mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-04 08:16:42 +08:00
[Feature] Add return_token_ids, prompt_token_ids, and delete training, raw_request in request body (#2940)
* [feat] add return_token_ids, prompt_token_ids, delete raw_request in request body * [fix] return_token_ids not working in curl request * [test] improve some test cases of return_token_ids and prompt_token_ids * [fix] the server responds ok even if request.messages is an empty list
This commit is contained in:
@@ -46,7 +46,6 @@ class Request:
|
||||
preprocess_end_time: Optional[float] = None,
|
||||
multimodal_inputs: Optional[dict] = None,
|
||||
multimodal_data: Optional[dict] = None,
|
||||
raw_request: bool = True,
|
||||
disaggregate_info: Optional[dict] = None,
|
||||
draft_token_ids: Optional[list[int]] = None,
|
||||
guided_json: Optional[Any] = None,
|
||||
@@ -74,7 +73,6 @@ class Request:
|
||||
self.arrival_time = arrival_time
|
||||
self.preprocess_start_time = preprocess_start_time
|
||||
self.preprocess_end_time = preprocess_end_time
|
||||
self.raw_request = raw_request
|
||||
self.disaggregate_info = disaggregate_info
|
||||
|
||||
# speculative method in disaggregate-mode
|
||||
@@ -117,7 +115,6 @@ class Request:
|
||||
multimodal_data=d.get("multimodal_data"),
|
||||
disaggregate_info=d.get("disaggregate_info"),
|
||||
draft_token_ids=d.get("draft_token_ids"),
|
||||
raw_request=d.get("raw_request", True),
|
||||
guided_json=d.get("guided_json", None),
|
||||
guided_regex=d.get("guided_regex", None),
|
||||
guided_choice=d.get("guided_choice", None),
|
||||
@@ -145,7 +142,6 @@ class Request:
|
||||
"preprocess_end_time": self.preprocess_end_time,
|
||||
"multimodal_inputs": self.multimodal_inputs,
|
||||
"multimodal_data": self.multimodal_data,
|
||||
"raw_request": self.raw_request,
|
||||
"disaggregate_info": self.disaggregate_info,
|
||||
"draft_token_ids": self.draft_token_ids,
|
||||
"enable_thinking": self.enable_thinking,
|
||||
|
@@ -124,6 +124,8 @@ class ChatMessage(BaseModel):
|
||||
content: str
|
||||
reasoning_content: Optional[str] = None
|
||||
tool_calls: Optional[List[DeltaToolCall | ToolCall]] = None
|
||||
prompt_token_ids: Optional[List[int]] = None
|
||||
completion_token_ids: Optional[List[int]] = None
|
||||
|
||||
|
||||
class ChatCompletionResponseChoice(BaseModel):
|
||||
@@ -177,7 +179,8 @@ class DeltaMessage(BaseModel):
|
||||
|
||||
role: Optional[str] = None
|
||||
content: Optional[str] = None
|
||||
token_ids: Optional[List[int]] = None
|
||||
prompt_token_ids: Optional[List[int]] = None
|
||||
completion_token_ids: Optional[List[int]] = None
|
||||
reasoning_content: Optional[str] = None
|
||||
tool_calls: Optional[List[DeltaToolCall | ToolCall]] = None
|
||||
|
||||
@@ -214,7 +217,8 @@ class CompletionResponseChoice(BaseModel):
|
||||
|
||||
index: int
|
||||
text: str
|
||||
token_ids: Optional[List[int]] = None
|
||||
prompt_token_ids: Optional[List[int]] = None
|
||||
completion_token_ids: Optional[List[int]] = None
|
||||
arrival_time: Optional[float] = None
|
||||
logprobs: Optional[int] = None
|
||||
reasoning_content: Optional[str] = None
|
||||
@@ -243,7 +247,8 @@ class CompletionResponseStreamChoice(BaseModel):
|
||||
index: int
|
||||
text: str
|
||||
arrival_time: float = None
|
||||
token_ids: Optional[List[int]] = None
|
||||
prompt_token_ids: Optional[List[int]] = None
|
||||
completion_token_ids: Optional[List[int]] = None
|
||||
logprobs: Optional[float] = None
|
||||
reasoning_content: Optional[str] = None
|
||||
finish_reason: Optional[Literal["stop", "length", "tool_calls"]] = None
|
||||
@@ -341,6 +346,9 @@ class CompletionRequest(BaseModel):
|
||||
top_k: Optional[int] = None
|
||||
min_p: Optional[float] = None
|
||||
user: Optional[str] = None
|
||||
extra_body: Optional[dict] = None
|
||||
return_token_ids: Optional[bool] = False
|
||||
prompt_token_ids: Optional[List[int]] = None
|
||||
|
||||
response_format: Optional[AnyResponseFormat] = None
|
||||
guided_json: Optional[Union[str, dict, BaseModel]] = None
|
||||
