mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-04 16:22:57 +08:00
[Feature] Add return_token_ids, prompt_token_ids, and delete training, raw_request in request body (#2940)
* [feat] add return_token_ids, prompt_token_ids, delete raw_request in request body * [fix] return_token_ids not working in curl request * [test] improve some test cases of return_token_ids and prompt_token_ids * [fix] the server responds ok even if request.messages is an empty list
This commit is contained in:
@@ -46,7 +46,6 @@ class Request:
|
|||||||
preprocess_end_time: Optional[float] = None,
|
preprocess_end_time: Optional[float] = None,
|
||||||
multimodal_inputs: Optional[dict] = None,
|
multimodal_inputs: Optional[dict] = None,
|
||||||
multimodal_data: Optional[dict] = None,
|
multimodal_data: Optional[dict] = None,
|
||||||
raw_request: bool = True,
|
|
||||||
disaggregate_info: Optional[dict] = None,
|
disaggregate_info: Optional[dict] = None,
|
||||||
draft_token_ids: Optional[list[int]] = None,
|
draft_token_ids: Optional[list[int]] = None,
|
||||||
guided_json: Optional[Any] = None,
|
guided_json: Optional[Any] = None,
|
||||||
@@ -74,7 +73,6 @@ class Request:
|
|||||||
self.arrival_time = arrival_time
|
self.arrival_time = arrival_time
|
||||||
self.preprocess_start_time = preprocess_start_time
|
self.preprocess_start_time = preprocess_start_time
|
||||||
self.preprocess_end_time = preprocess_end_time
|
self.preprocess_end_time = preprocess_end_time
|
||||||
self.raw_request = raw_request
|
|
||||||
self.disaggregate_info = disaggregate_info
|
self.disaggregate_info = disaggregate_info
|
||||||
|
|
||||||
# speculative method in disaggregate-mode
|
# speculative method in disaggregate-mode
|
||||||
@@ -117,7 +115,6 @@ class Request:
|
|||||||
multimodal_data=d.get("multimodal_data"),
|
multimodal_data=d.get("multimodal_data"),
|
||||||
disaggregate_info=d.get("disaggregate_info"),
|
disaggregate_info=d.get("disaggregate_info"),
|
||||||
draft_token_ids=d.get("draft_token_ids"),
|
draft_token_ids=d.get("draft_token_ids"),
|
||||||
raw_request=d.get("raw_request", True),
|
|
||||||
guided_json=d.get("guided_json", None),
|
guided_json=d.get("guided_json", None),
|
||||||
guided_regex=d.get("guided_regex", None),
|
guided_regex=d.get("guided_regex", None),
|
||||||
guided_choice=d.get("guided_choice", None),
|
guided_choice=d.get("guided_choice", None),
|
||||||
@@ -145,7 +142,6 @@ class Request:
|
|||||||
"preprocess_end_time": self.preprocess_end_time,
|
"preprocess_end_time": self.preprocess_end_time,
|
||||||
"multimodal_inputs": self.multimodal_inputs,
|
"multimodal_inputs": self.multimodal_inputs,
|
||||||
"multimodal_data": self.multimodal_data,
|
"multimodal_data": self.multimodal_data,
|
||||||
"raw_request": self.raw_request,
|
|
||||||
"disaggregate_info": self.disaggregate_info,
|
"disaggregate_info": self.disaggregate_info,
|
||||||
"draft_token_ids": self.draft_token_ids,
|
"draft_token_ids": self.draft_token_ids,
|
||||||
"enable_thinking": self.enable_thinking,
|
"enable_thinking": self.enable_thinking,
|
||||||
|
@@ -124,6 +124,8 @@ class ChatMessage(BaseModel):
|
|||||||
content: str
|
content: str
|
||||||
reasoning_content: Optional[str] = None
|
reasoning_content: Optional[str] = None
|
||||||
tool_calls: Optional[List[DeltaToolCall | ToolCall]] = None
|
tool_calls: Optional[List[DeltaToolCall | ToolCall]] = None
|
||||||
|
prompt_token_ids: Optional[List[int]] = None
|
||||||
|
completion_token_ids: Optional[List[int]] = None
|
||||||
|
|
||||||
|
|
||||||
class ChatCompletionResponseChoice(BaseModel):
|
class ChatCompletionResponseChoice(BaseModel):
|
||||||
@@ -177,7 +179,8 @@ class DeltaMessage(BaseModel):
|
|||||||
|
|
||||||
role: Optional[str] = None
|
role: Optional[str] = None
|
||||||
content: Optional[str] = None
|
content: Optional[str] = None
|
||||||
token_ids: Optional[List[int]] = None
|
prompt_token_ids: Optional[List[int]] = None
|
||||||
|
completion_token_ids: Optional[List[int]] = None
|
||||||
reasoning_content: Optional[str] = None
|
reasoning_content: Optional[str] = None
|
||||||
tool_calls: Optional[List[DeltaToolCall | ToolCall]] = None
|
tool_calls: Optional[List[DeltaToolCall | ToolCall]] = None
|
||||||
|
|
||||||
@@ -214,7 +217,8 @@ class CompletionResponseChoice(BaseModel):
|
|||||||
|
|
||||||
index: int
|
index: int
|
||||||
text: str
|
text: str
