
||||
target_link_libraries(yolor_demo ${FASTDEPLOY_LIBS})
|
53
model_zoo/vision/yolor/cpp/README.md
Normal file
53
model_zoo/vision/yolor/cpp/README.md
Normal file
@@ -0,0 +1,53 @@
|
||||
# 编译YOLOR示例
|
||||
|
||||
当前支持模型版本为:[YOLOR weights](https://github.com/WongKinYiu/yolor/releases/tag/weights)
|
||||
(tips: 如果使用 `git clone` 的方式下载仓库代码,请将分支切换(checkout)到 `paper` 分支).
|
||||
## 获取ONNX文件
|
||||
|
||||
- 手动获取
|
||||
|
||||
访问[YOLOR](https://github.com/WongKinYiu/yolor)官方github库,按照指引下载安装,下载`yolor.pt` 模型,利用 `models/export.py` 得到`onnx`格式文件。如果您导出的`onnx`模型出现精度不达标或者是数据维度的问题,可以参考[yolor#32](https://github.com/WongKinYiu/yolor/issues/32)的解决办法
|
||||
|
||||
```
|
||||
#下载yolor模型文件
|
||||
wget https://github.com/WongKinYiu/yolor/releases/download/weights/yolor-d6-paper-570.pt
|
||||
|
||||
# 导出onnx格式文件
|
||||
python models/export.py --weights PATH/TO/yolor-xx-xx-xx.pt --img-size 640
|
||||
|
||||
# 移动onnx文件到demo目录
|
||||
cp PATH/TO/yolor.onnx PATH/TO/model_zoo/vision/yolor/
|
||||
```
|
||||
|
||||
|
||||
## 运行demo
|
||||
|
||||
```
|
||||
# 下载和解压预测库
|
||||
wget https://bj.bcebos.com/paddle2onnx/fastdeploy/fastdeploy-linux-x64-0.0.3.tgz
|
||||
tar xvf fastdeploy-linux-x64-0.0.3.tgz
|
||||
|
||||
# 编译示例代码
|
||||
mkdir build & cd build
|
||||
cmake ..
|
||||
make -j
|
||||
|
||||
# 移动onnx文件到demo目录
|
||||
cp PATH/TO/yolor.onnx PATH/TO/model_zoo/vision/yolor/cpp/build/
|
||||
|
||||
# 下载图片
|
||||
wget https://raw.githubusercontent.com/WongKinYiu/yolor/paper/inference/images/horses.jpg
|
||||
|
||||
# 执行
|
||||
./yolor_demo
|
||||
```
|
||||
|
||||
执行完后可视化的结果保存在本地`vis_result.jpg`,同时会将检测框输出在终端,如下所示
|
||||
```
|
||||
DetectionResult: [xmin, ymin, xmax, ymax, score, label_id]
|
||||
0.000000,185.201431, 315.673126, 410.071594, 0.959289, 17
|
||||
433.802826,211.603455, 595.489319, 346.425537, 0.952615, 17
|
||||
230.446854,195.618805, 418.365479, 362.712128, 0.884253, 17
|
||||
336.545624,208.555618, 457.704315, 323.543152, 0.788450, 17
|
||||
0.896423,183.936996, 154.788727, 304.916412, 0.672804, 17
|
||||
```
|
40
model_zoo/vision/yolor/cpp/yolor.cc
Normal file
40
model_zoo/vision/yolor/cpp/yolor.cc
Normal file
@@ -0,0 +1,40 @@
|
||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "fastdeploy/vision.h"
|
||||
|
||||
int main() {
|
||||
namespace vis = fastdeploy::vision;
|
||||
auto model = vis::wongkinyiu::YOLOR("yolor.onnx");
|
||||
if (!model.Initialized()) {
|
||||
std::cerr << "Init Failed." << std::endl;
|
||||
return -1;
|
||||
}
|
||||
cv::Mat im = cv::imread("horses.jpg");
|
||||
cv::Mat vis_im = im.clone();
|
||||
|
||||
vis::DetectionResult res;
|
||||
if (!model.Predict(&im, &res)) {
|
||||
std::cerr << "Prediction Failed." << std::endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
// 输出预测框结果
|
||||
std::cout << res.Str() << std::endl;
|
||||
|
||||
// 可视化预测结果
|
||||
vis::Visualize::VisDetection(&vis_im, res);
|
||||
cv::imwrite("vis_result.jpg", vis_im);
|
||||
return 0;
|
||||
}
|
21
model_zoo/vision/yolor/yolor.py
Normal file
21
model_zoo/vision/yolor/yolor.py
Normal file
@@ -0,0 +1,21 @@
|
||||
import fastdeploy as fd
|
||||
import cv2
|
||||
|
||||
# 下载模型和测试图片
|
||||
test_jpg_url = "https://raw.githubusercontent.com/WongKinYiu/yolor/paper/inference/images/horses.jpg"
|
||||
fd.download(test_jpg_url, ".", show_progress=True)
|
||||
|
||||
# 加载模型
|
||||
model = fd.vision.wongkinyiu.YOLOR("yolor.onnx")
|
||||
|
||||
# 预测图片
|
||||
im = cv2.imread("horses.jpg")
|
||||
result = model.predict(im, conf_threshold=0.25, nms_iou_threshold=0.5)
|
||||
|
||||
# 可视化结果
|
||||
fd.vision.visualize.vis_detection(im, result)
|
||||
cv2.imwrite("vis_result.jpg", im)
|
||||
|
||||
# 输出预测结果
|
||||
print(result)
|
||||
print(model.runtime_option)
|
@@ -27,10 +27,10 @@
|
||||
wget https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7.pt
|
||||
|
||||
# 导出onnx格式文件
|
||||
python models/export.py --grid --dynamic --weights PATH/TO/yolo7.pt
|
||||
python models/export.py --grid --dynamic --weights PATH/TO/yolov7.pt
|
||||
|
||||
# 移动onnx文件到demo目录
|
||||
cp PATH/TO/yolo7.onnx PATH/TO/model_zoo/vision/yolov7/
|
||||
cp PATH/TO/yolov7.onnx PATH/TO/model_zoo/vision/yolov7/
|
||||
```
|
||||
|
||||
## 安装FastDeploy
|
||||
|
@@ -13,7 +13,7 @@
|
||||
wget https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7.pt
|
||||
|
||||
# 导出onnx格式文件
|
||||
python models/export.py --grid --dynamic --weights PATH/TO/yolo7.pt
|
||||
python models/export.py --grid --dynamic --weights PATH/TO/yolov7.pt
|
||||
|
||||
```
|
||||
|
||||
@@ -31,7 +31,7 @@ cmake ..
|
||||
make -j
|
||||
|
||||
# 移动onnx文件到demo目录
|
||||
cp PATH/TO/yolo7.onnx PATH/TO/model_zoo/vision/yolov7/cpp/build/
|
||||
cp PATH/TO/yolov7.onnx PATH/TO/model_zoo/vision/yolov7/cpp/build/
|
||||
|
||||
# 下载图片
|
||||
wget https://raw.githubusercontent.com/WongKinYiu/yolov7/main/inference/images/horses.jpg
|
||||
|
Reference in New Issue
Block a user