@@ -373,9 +381,13 @@ class CompletionRequest(BaseModel):
|
||||
if prompt is not None:
|
||||
req_dict["prompt"] = prompt
|
||||
|
||||
if isinstance(prompt[0], int):
|
||||
req_dict["prompt_token_ids"] = prompt
|
||||
if self.prompt_token_ids is not None or \
|
||||
(self.extra_body is not None and self.extra_body.get("prompt_token_ids") is not None):
|
||||
req_dict["prompt_token_ids"] = self.prompt_token_ids
|
||||
if "prompt" in req_dict:
|
||||
del req_dict["prompt"]
|
||||
else:
|
||||
assert len(prompt) > 0
|
||||
|
||||
guided_json_object = None
|
||||
if self.response_format is not None:
|
||||
@@ -464,6 +476,9 @@ class ChatCompletionRequest(BaseModel):
|
||||
min_p: Optional[float] = None
|
||||
user: Optional[str] = None
|
||||
metadata: Optional[dict] = None
|
||||
extra_body: Optional[dict] = None
|
||||
return_token_ids: Optional[bool] = False
|
||||
prompt_token_ids: Optional[List[int]] = None
|
||||
|
||||
response_format: Optional[AnyResponseFormat] = None
|
||||
guided_json: Optional[Union[str, dict, BaseModel]] = None
|
||||
@@ -499,12 +514,14 @@ class ChatCompletionRequest(BaseModel):
|
||||
for key, value in self.dict().items():
|
||||
if value is not None:
|
||||
req_dict[key] = value
|
||||
if isinstance(self.messages[0], int):
|
||||
req_dict["prompt_token_ids"] = self.messages
|
||||
del req_dict["messages"]
|
||||
if "raw_request" in req_dict and not req_dict["raw_request"]:
|
||||
req_dict["prompt"] = req_dict["messages"][0]["content"]
|
||||
|
||||
if self.prompt_token_ids is not None or \
|
||||
(self.extra_body is not None and self.extra_body.get("prompt_token_ids") is not None):
|
||||
req_dict["prompt_token_ids"] = self.prompt_token_ids
|
||||
if "messages" in req_dict:
|
||||
del req_dict["messages"]
|
||||
else:
|
||||
assert len(self.messages) > 0
|
||||
|
||||
guided_json_object = None
|
||||
if self.response_format is not None:
|
||||
|
@@ -144,6 +144,7 @@ class OpenAIServingChat:
|
||||
if request.metadata is not None:
|
||||
enable_thinking = request.metadata.get("enable_thinking")
|
||||
include_stop_str_in_output = request.metadata.get("include_stop_str_in_output", False)
|
||||
enable_return_token_ids = request.return_token_ids or (request.extra_body is not None and request.extra_body.get('return_token_ids', False))
|
||||
while num_choices > 0:
|
||||
try:
|
||||
raw_data = await asyncio.wait_for(dealer.read(), timeout=10)
|
||||
@@ -189,10 +190,12 @@ class OpenAIServingChat:
|
||||
content="",
|
||||
reasoning_content="",
|
||||
tool_calls=None,
|
||||
),
|
||||
prompt_token_ids=None,
|
||||
completion_token_ids=None,
|
||||
)
|
||||
if request.metadata is not None and request.metadata.get("training", False):
|
||||
choice.delta.token_ids = prompt_token_ids
|
||||
)
|
||||
if enable_return_token_ids:
|
||||
choice.delta.prompt_token_ids = list(prompt_token_ids)
|
||||
chunk = ChatCompletionStreamResponse(
|
||||
id=request_id,
|
||||
object=chunk_object_type,
|
||||
@@ -229,8 +232,9 @@ class OpenAIServingChat:
|
||||
previous_num_tokens += len(output["token_ids"])
|
||||
delta_message = DeltaMessage(
|
||||
content=delta_text,
|
||||
reasoning_content=output.get("reasoning_content"),
|
||||
token_ids=output.get("token_ids"),
|
||||
reasoning_content=output.get("reasoning_content"), \
|
||||
prompt_token_ids=None,
|
||||
completion_token_ids=None,
|
||||
tool_calls=output.get("tool_call_content", []),
|
||||
)
|
||||
|
||||
@@ -260,8 +264,8 @@ class OpenAIServingChat:
|
||||
if res.get("error_msg") is not None and "Recover" in res["error_msg"]:
|
||||
choice.finish_reason = "recover_stop"
|
||||
|
||||
if request.metadata is not None and request.metadata.get("training", False) and delta_text != "":
|
||||
choice.delta.token_ids = output["token_ids"]
|
||||
if enable_return_token_ids:
|
||||
choice.delta.completion_token_ids = list(output["token_ids"])
|
||||
if include_continuous_usage:
|
||||
chunk.usage = UsageInfo(
|
||||
prompt_tokens=num_prompt_tokens,
|
||||
@@ -318,6 +322,7 @@ class OpenAIServingChat:
|
||||
final_res = None
|
||||
enable_thinking = None
|
||||