|
||||||
token_ids: Optional[List[int]] = None
|
prompt_token_ids: Optional[List[int]] = None
|
||||||
|
completion_token_ids: Optional[List[int]] = None
|
||||||
arrival_time: Optional[float] = None
|
arrival_time: Optional[float] = None
|
||||||
logprobs: Optional[int] = None
|
logprobs: Optional[int] = None
|
||||||
reasoning_content: Optional[str] = None
|
reasoning_content: Optional[str] = None
|
||||||
@@ -243,7 +247,8 @@ class CompletionResponseStreamChoice(BaseModel):
|
|||||||
index: int
|
index: int
|
||||||
text: str
|
text: str
|
||||||
arrival_time: float = None
|
arrival_time: float = None
|
||||||
token_ids: Optional[List[int]] = None
|
prompt_token_ids: Optional[List[int]] = None
|
||||||
|
completion_token_ids: Optional[List[int]] = None
|
||||||
logprobs: Optional[float] = None
|
logprobs: Optional[float] = None
|
||||||
reasoning_content: Optional[str] = None
|
reasoning_content: Optional[str] = None
|
||||||
finish_reason: Optional[Literal["stop", "length", "tool_calls"]] = None
|
finish_reason: Optional[Literal["stop", "length", "tool_calls"]] = None
|
||||||
@@ -341,6 +346,9 @@ class CompletionRequest(BaseModel):
|
|||||||
top_k: Optional[int] = None
|
top_k: Optional[int] = None
|
||||||
min_p: Optional[float] = None
|
min_p: Optional[float] = None
|
||||||
user: Optional[str] = None
|
user: Optional[str] = None
|
||||||
|
extra_body: Optional[dict] = None
|
||||||
|
return_token_ids: Optional[bool] = False
|
||||||
|
prompt_token_ids: Optional[List[int]] = None
|
||||||
|
|
||||||
response_format: Optional[AnyResponseFormat] = None
|
response_format: Optional[AnyResponseFormat] = None
|
||||||
guided_json: Optional[Union[str, dict, BaseModel]] = None
|
guided_json: Optional[Union[str, dict, BaseModel]] = None
|
||||||
@@ -373,9 +381,13 @@ class CompletionRequest(BaseModel):
|
|||||||
if prompt is not None:
|
if prompt is not None:
|
||||||
req_dict["prompt"] = prompt
|
req_dict["prompt"] = prompt
|
||||||
|
|
||||||
if isinstance(prompt[0], int):
|
if self.prompt_token_ids is not None or \
|
||||||
req_dict["prompt_token_ids"] = prompt
|
(self.extra_body is not None and self.extra_body.get("prompt_token_ids") is not None):
|
||||||
del req_dict["prompt"]
|
req_dict["prompt_token_ids"] = self.prompt_token_ids
|
||||||
|
if "prompt" in req_dict:
|
||||||
|
del req_dict["prompt"]
|
||||||
|
else:
|
||||||
|
assert len(prompt) > 0
|
||||||
|
|
||||||
guided_json_object = None
|
guided_json_object = None
|
||||||
if self.response_format is not None:
|
if self.response_format is not None:
|
||||||
@@ -464,6 +476,9 @@ class ChatCompletionRequest(BaseModel):
|
|||||||
min_p: Optional[float] = None
|
min_p: Optional[float] = None
|
||||||
user: Optional[str] = None
|
user: Optional[str] = None
|
||||||
metadata: Optional[dict] = None
|
metadata: Optional[dict] = None
|
||||||
|
extra_body: Optional[dict] = None
|
||||||
|
return_token_ids: Optional[bool] = False
|
||||||
|
prompt_token_ids: Optional[List[int]] = None
|
||||||
|
|
||||||
response_format: Optional[AnyResponseFormat] = None
|
response_format: Optional[AnyResponseFormat] = None
|
||||||
guided_json: Optional[Union[str, dict, BaseModel]] = None
|
guided_json: Optional[Union[str, dict, BaseModel]] = None
|
||||||
@@ -499,12 +514,14 @@ class ChatCompletionRequest(BaseModel):
|
|||||||
for key, value in self.dict().items():
|
for key, value in self.dict().items():
|
||||||
if value is not None:
|
if value is not None:
|
||||||
req_dict[key] = value
|
req_dict[key] = value
|
||||||
if isinstance(self.messages[0], int):
|
|
||||||
req_dict["prompt_token_ids"] = self.messages
|
if self.prompt_token_ids is not None or \
|
||||||
del req_dict["messages"]
|
(self.extra_body is not None and self.extra_body.get("prompt_token_ids") is not None):
|
||||||
if "raw_request" in req_dict and not req_dict["raw_request"]:
|
req_dict["prompt_token_ids"] = self.prompt_token_ids
|
||||||
req_dict["prompt"] = req_dict["messages"][0]["content"]
|
if "messages" in req_dict:
|
||||||
del req_dict["messages"]
|
del req_dict["messages"]
|
||||||
|
else:
|
||||||
|
assert len(self.messages) > 0
|
||||||
|
|
||||||
guided_json_object = None
|
guided_json_object = None
|
||||||
if self.response_format is not None:
|
if self.response_format is not None:
|
||||||
|
@@ -144,6 +144,7 @@ class OpenAIServingChat:
|
|||||||
if request.metadata is not None:
|
if request.metadata is not None:
|
||||||
enable_thinking = request.metadata.get("enable_thinking")
|
enable_thinking = request.metadata.get("enable_thinking")
|
||||||
include_stop_str_in_output = request.metadata.get("include_stop_str_in_output", False)
|
include_stop_str_in_output = request.metadata.get("include_stop_str_in_output", False)
|
||||||
|
enable_return_token_ids = request.return_token_ids or (request.extra_body is not None and request.extra_body.get('return_token_ids', False))
|
||||||
while num_choices > 0:
|
while num_choices > 0:
|
||||||
try:
|
try:
|
||||||
raw_data = await asyncio.wait_for(dealer.read(), timeout=10)
|
raw_data = await asyncio.wait_for(dealer.read(), timeout=10)
|
||||||
@@ -189,10 +190,12 @@ class OpenAIServingChat:
|
|||||||
content="",
|
content="",
|
||||||
reasoning_content="",
|
reasoning_content="",
|
||||||
tool_calls=None,
|
tool_calls=None,
|
||||||
),
|
prompt_token_ids=None,
|
||||||
|
completion_token_ids=None,
|
||||||
|
)
|
||||||
)
|
)
|
||||||
if request.metadata is not None and request.metadata.get("training", False):
|
if enable_return_token_ids:
|
||||||
choice.delta.token_ids = prompt_token_ids
|
choice.delta.prompt_token_ids = list(prompt_token_ids)
|
||||||
chunk = ChatCompletionStreamResponse(
|
chunk = ChatCompletionStreamResponse(
|
||||||
id=request_id,
|
id=request_id,
|
||||||
object=chunk_object_type,
|
object=chunk_object_type,
|
||||||
@@ -229,8 +232,9 @@ class OpenAIServingChat:
|
|||||||
previous_num_tokens += len(output["token_ids"])
|
previous_num_tokens += len(output["token_ids"])
|
||||||
delta_message = DeltaMessage(
|
delta_message = DeltaMessage(
|
||||||
content=delta_text,
|
content=delta_text,
|
||||||
reasoning_content=output.get("reasoning_content"),
|
reasoning_content=output.get("reasoning_content"), \
|
||||||
token_ids=output.get("token_ids"),
|
prompt_token_ids=None,
|
||||||
|
completion_token_ids=None,
|
||||||
tool_calls=output.get("tool_call_content", []),
|
tool_calls=output.get("tool_call_content", []),
|
||||||
)
|
)
|
||||||
|
|
||||||
@@ -260,8 +264,8 @@ class OpenAIServingChat:
|
|||||||
if res.get("error_msg") is not None and "Recover" in res["error_msg"]:
|
if res.get("error_msg") is not None and "Recover" in res["error_msg"]:
|
||||||
choice.finish_reason = "recover_stop"
|
choice.finish_reason = "recover_stop"
|
||||||
|
|
||||||
if request.metadata is not None and request.metadata.get("training", False) and delta_text != "":
|
if enable_return_token_ids:
|
||||||
choice.delta.token_ids = output["token_ids"]
|
choice.delta.completion_token_ids = list(output["token_ids"])
|
||||||
if include_continuous_usage:
|
if include_continuous_usage:
|
||||||
chunk.usage = UsageInfo(
|
chunk.usage = UsageInfo(
|
||||||
prompt_tokens=num_prompt_tokens,
|
prompt_tokens=num_prompt_tokens,
|
||||||
@@ -318,6 +322,7 @@ class OpenAIServingChat:
|
|||||||
final_res = None
|
final_res = None
|
||||||
enable_thinking = None
|
enable_thinking = None
|
||||||
include_stop_str_in_output = False
|
include_stop_str_in_output = False
|
||||||
|
enable_return_token_ids = request.return_token_ids or (request.extra_body is not None and request.extra_body.get('return_token_ids', False))
|
||||||
try:
|
try:
|
||||||
dealer = await aiozmq.create_zmq_stream(zmq.DEALER, connect=f"ipc:///dev/shm/router_{self.pid}.ipc")
|
dealer = await aiozmq.create_zmq_stream(zmq.DEALER, connect=f"ipc:///dev/shm/router_{self.pid}.ipc")
|
||||||
dealer.write([b"", request_id.encode("utf-8")])
|
dealer.write([b"", request_id.encode("utf-8")])
|
||||||
@@ -388,7 +393,8 @@ class OpenAIServingChat:
|
|||||||
content=output["text"],
|
content=output["text"],
|
||||||
reasoning_content=output.get("reasoning_content"),
|
reasoning_content=output.get("reasoning_content"),
|
||||||
tool_calls=output.get("tool_call_content"),
|
tool_calls=output.get("tool_call_content"),
|
||||||
token_ids=output.get("token_ids"),
|
prompt_token_ids=prompt_token_ids if enable_return_token_ids else None,
|
||||||
|
completion_token_ids=output.get("token_ids") if enable_return_token_ids else None,
|
||||||
)
|
)
|
||||||
logprobs_full_res = None
|
logprobs_full_res = None
|
||||||
if logprob_contents:
|
if logprob_contents:
|
||||||
|
@@ -226,7 +226,7 @@ class OpenAIServingCompletion:
|
|||||||
model=model_name,
|
model=model_name,
|
||||||
choices=choices,
|