include_stop_str_in_output = False
|
||||
enable_return_token_ids = request.return_token_ids or (request.extra_body is not None and request.extra_body.get('return_token_ids', False))
|
||||
try:
|
||||
dealer = await aiozmq.create_zmq_stream(zmq.DEALER, connect=f"ipc:///dev/shm/router_{self.pid}.ipc")
|
||||
dealer.write([b"", request_id.encode("utf-8")])
|
||||
@@ -388,7 +393,8 @@ class OpenAIServingChat:
|
||||
content=output["text"],
|
||||
reasoning_content=output.get("reasoning_content"),
|
||||
tool_calls=output.get("tool_call_content"),
|
||||
token_ids=output.get("token_ids"),
|
||||
prompt_token_ids=prompt_token_ids if enable_return_token_ids else None,
|
||||
completion_token_ids=output.get("token_ids") if enable_return_token_ids else None,
|
||||
)
|
||||
logprobs_full_res = None
|
||||
if logprob_contents:
|
||||
|
@@ -226,7 +226,7 @@ class OpenAIServingCompletion:
|
||||
model=model_name,
|
||||
choices=choices,
|
||||
)
|
||||
|
||||
enable_return_token_ids = request.return_token_ids or (request.extra_body is not None and request.extra_body.get('return_token_ids', False))
|
||||
current_waiting_time = 0
|
||||
while num_choices > 0:
|
||||
try:
|
||||
@@ -250,18 +250,17 @@ class OpenAIServingCompletion:
|
||||
raise ValueError("{}".format(res["error_msg"]))
|
||||
|
||||
if first_iteration[idx]:
|
||||
if request.suffix is not None and request.suffix.get("training", False):
|
||||
if enable_return_token_ids:
|
||||
chunk = CompletionStreamResponse(
|
||||
id=request_id,
|
||||
created=created_time,
|
||||
model=model_name,
|
||||
choices=[
|
||||
CompletionResponseStreamChoice(
|
||||
choices=[CompletionResponseStreamChoice(
|
||||
index=idx,
|
||||
text="",
|
||||
token_ids=list(prompt_batched_token_ids[idx]),
|
||||
)
|
||||
],
|
||||
prompt_token_ids=list(prompt_batched_token_ids[idx]) if enable_return_token_ids else None,
|
||||
completion_token_ids=None,
|
||||
)]
|
||||
)
|
||||
yield f"data: {chunk.model_dump_json(exclude_unset=True)}\n\n"
|
||||
first_iteration[idx] = False
|
||||
@@ -275,16 +274,15 @@ class OpenAIServingCompletion:
|
||||
|
||||
output = res["outputs"]
|
||||
|
||||
choices.append(
|
||||
CompletionResponseStreamChoice(
|
||||
choices.append(CompletionResponseStreamChoice(
|
||||
index=idx,
|
||||
text=output["text"],
|
||||
token_ids=output.get("token_ids"),
|
||||
prompt_token_ids=None,
|
||||
completion_token_ids=output.get("token_ids") if enable_return_token_ids else None,
|
||||
tool_calls=output.get("tool_call_content"),
|
||||
reasoning_content=output.get("reasoning_content"),
|
||||
arrival_time=arrival_time,
|
||||
)
|
||||
)
|
||||
arrival_time=arrival_time
|
||||
))
|
||||
if res["finished"]:
|
||||
if request.max_tokens is None or output_tokens[idx] + 1 != request.max_tokens:
|
||||
chunk.choices[0].finish_reason = "stop"
|
||||
@@ -347,6 +345,7 @@ class OpenAIServingCompletion:
|
||||
choices: List[CompletionResponseChoice] = []
|
||||
num_prompt_tokens = 0
|
||||
num_generated_tokens = 0
|
||||
enable_return_token_ids = request.return_token_ids or (request.extra_body is not None and request.extra_body.get('return_token_ids', False))
|
||||
|
||||
for idx in range(len(final_res_batch)):
|
||||
final_res = final_res_batch[idx]
|
||||
@@ -371,7 +370,9 @@ class OpenAIServingCompletion:
|
||||
token_ids=token_ids,
|
||||
index=len(choices),
|
||||
text=output_text,
|
||||
reasoning_content=output.get("reasoning_content"),
|
||||
prompt_token_ids=prompt_token_ids if enable_return_token_ids else None,
|
||||
completion_token_ids=output["token_ids"] if enable_return_token_ids else None,
|
||||
reasoning_content=output.get('reasoning_content'),
|
||||
tool_calls=output.get("tool_call_content"),
|
||||
logprobs=None,
|
||||
finish_reason=None,
|
||||
|
@@ -99,8 +99,9 @@ class ErnieProcessor(BaseDataProcessor):
|
||||
|
||||
if request.prompt_token_ids is None or len(request.prompt_token_ids) == 0:
|
||||
if request.prompt is None and request.messages is None:
|
||||
raise ValueError(f"The request should have `input_ids`, `text` or `messages`: {request}.")