choices=choices,
|
||||||
)
|
)
|
||||||
|
enable_return_token_ids = request.return_token_ids or (request.extra_body is not None and request.extra_body.get('return_token_ids', False))
|
||||||
current_waiting_time = 0
|
current_waiting_time = 0
|
||||||
while num_choices > 0:
|
while num_choices > 0:
|
||||||
try:
|
try:
|
||||||
@@ -250,18 +250,17 @@ class OpenAIServingCompletion:
|
|||||||
raise ValueError("{}".format(res["error_msg"]))
|
raise ValueError("{}".format(res["error_msg"]))
|
||||||
|
|
||||||
if first_iteration[idx]:
|
if first_iteration[idx]:
|
||||||
if request.suffix is not None and request.suffix.get("training", False):
|
if enable_return_token_ids:
|
||||||
chunk = CompletionStreamResponse(
|
chunk = CompletionStreamResponse(
|
||||||
id=request_id,
|
id=request_id,
|
||||||
created=created_time,
|
created=created_time,
|
||||||
model=model_name,
|
model=model_name,
|
||||||
choices=[
|
choices=[CompletionResponseStreamChoice(
|
||||||
CompletionResponseStreamChoice(
|
index=idx,
|
||||||
index=idx,
|
text="",
|
||||||
text="",
|
prompt_token_ids=list(prompt_batched_token_ids[idx]) if enable_return_token_ids else None,
|
||||||
token_ids=list(prompt_batched_token_ids[idx]),
|
completion_token_ids=None,
|
||||||
)
|
)]
|
||||||
],
|
|
||||||
)
|
)
|
||||||
yield f"data: {chunk.model_dump_json(exclude_unset=True)}\n\n"
|
yield f"data: {chunk.model_dump_json(exclude_unset=True)}\n\n"
|
||||||
first_iteration[idx] = False
|
first_iteration[idx] = False
|
||||||
@@ -275,16 +274,15 @@ class OpenAIServingCompletion:
|
|||||||
|
|
||||||
output = res["outputs"]
|
output = res["outputs"]
|
||||||
|
|
||||||
choices.append(
|
choices.append(CompletionResponseStreamChoice(
|
||||||
CompletionResponseStreamChoice(
|
index=idx,
|
||||||
index=idx,
|
text=output["text"],
|
||||||
text=output["text"],
|
prompt_token_ids=None,
|
||||||
token_ids=output.get("token_ids"),
|
completion_token_ids=output.get("token_ids") if enable_return_token_ids else None,
|
||||||
tool_calls=output.get("tool_call_content"),
|
tool_calls=output.get("tool_call_content"),
|
||||||
reasoning_content=output.get("reasoning_content"),
|
reasoning_content=output.get("reasoning_content"),
|
||||||
arrival_time=arrival_time,
|
arrival_time=arrival_time
|
||||||
)
|
))
|
||||||
)
|
|
||||||
if res["finished"]:
|
if res["finished"]:
|
||||||
if request.max_tokens is None or output_tokens[idx] + 1 != request.max_tokens:
|
if request.max_tokens is None or output_tokens[idx] + 1 != request.max_tokens:
|
||||||
chunk.choices[0].finish_reason = "stop"
|
chunk.choices[0].finish_reason = "stop"
|
||||||
@@ -347,6 +345,7 @@ class OpenAIServingCompletion:
|
|||||||
choices: List[CompletionResponseChoice] = []
|
choices: List[CompletionResponseChoice] = []
|
||||||
num_prompt_tokens = 0
|
num_prompt_tokens = 0
|
||||||
num_generated_tokens = 0
|
num_generated_tokens = 0
|
||||||
|
enable_return_token_ids = request.return_token_ids or (request.extra_body is not None and request.extra_body.get('return_token_ids', False))
|
||||||
|
|
||||||
for idx in range(len(final_res_batch)):
|
for idx in range(len(final_res_batch)):
|
||||||
final_res = final_res_batch[idx]
|
final_res = final_res_batch[idx]
|
||||||
@@ -371,7 +370,9 @@ class OpenAIServingCompletion:
|
|||||||
token_ids=token_ids,
|
token_ids=token_ids,
|
||||||
index=len(choices),
|
index=len(choices),
|
||||||
text=output_text,
|
text=output_text,
|
||||||
reasoning_content=output.get("reasoning_content"),
|
prompt_token_ids=prompt_token_ids if enable_return_token_ids else None,
|
||||||
|
completion_token_ids=output["token_ids"] if enable_return_token_ids else None,
|
||||||
|
reasoning_content=output.get('reasoning_content'),
|
||||||
tool_calls=output.get("tool_call_content"),
|
tool_calls=output.get("tool_call_content"),
|
||||||
logprobs=None,
|
logprobs=None,
|
||||||
finish_reason=None,
|
finish_reason=None,
|
||||||
|
@@ -99,8 +99,9 @@ class ErnieProcessor(BaseDataProcessor):
|
|||||||
|
|
||||||
if request.prompt_token_ids is None or len(request.prompt_token_ids) == 0:
|
if request.prompt_token_ids is None or len(request.prompt_token_ids) == 0:
|
||||||
if request.prompt is None and request.messages is None:
|
if request.prompt is None and request.messages is None:
|
||||||
raise ValueError(f"The request should have `input_ids`, `text` or `messages`: {request}.")