|
||||
if request.prompt is not None or not request.raw_request:
|
||||
raise ValueError(
|
||||
f"The request should have `prompt_token_ids`, `prompt` or `messages`: {request}.")
|
||||
if request.prompt is not None:
|
||||
prompt = request.prompt if request.prompt is not None else request.messages[0]
|
||||
prompt = prompt[0] if isinstance(prompt, list) else prompt
|
||||
tokens = self.tokenizer.tokenize(prompt)
|
||||
|
@@ -231,7 +231,7 @@ class DataProcessor(BaseDataProcessor):
|
||||
|
||||
if request.prompt_token_ids is None or len(request.prompt_token_ids) == 0:
|
||||
if request.prompt is not None:
|
||||
request.prompt_token_ids = self.text2ids(request.prompt, max_model_len, request.raw_request)
|
||||
request.prompt_token_ids = self.text2ids(request.prompt, max_model_len)
|
||||
elif request.messages is not None:
|
||||
if self.tokenizer.chat_template is None:
|
||||
raise ValueError("This model does not support chat_template.")
|
||||
@@ -266,7 +266,7 @@ class DataProcessor(BaseDataProcessor):
|
||||
if not request.get("eos_token_ids"):
|
||||
request["eos_token_ids"] = self.eos_token_ids
|
||||
|
||||
# 处理stop_sequences
|
||||
# processing stop_sequences
|
||||
stop_sequences = request.get("stop", [])
|
||||
if stop_sequences:
|
||||
stop_seqs, stop_seqs_len = self.update_stop_seq(stop_sequences)
|
||||
@@ -274,12 +274,11 @@ class DataProcessor(BaseDataProcessor):
|
||||
request["stop_seqs_len"] = stop_seqs_len
|
||||
|
||||
data_processor_logger.info(f"Processing request {request}")
|
||||
# 处理prompt_token_ids
|
||||
if not request.get("prompt_token_ids"):
|
||||
if "prompt" in request:
|
||||
raw_request = request.get("raw_request", True)
|
||||
request["prompt_token_ids"] = self.text2ids(request["prompt"], max_model_len, raw_request).tolist()
|
||||
elif "messages" in request:
|
||||
# processing prompt_token_ids
|
||||
if not request.get('prompt_token_ids'):
|
||||
if 'prompt' in request:
|
||||
request['prompt_token_ids'] = self.text2ids(request['prompt'], max_model_len).tolist()
|
||||
elif 'messages' in request:
|
||||
if self.tokenizer.chat_template is None:
|
||||
raise ValueError("This model does not support chat_template.")