|
raise ValueError(
|
||||||
if request.prompt is not None or not request.raw_request:
|
f"The request should have `prompt_token_ids`, `prompt` or `messages`: {request}.")
|
||||||
|
if request.prompt is not None:
|
||||||
prompt = request.prompt if request.prompt is not None else request.messages[0]
|
prompt = request.prompt if request.prompt is not None else request.messages[0]
|
||||||
prompt = prompt[0] if isinstance(prompt, list) else prompt
|
prompt = prompt[0] if isinstance(prompt, list) else prompt
|
||||||
tokens = self.tokenizer.tokenize(prompt)
|
tokens = self.tokenizer.tokenize(prompt)
|
||||||
|
@@ -231,7 +231,7 @@ class DataProcessor(BaseDataProcessor):
|
|||||||
|
|
||||||
if request.prompt_token_ids is None or len(request.prompt_token_ids) == 0:
|
if request.prompt_token_ids is None or len(request.prompt_token_ids) == 0:
|
||||||
if request.prompt is not None:
|
if request.prompt is not None:
|
||||||
request.prompt_token_ids = self.text2ids(request.prompt, max_model_len, request.raw_request)
|
request.prompt_token_ids = self.text2ids(request.prompt, max_model_len)
|
||||||
elif request.messages is not None:
|
elif request.messages is not None:
|
||||||
if self.tokenizer.chat_template is None:
|
if self.tokenizer.chat_template is None:
|
||||||
raise ValueError("This model does not support chat_template.")
|
raise ValueError("This model does not support chat_template.")
|
||||||
@@ -266,7 +266,7 @@ class DataProcessor(BaseDataProcessor):
|
|||||||
if not request.get("eos_token_ids"):
|
if not request.get("eos_token_ids"):
|
||||||
request["eos_token_ids"] = self.eos_token_ids
|
request["eos_token_ids"] = self.eos_token_ids
|
||||||
|
|
||||||
# 处理stop_sequences
|
# processing stop_sequences
|
||||||
stop_sequences = request.get("stop", [])
|
stop_sequences = request.get("stop", [])
|
||||||
if stop_sequences:
|
if stop_sequences:
|
||||||
stop_seqs, stop_seqs_len = self.update_stop_seq(stop_sequences)
|
stop_seqs, stop_seqs_len = self.update_stop_seq(stop_sequences)
|
||||||
@@ -274,12 +274,11 @@ class DataProcessor(BaseDataProcessor):
|
|||||||
request["stop_seqs_len"] = stop_seqs_len
|
request["stop_seqs_len"] = stop_seqs_len
|
||||||
|
|
||||||
data_processor_logger.info(f"Processing request {request}")
|
data_processor_logger.info(f"Processing request {request}")
|
||||||
# 处理prompt_token_ids
|
# processing prompt_token_ids
|
||||||
if not request.get("prompt_token_ids"):
|
if not request.get('prompt_token_ids'):
|
||||||
if "prompt" in request:
|
if 'prompt' in request:
|
||||||
raw_request = request.get("raw_request", True)
|
request['prompt_token_ids'] = self.text2ids(request['prompt'], max_model_len).tolist()
|
||||||
request["prompt_token_ids"] = self.text2ids(request["prompt"], max_model_len, raw_request).tolist()
|
elif 'messages' in request:
|
||||||
elif "messages" in request:
|
|
||||||
if self.tokenizer.chat_template is None:
|
if self.tokenizer.chat_template is None:
|
||||||
raise ValueError("This model does not support chat_template.")
|
raise ValueError("This model does not support chat_template.")
|
||||||
request["prompt_token_ids"] = self.messages2ids(request)
|
request["prompt_token_ids"] = self.messages2ids(request)
|
||||||
@@ -416,7 +415,7 @@ class DataProcessor(BaseDataProcessor):
|
|||||||
**kwargs,
|
**kwargs,
|
||||||
)
|
)
|
||||||
|
|
||||||
def text2ids(self, text, max_model_len, raw_request=True):
|
def text2ids(self, text, max_model_len):
|
||||||
"""
|
"""
|
||||||
text to token ids
|
text to token ids
|
||||||
|
|
||||||
|
@@ -342,6 +342,9 @@ def test_streaming(openai_client, capsys):
|
|||||||
output.append(chunk.choices[0].text)
|
output.append(chunk.choices[0].text)
|
||||||
assert len(output) > 0
|
assert len(output) > 0
|
||||||
|
|
||||||
|
# ==========================
|
||||||
|
# OpenAI Client additional chat/completions test
|
||||||
|
# ==========================
|
||||||
|
|
||||||
def test_non_streaming_with_stop_str(openai_client):
|
def test_non_streaming_with_stop_str(openai_client):
|
||||||
"""
|
"""
|
||||||
@@ -405,3 +408,256 @@ def test_streaming_with_stop_str(openai_client):
|
|||||||
for chunk in response:
|
for chunk in response:
|
||||||
last_token = chunk.choices[0].delta.content
|
last_token = chunk.choices[0].delta.content
|
||||||
assert last_token != "</s>"
|
assert last_token != "</s>"
|
||||||
|
|
||||||
|
|
||||||
|
def test_non_streaming_chat_with_return_token_ids(openai_client, capsys):
|
||||||
|
"""
|
||||||
|
Test return_token_ids option in non-streaming chat functionality with the local service
|
||||||
|
"""
|
||||||
|
# enable return_token_ids
|
||||||
|
response = openai_client.chat.completions.create(
|
||||||
|
model="default",
|
||||||
|
messages=[{"role": "user", "content": "Hello, how are you?"}],
|
||||||
|
temperature=1,
|
||||||
|
max_tokens=5,
|
||||||
|
extra_body={"return_token_ids": True},
|
||||||
|
stream=False,
|
||||||
|
)
|
||||||
|
assert hasattr(response, 'choices')
|
||||||
|
assert len(response.choices) > 0
|
||||||
|
assert hasattr(response.choices[0], 'message')
|
||||||
|
assert hasattr(response.choices[0].message, 'prompt_token_ids')
|
||||||
|
assert isinstance(response.choices[0].message.prompt_token_ids, list)
|
||||||
|
assert hasattr(response.choices[0].message, 'completion_token_ids')
|
||||||
|
assert isinstance(response.choices[0].message.completion_token_ids, list)
|
||||||
|
|
||||||
|
# disable return_token_ids
|
||||||
|
response = openai_client.chat.completions.create(
|
||||||
|
model="default",
|
||||||
|
messages=[{"role": "user", "content": "Hello, how are you?"}],
|
||||||
|
temperature=1,
|
||||||
|
max_tokens=5,
|
||||||
|
extra_body={"return_token_ids": False},
|
||||||
|
stream=False,
|
||||||
|
)
|
||||||
|
assert hasattr(response, 'choices')
|
||||||
|
assert len(response.choices) > 0
|
||||||
|
assert hasattr(response.choices[0], 'message')
|
||||||
|
assert hasattr(response.choices[0].message, 'prompt_token_ids')
|
||||||
|
assert response.choices[0].message.prompt_token_ids is None
|
||||||
|
assert hasattr(response.choices[0].message, 'completion_token_ids')
|
||||||
|
assert response.choices[0].message.completion_token_ids is None
|
||||||
|
|
||||||
|
|
||||||
|
def test_streaming_chat_with_return_token_ids(openai_client, capsys):
|
||||||
|
"""
|
||||||
|
Test return_token_ids option in streaming chat functionality with the local service
|
||||||
|
"""
|
||||||
|
# enable return_token_ids
|
||||||
|
response = openai_client.chat.completions.create(
|
||||||
|
model="default",
|
||||||
|
messages=[{"role": "user", "content": "Hello, how are you?"}],
|
||||||
|
temperature=1,
|
||||||
|
max_tokens=5,
|
||||||
|
extra_body={"return_token_ids": True},
|
||||||
|
stream=True,
|
||||||
|
)
|
||||||
|
is_first_chunk = True
|
||||||
|
for chunk in response:
|
||||||
|
assert hasattr(chunk, 'choices')
|
||||||
|
assert len(chunk.choices) > 0
|
||||||
|
assert hasattr(chunk.choices[0], 'delta')
|
||||||
|
assert hasattr(chunk.choices[0].delta, 'prompt_token_ids')
|
||||||
|
assert hasattr(chunk.choices[0].delta, 'completion_token_ids')
|
||||||
|
if is_first_chunk:
|
||||||
|
is_first_chunk = False
|
||||||
|
assert isinstance(chunk.choices[0].delta.prompt_token_ids, list)
|
||||||
|
assert chunk.choices[0].delta.completion_token_ids is None
|
||||||
|
else:
|
||||||
|
assert chunk.choices[0].delta.prompt_token_ids is None
|
||||||
|
assert isinstance(chunk.choices[0].delta.completion_token_ids, list)
|
||||||
|
|
||||||
|
# disable return_token_ids
|
||||||
|
response = openai_client.chat.completions.create(
|
||||||
|
model="default",
|
||||||
|
messages=[{"role": "user", "content": "Hello, how are you?"}],
|
||||||
|
temperature=1,
|
||||||
|
max_tokens=5,
|
||||||
|
extra_body={"return_token_ids": False},
|
||||||
|
stream=True,
|
||||||
|
)
|
||||||
|
for chunk in response:
|
||||||
|
assert hasattr(chunk, 'choices')
|
||||||
|
assert len(chunk.choices) > 0
|
||||||
|
assert hasattr(chunk.choices[0], 'delta')
|
||||||
|
assert hasattr(chunk.choices[0].delta, 'prompt_token_ids')
|
||||||
|
assert chunk.choices[0].delta.prompt_token_ids is None
|
||||||
|
assert hasattr(chunk.choices[0].delta, 'completion_token_ids')
|
||||||
|
assert chunk.choices[0].delta.completion_token_ids is None
|
||||||
|
|
||||||
|
|
||||||
|
def test_non_streaming_completion_with_return_token_ids(openai_client, capsys):
|
||||||
|
"""
|
||||||
|
Test return_token_ids option in non-streaming completion functionality with the local service
|
||||||
|
"""
|
||||||
|
# enable return_token_ids
|
||||||
|
response = openai_client.completions.create(
|
||||||
|
model="default",
|
||||||
|
prompt="Hello, how are you?",