|
||||
request["prompt_token_ids"] = self.messages2ids(request)
|
||||
@@ -416,7 +415,7 @@ class DataProcessor(BaseDataProcessor):
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
def text2ids(self, text, max_model_len, raw_request=True):
|
||||
def text2ids(self, text, max_model_len):
|
||||
"""
|
||||
text to token ids
|
||||
|
||||
|
@@ -342,6 +342,9 @@ def test_streaming(openai_client, capsys):
|
||||
output.append(chunk.choices[0].text)
|
||||
assert len(output) > 0
|
||||
|
||||
# ==========================
|
||||
# OpenAI Client additional chat/completions test
|
||||
# ==========================
|
||||
|
||||
def test_non_streaming_with_stop_str(openai_client):
|
||||
"""
|
||||
@@ -405,3 +408,256 @@ def test_streaming_with_stop_str(openai_client):
|
||||
for chunk in response:
|
||||
last_token = chunk.choices[0].delta.content
|
||||
assert last_token != "</s>"
|
||||
|
||||
|
||||
def test_non_streaming_chat_with_return_token_ids(openai_client, capsys):
|
||||
"""
|
||||
Test return_token_ids option in non-streaming chat functionality with the local service
|
||||
"""
|
||||
# enable return_token_ids
|
||||
response = openai_client.chat.completions.create(
|
||||
model="default",
|
||||
messages=[{"role": "user", "content": "Hello, how are you?"}],
|
||||
temperature=1,
|
||||
max_tokens=5,
|
||||
extra_body={"return_token_ids": True},
|
||||
stream=False,
|
||||
)
|
||||
assert hasattr(response, 'choices')
|
||||
assert len(response.choices) > 0
|
||||
assert hasattr(response.choices[0], 'message')
|
||||
assert hasattr(response.choices[0].message, 'prompt_token_ids')
|
||||
assert isinstance(response.choices[0].message.prompt_token_ids, list)
|
||||
assert hasattr(response.choices[0].message, 'completion_token_ids')
|
||||
assert isinstance(response.choices[0].message.completion_token_ids, list)
|
||||
|
||||
# disable return_token_ids
|
||||
response = openai_client.chat.completions.create(
|
||||
model="default",
|
||||
messages=[{"role": "user", "content": "Hello, how are you?"}],
|
||||
temperature=1,
|
||||
max_tokens=5,
|
||||
extra_body={"return_token_ids": False},
|
||||
stream=False,
|
||||
)
|
||||
assert hasattr(response, 'choices')
|
||||
assert len(response.choices) > 0
|
||||
assert hasattr(response.choices[0], 'message')
|
||||
assert hasattr(response.choices[0].message, 'prompt_token_ids')
|
||||
assert response.choices[0].message.prompt_token_ids is None
|
||||
assert hasattr(response.choices[0].message, 'completion_token_ids')
|
||||
assert response.choices[0].message.completion_token_ids is None
|
||||
|
||||
|
||||
def test_streaming_chat_with_return_token_ids(openai_client, capsys):
|
||||
"""
|
||||
Test return_token_ids option in streaming chat functionality with the local service
|
||||
"""
|
||||
# enable return_token_ids
|
||||
response = openai_client.chat.completions.create(
|
||||
model="default",
|
||||
messages=[{"role": "user", "content": "Hello, how are you?"}],
|
||||
temperature=1,
|
||||
max_tokens=5,
|
||||
extra_body={"return_token_ids": True},
|
||||
stream=True,
|
||||
)
|
||||
is_first_chunk = True
|
||||
for chunk in response:
|
||||
assert hasattr(chunk, 'choices')
|
||||
assert len(chunk.choices) > 0
|
||||
assert hasattr(chunk.choices[0], 'delta')
|
||||
assert hasattr(chunk.choices[0].delta, 'prompt_token_ids')
|
||||
assert hasattr(chunk.choices[0].delta, 'completion_token_ids')
|
||||
if is_first_chunk:
|
||||
is_first_chunk = False
|
||||
assert isinstance(chunk.choices[0].delta.prompt_token_ids, list)
|
||||
assert chunk.choices[0].delta.completion_token_ids is None
|
||||
else:
|
||||
assert chunk.choices[0].delta.prompt_token_ids is None
|
||||
assert isinstance(chunk.choices[0].delta.completion_token_ids, list)
|
||||
|
||||
# disable return_token_ids
|
||||
response = openai_client.chat.completions.create(
|
||||
model="default",
|
||||
messages=[{"role": "user", "content": "Hello, how are you?"}],
|
||||
temperature=1,
|
||||
max_tokens=5,
|
||||
extra_body={"return_token_ids": False},
|
||||
stream=True,
|
||||
)
|
||||
for chunk in response:
|
||||
assert hasattr(chunk, 'choices')
|
||||
assert len(chunk.choices) > 0
|
||||
assert hasattr(chunk.choices[0], 'delta')
|
||||
assert hasattr(chunk.choices[0].delta, 'prompt_token_ids')
|
||||
assert chunk.choices[0].delta.prompt_token_ids is None
|
||||
assert hasattr(chunk.choices[0].delta, 'completion_token_ids')
|
||||
assert chunk.choices[0].delta.completion_token_ids is None
|
||||
|
||||
|
||||
def test_non_streaming_completion_with_return_token_ids(openai_client, capsys):
|
||||
"""
|
||||
Test return_token_ids option in non-streaming completion functionality with the local service
|
||||
"""
|
||||
# enable return_token_ids
|
||||
response = openai_client.completions.create(
|
||||
model="default",
|
||||
prompt="Hello, how are you?",
|
||||
temperature=1,
|
||||
max_tokens=5,
|
||||
extra_body={"return_token_ids": True},
|
||||
stream=False,
|
||||
)
|
||||
assert hasattr(response, 'choices')
|
||||
assert len(response.choices) > 0
|
||||
assert hasattr(response.choices[0], 'prompt_token_ids')
|
||||
assert isinstance(response.choices[0].prompt_token_ids, list)
|
||||
assert hasattr(response.choices[0], 'completion_token_ids')
|
||||
assert isinstance(response.choices[0].completion_token_ids, list)
|
||||
|
||||
# disable return_token_ids
|
||||
response = openai_client.completions.create(
|
||||
model="default",
|
||||
prompt="Hello, how are you?",
|
||||
temperature=1,
|
||||
max_tokens=5,
|
||||
extra_body={"return_token_ids": False},
|
||||
stream=False,
|
||||
)
|
||||
assert hasattr(response, 'choices')
|
||||
assert len(response.choices) > 0
|
||||
assert hasattr(response.choices[0], 'prompt_token_ids')
|
||||
assert response.choices[0].prompt_token_ids is None
|
||||
assert hasattr(response.choices[0], 'completion_token_ids')
|
||||
assert response.choices[0].completion_token_ids is None
|
||||
|
||||
|
||||
def test_streaming_completion_with_return_token_ids(openai_client, capsys):
|
||||
"""
|
||||
Test return_token_ids option in streaming completion functionality with the local service
|
||||
"""
|
||||
# enable return_token_ids
|
||||
response = openai_client.completions.create(
|
||||
model="default",
|
||||
prompt="Hello, how are you?",
|
||||
temperature=1,
|
||||
max_tokens=5,
|
||||
extra_body={"return_token_ids": True},
|
||||
stream=True,
|
||||
)
|
||||
is_first_chunk = True
|
||||
for chunk in response:
|
||||
assert hasattr(chunk, 'choices')
|
||||
assert len(chunk.choices) > 0
|
||||
assert hasattr(chunk.choices[0], 'prompt_token_ids')
|
||||
assert hasattr(chunk.choices[0], 'completion_token_ids')
|
||||
if is_first_chunk:
|
||||
is_first_chunk = False
|
||||
assert isinstance(chunk.choices[0].prompt_token_ids, list)
|
||||
assert chunk.choices[0].completion_token_ids is None
|
||||
else:
|
||||
assert chunk.choices[0].prompt_token_ids is None
|
||||
assert isinstance(chunk.choices[0].completion_token_ids, list)
|
||||
|
||||
# disable return_token_ids
|
||||
response = openai_client.completions.create(
|
||||
model="default",
|
||||
prompt="Hello, how are you?",
|
||||
temperature=1,
|
||||
max_tokens=5,
|
||||
extra_body={"return_token_ids": False},
|
||||
stream=True,
|
||||
)
|
||||
for chunk in response:
|
||||
assert hasattr(chunk, 'choices')
|
||||
assert len(chunk.choices) > 0
|
||||
assert hasattr(chunk.choices[0], 'prompt_token_ids')
|
||||
assert chunk.choices[0].prompt_token_ids is None
|
||||
assert hasattr(chunk.choices[0], 'completion_token_ids')
|
||||
assert chunk.choices[0].completion_token_ids is None
|
||||
|
||||
|
||||
def test_non_streaming_chat_with_prompt_token_ids(openai_client, capsys):
|
||||
"""
|
||||
Test prompt_token_ids option in non-streaming chat functionality with the local service
|
||||
"""
|
||||
response = openai_client.chat.completions.create(
|
||||
model="default",
|
||||
messages=[],
|
||||
temperature=1,
|
||||
max_tokens=5,
|
||||
extra_body={"prompt_token_ids": [5209,626,274,45954,1071,3265,3934,1869,93937]},
|
||||
stream=False,
|
||||
)
|
||||
assert hasattr(response, 'choices')
|
||||
assert len(response.choices) > 0
|
||||
assert hasattr(response, 'usage')
|
||||
assert hasattr(response.usage, 'prompt_tokens')
|
||||
assert response.usage.prompt_tokens == 9
|
||||
|
||||
|
||||
def test_streaming_chat_with_prompt_token_ids(openai_client, capsys):