|
||||||
|
temperature=1,
|
||||||
|
max_tokens=5,
|
||||||
|
extra_body={"return_token_ids": True},
|
||||||
|
stream=False,
|
||||||
|
)
|
||||||
|
assert hasattr(response, 'choices')
|
||||||
|
assert len(response.choices) > 0
|
||||||
|
assert hasattr(response.choices[0], 'prompt_token_ids')
|
||||||
|
assert isinstance(response.choices[0].prompt_token_ids, list)
|
||||||
|
assert hasattr(response.choices[0], 'completion_token_ids')
|
||||||
|
assert isinstance(response.choices[0].completion_token_ids, list)
|
||||||
|
|
||||||
|
# disable return_token_ids
|
||||||
|
response = openai_client.completions.create(
|
||||||
|
model="default",
|
||||||
|
prompt="Hello, how are you?",
|
||||||
|
temperature=1,
|
||||||
|
max_tokens=5,
|
||||||
|
extra_body={"return_token_ids": False},
|
||||||
|
stream=False,
|
||||||
|
)
|
||||||
|
assert hasattr(response, 'choices')
|
||||||
|
assert len(response.choices) > 0
|
||||||
|
assert hasattr(response.choices[0], 'prompt_token_ids')
|
||||||
|
assert response.choices[0].prompt_token_ids is None
|
||||||
|
assert hasattr(response.choices[0], 'completion_token_ids')
|
||||||
|
assert response.choices[0].completion_token_ids is None
|
||||||
|
|
||||||
|
|
||||||
|
def test_streaming_completion_with_return_token_ids(openai_client, capsys):
|
||||||
|
"""
|
||||||
|
Test return_token_ids option in streaming completion functionality with the local service
|
||||||
|
"""
|
||||||
|
# enable return_token_ids
|
||||||
|
response = openai_client.completions.create(
|
||||||
|
model="default",
|
||||||
|
prompt="Hello, how are you?",
|
||||||
|
temperature=1,
|
||||||
|
max_tokens=5,
|
||||||
|
extra_body={"return_token_ids": True},
|
||||||
|
stream=True,
|
||||||
|
)
|
||||||
|
is_first_chunk = True
|
||||||
|
for chunk in response:
|
||||||
|
assert hasattr(chunk, 'choices')
|
||||||
|
assert len(chunk.choices) > 0
|
||||||
|
assert hasattr(chunk.choices[0], 'prompt_token_ids')
|
||||||
|
assert hasattr(chunk.choices[0], 'completion_token_ids')
|
||||||
|
if is_first_chunk:
|
||||||
|
is_first_chunk = False
|
||||||
|
assert isinstance(chunk.choices[0].prompt_token_ids, list)
|
||||||
|
assert chunk.choices[0].completion_token_ids is None
|
||||||
|
else:
|
||||||
|
assert chunk.choices[0].prompt_token_ids is None
|
||||||
|
assert isinstance(chunk.choices[0].completion_token_ids, list)
|
||||||
|
|
||||||
|
# disable return_token_ids
|
||||||
|
response = openai_client.completions.create(
|
||||||
|
model="default",
|
||||||
|
prompt="Hello, how are you?",
|
||||||
|
temperature=1,
|
||||||
|
max_tokens=5,
|
||||||
|
extra_body={"return_token_ids": False},
|
||||||
|
stream=True,
|
||||||
|
)
|
||||||
|
for chunk in response:
|
||||||
|
assert hasattr(chunk, 'choices')
|
||||||
|
assert len(chunk.choices) > 0
|
||||||
|
assert hasattr(chunk.choices[0], 'prompt_token_ids')
|
||||||
|
assert chunk.choices[0].prompt_token_ids is None
|
||||||
|
assert hasattr(chunk.choices[0], 'completion_token_ids')
|
||||||
|
assert chunk.choices[0].completion_token_ids is None
|
||||||
|
|
||||||
|
|
||||||
|
def test_non_streaming_chat_with_prompt_token_ids(openai_client, capsys):
|
||||||
|
"""
|
||||||
|
Test prompt_token_ids option in non-streaming chat functionality with the local service
|
||||||
|
"""
|
||||||
|
response = openai_client.chat.completions.create(
|
||||||
|
model="default",
|
||||||
|
messages=[],
|
||||||
|
temperature=1,
|
||||||
|
max_tokens=5,
|
||||||
|
extra_body={"prompt_token_ids": [5209,626,274,45954,1071,3265,3934,1869,93937]},
|
||||||
|
stream=False,
|
||||||
|
)
|
||||||
|
assert hasattr(response, 'choices')
|
||||||
|
assert len(response.choices) > 0
|
||||||
|
assert hasattr(response, 'usage')
|
||||||
|
assert hasattr(response.usage, 'prompt_tokens')
|
||||||
|
assert response.usage.prompt_tokens == 9
|
||||||
|
|
||||||
|
|
||||||
|
def test_streaming_chat_with_prompt_token_ids(openai_client, capsys):
|
||||||
|
"""
|
||||||
|
Test prompt_token_ids option in streaming chat functionality with the local service
|
||||||
|
"""
|
||||||
|
response = openai_client.chat.completions.create(
|
||||||
|
model="default",
|
||||||
|
messages=[],
|
||||||
|
temperature=1,
|
||||||
|
max_tokens=5,
|
||||||
|
extra_body={"prompt_token_ids": [5209,626,274,45954,1071,3265,3934,1869,93937]},
|
||||||
|
stream=True,
|
||||||
|