|
||||
"""
|
||||
Test prompt_token_ids option in streaming chat functionality with the local service
|
||||
"""
|
||||
response = openai_client.chat.completions.create(
|
||||
model="default",
|
||||
messages=[],
|
||||
temperature=1,
|
||||
max_tokens=5,
|
||||
extra_body={"prompt_token_ids": [5209,626,274,45954,1071,3265,3934,1869,93937]},
|
||||
stream=True,
|
||||
stream_options={"include_usage": True},
|
||||
)
|
||||
for chunk in response:
|
||||
assert hasattr(chunk, 'choices')
|
||||
assert hasattr(chunk, 'usage')
|
||||
if len(chunk.choices) > 0:
|
||||
assert chunk.usage is None
|
||||
else:
|
||||
assert hasattr(chunk.usage, 'prompt_tokens')
|
||||
assert chunk.usage.prompt_tokens == 9
|
||||
|
||||
|
||||
def test_non_streaming_completion_with_prompt_token_ids(openai_client, capsys):
|
||||
"""
|
||||
Test prompt_token_ids option in streaming completion functionality with the local service
|
||||
"""
|
||||
response = openai_client.completions.create(
|
||||
model="default",
|
||||
prompt="",
|
||||
temperature=1,
|
||||
max_tokens=5,
|
||||
extra_body={"prompt_token_ids": [5209,626,274,45954,1071,3265,3934,1869,93937]},
|
||||
stream=False,
|
||||
)
|
||||
assert hasattr(response, 'choices')
|
||||
assert len(response.choices) > 0
|
||||
assert hasattr(response, 'usage')
|
||||
assert hasattr(response.usage, 'prompt_tokens')
|
||||
assert response.usage.prompt_tokens == 9
|
||||
|
||||
|
||||
def test_streaming_completion_with_prompt_token_ids(openai_client, capsys):
|
||||
"""
|
||||
Test prompt_token_ids option in non-streaming completion functionality with the local service
|
||||
"""
|
||||
response = openai_client.completions.create(
|
||||
model="default",
|
||||
prompt="",
|
||||
temperature=1,
|
||||
max_tokens=5,
|
||||
extra_body={"prompt_token_ids": [5209,626,274,45954,1071,3265,3934,1869,93937]},
|
||||
stream=True,
|
||||
stream_options={"include_usage": True},
|
||||
)
|
||||
for chunk in response:
|
||||
assert hasattr(chunk, 'choices')
|
||||
assert hasattr(chunk, 'usage')
|
||||
if len(chunk.choices) > 0:
|
||||
assert chunk.usage is None
|
||||
else:
|
||||
assert hasattr(chunk.usage, 'prompt_tokens')
|
||||
assert chunk.usage.prompt_tokens == 9
|
||||
|
||||
|
@@ -323,3 +323,174 @@ def test_streaming_chat(openai_client, capsys):
|
||||
if hasattr(chunk.choices[0], "delta") and hasattr(chunk.choices[0].delta, "content"):
|
||||
output.append(chunk.choices[0].delta.content)
|
||||
assert len(output) > 2
|
||||
|
||||
|
||||
|
||||
# ==========================
|
||||
# OpenAI Client additional chat/completions test
|
||||
# ==========================
|
||||
|
||||
def test_non_streaming_chat_with_return_token_ids(openai_client, capsys):
|
||||
"""
|
||||
Test return_token_ids option in non-streaming chat functionality with the local service
|
||||
"""
|
||||
# 设定 return_token_ids
|
||||
response = openai_client.chat.completions.create(
|
||||
model="default",
|
||||
messages=[
|
||||
{
|
||||
"role": "system",
|
||||
"content": "You are a helpful AI assistant."
|
||||
}, # system不是必需,可选
|
||||
{
|
||||
"role":
|
||||
"user",
|
||||
"content": [{
|
||||
"type": "image_url",
|
||||
"image_url": {
|
||||
"url":
|
||||
"https://paddlenlp.bj.bcebos.com/datasets/paddlemix/demo_images/example2.jpg",
|
||||
"detail": "high"
|
||||
}
|
||||
}, {
|
||||
"type": "text",
|
||||
"text": "请描述图片内容"
|
||||
}]
|
||||
}
|
||||
],
|
||||
temperature=1,
|
||||
max_tokens=53,
|
||||
extra_body={"return_token_ids": True},
|
||||
stream=False,
|
||||
)
|
||||
assert hasattr(response, 'choices')
|
||||
assert len(response.choices) > 0
|
||||
assert hasattr(response.choices[0], 'message')
|
||||
assert hasattr(response.choices[0].message, 'prompt_token_ids')
|
||||
assert isinstance(response.choices[0].message.prompt_token_ids, list)
|
||||
assert hasattr(response.choices[0].message, 'completion_token_ids')
|
||||
assert isinstance(response.choices[0].message.completion_token_ids, list)
|
||||
|
||||
# 不设定 return_token_ids
|
||||
response = openai_client.chat.completions.create(
|
||||
model="default",
|
||||
messages=[
|
||||
{
|
||||
"role": "system",
|
||||
"content": "You are a helpful AI assistant."
|
||||
}, # system不是必需,可选
|
||||
{
|
||||
"role":
|
||||
"user",
|
||||
"content": [{
|
||||
"type": "image_url",
|
||||
"image_url": {
|
||||
"url":
|
||||
"https://paddlenlp.bj.bcebos.com/datasets/paddlemix/demo_images/example2.jpg",
|
||||
"detail": "high"
|
||||
}
|
||||
}, {
|
||||
"type": "text",
|
||||
"text": "请描述图片内容"
|
||||
}]
|
||||
}
|
||||
],
|
||||
temperature=1,
|
||||
max_tokens=53,
|
||||
extra_body={"return_token_ids": False},
|
||||
stream=False,
|
||||
)
|
||||
assert hasattr(response, 'choices')
|
||||
assert len(response.choices) > 0
|
||||
assert hasattr(response.choices[0], 'message')
|
||||
assert hasattr(response.choices[0].message, 'prompt_token_ids')
|
||||
assert response.choices[0].message.prompt_token_ids is None
|
||||
assert hasattr(response.choices[0].message, 'completion_token_ids')
|
||||
assert response.choices[0].message.completion_token_ids is None
|
||||
|
||||
|
||||
def test_streaming_chat_with_return_token_ids(openai_client, capsys):
|
||||
"""
|
||||
Test return_token_ids option in streaming chat functionality with the local service
|
||||
"""
|
||||
# enable return_token_ids
|
||||
response = openai_client.chat.completions.create(
|
||||
model="default",
|
||||
messages=[
|
||||
{
|
||||
"role": "system",
|
||||
"content": "You are a helpful AI assistant."
|
||||
}, # system不是必需,可选
|
||||
{
|
||||
"role":
|
||||
"user",
|
||||
"content": [{
|
||||
"type": "image_url",
|
||||
"image_url": {
|
||||
"url":
|
||||
"https://paddlenlp.bj.bcebos.com/datasets/paddlemix/demo_images/example2.jpg",
|
||||
"detail": "high"
|
||||
}
|
||||
}, {
|
||||
"type": "text",
|
||||
"text": "请描述图片内容"
|
||||
}]
|
||||
}
|
||||
],
|
||||
temperature=1,
|
||||
max_tokens=53,
|
||||
extra_body={"return_token_ids": True},
|
||||
stream=True,
|
||||
)
|
||||
is_first_chunk = True
|
||||
for chunk in response:
|
||||
assert hasattr(chunk, 'choices')
|
||||
assert len(chunk.choices) > 0
|
||||
assert hasattr(chunk.choices[0], 'delta')
|
||||
assert hasattr(chunk.choices[0].delta, 'prompt_token_ids')
|
||||
assert hasattr(chunk.choices[0].delta, 'completion_token_ids')
|
||||
if is_first_chunk:
|
||||
is_first_chunk = False
|
||||
assert isinstance(chunk.choices[0].delta.prompt_token_ids, list)
|
||||
assert chunk.choices[0].delta.completion_token_ids is None
|
||||
else:
|
||||
assert chunk.choices[0].delta.prompt_token_ids is None
|
||||
assert isinstance(chunk.choices[0].delta.completion_token_ids, list)
|
||||
|
||||
# disable return_token_ids
|
||||
response = openai_client.chat.completions.create(
|
||||
model="default",
|
||||
messages=[
|
||||
{
|
||||
"role": "system",
|
||||
"content": "You are a helpful AI assistant."
|
||||
}, # system不是必需,可选
|
||||
{
|
||||
"role":
|
||||
"user",
|
||||
"content": [{
|
||||
"type": "image_url",
|
||||
"image_url": {
|
||||
"url":
|
||||
"https://paddlenlp.bj.bcebos.com/datasets/paddlemix/demo_images/example2.jpg",
|
||||
"detail": "high"
|
||||
}
|
||||
}, {
|
||||
"type": "text",
|
||||
"text": "请描述图片内容"
|
||||
}]
|
||||
}
|
||||
],
|
||||
temperature=1,
|
||||
max_tokens=53,
|
||||
extra_body={"return_token_ids": False},
|
||||
stream=True,
|
||||
)
|
||||
for chunk in response:
|
||||
assert hasattr(chunk, 'choices')
|
||||
assert len(chunk.choices) > 0
|
||||
assert hasattr(chunk.choices[0], 'delta')
|
||||
assert hasattr(chunk.choices[0].delta, 'prompt_token_ids')
|
||||
assert chunk.choices[0].delta.prompt_token_ids is None
|
||||
assert hasattr(chunk.choices[0].delta, 'completion_token_ids')
|
||||
assert chunk.choices[0].delta.completion_token_ids is None
|
||||
|
Reference in New Issue
Block a user