stream_options={"include_usage": True},
|
||||||
|
)
|
||||||
|
for chunk in response:
|
||||||
|
assert hasattr(chunk, 'choices')
|
||||||
|
assert hasattr(chunk, 'usage')
|
||||||
|
if len(chunk.choices) > 0:
|
||||||
|
assert chunk.usage is None
|
||||||
|
else:
|
||||||
|
assert hasattr(chunk.usage, 'prompt_tokens')
|
||||||
|
assert chunk.usage.prompt_tokens == 9
|
||||||
|
|
||||||
|
|
||||||
|
def test_non_streaming_completion_with_prompt_token_ids(openai_client, capsys):
|
||||||
|
"""
|
||||||
|
Test prompt_token_ids option in streaming completion functionality with the local service
|
||||||
|
"""
|
||||||
|
response = openai_client.completions.create(
|
||||||
|
model="default",
|
||||||
|
prompt="",
|
||||||
|
temperature=1,
|
||||||
|
max_tokens=5,
|
||||||
|
extra_body={"prompt_token_ids": [5209,626,274,45954,1071,3265,3934,1869,93937]},
|
||||||
|
stream=False,
|
||||||
|
)
|
||||||
|
assert hasattr(response, 'choices')
|
||||||
|
assert len(response.choices) > 0
|
||||||
|
assert hasattr(response, 'usage')
|
||||||
|
assert hasattr(response.usage, 'prompt_tokens')
|
||||||
|
assert response.usage.prompt_tokens == 9
|
||||||
|
|
||||||
|
|
||||||
|
def test_streaming_completion_with_prompt_token_ids(openai_client, capsys):
|
||||||
|
"""
|
||||||
|
Test prompt_token_ids option in non-streaming completion functionality with the local service
|
||||||
|
"""
|
||||||
|
response = openai_client.completions.create(
|
||||||
|
model="default",
|
||||||
|
prompt="",
|
||||||
|
temperature=1,
|
||||||
|
max_tokens=5,
|
||||||
|
extra_body={"prompt_token_ids": [5209,626,274,45954,1071,3265,3934,1869,93937]},
|
||||||
|
stream=True,
|
||||||
|
stream_options={"include_usage": True},
|
||||||
|
)
|
||||||
|
for chunk in response:
|
||||||
|
assert hasattr(chunk, 'choices')
|
||||||
|
assert hasattr(chunk, 'usage')
|
||||||
|
if len(chunk.choices) > 0:
|
||||||
|
assert chunk.usage is None
|
||||||
|
else:
|
||||||
|
assert hasattr(chunk.usage, 'prompt_tokens')
|
||||||
|
assert chunk.usage.prompt_tokens == 9
|
||||||
|
|
||||||
|
@@ -323,3 +323,174 @@ def test_streaming_chat(openai_client, capsys):
|
|||||||
if hasattr(chunk.choices[0], "delta") and hasattr(chunk.choices[0].delta, "content"):
|
if hasattr(chunk.choices[0], "delta") and hasattr(chunk.choices[0].delta, "content"):
|
||||||
output.append(chunk.choices[0].delta.content)
|
output.append(chunk.choices[0].delta.content)
|
||||||
assert len(output) > 2
|
assert len(output) > 2
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# ==========================
|
||||||
|
# OpenAI Client additional chat/completions test
|
||||||
|
# ==========================
|
||||||
|
|
||||||
|
def test_non_streaming_chat_with_return_token_ids(openai_client, capsys):
|
||||||
|
"""
|
||||||
|
Test return_token_ids option in non-streaming chat functionality with the local service
|
||||||
|
"""
|
||||||
|
# 设定 return_token_ids
|
||||||
|
response = openai_client.chat.completions.create(
|
||||||
|
model="default",
|
||||||
|
messages=[
|
||||||
|
{
|
||||||
|
"role": "system",
|
||||||
|
"content": "You are a helpful AI assistant."
|
||||||
|
}, # system不是必需,可选
|
||||||
|
{
|
||||||
|
"role":
|
||||||
|
"user",
|
||||||
|
"content": [{
|
||||||
|
"type": "image_url",
|
||||||
|
"image_url": {
|
||||||
|
"url":
|
||||||
|
"https://paddlenlp.bj.bcebos.com/datasets/paddlemix/demo_images/example2.jpg",
|
||||||
|
"detail": "high"
|
||||||
|
}
|
||||||
|
}, {
|
||||||
|
"type": "text",
|
||||||
|
"text": "请描述图片内容"
|
||||||
|
}]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
temperature=1,
|
||||||
|
max_tokens=53,
|
||||||
|
extra_body={"return_token_ids": True},
|
||||||
|
stream=False,
|
||||||
|
)
|
||||||
|
assert hasattr(response, 'choices')
|
||||||
|
assert len(response.choices) > 0
|
||||||
|
assert hasattr(response.choices[0], 'message')
|
||||||
|
assert hasattr(response.choices[0].message, 'prompt_token_ids')
|
||||||
|
assert isinstance(response.choices[0].message.prompt_token_ids, list)
|
||||||
|
assert hasattr(response.choices[0].message, 'completion_token_ids')
|
||||||
|
assert isinstance(response.choices[0].message.completion_token_ids, list)
|
||||||
|
|
||||||
|
# 不设定 return_token_ids
|
||||||
|
response = openai_client.chat.completions.create(
|
||||||
|
model="default",
|
||||||
|
messages=[
|
||||||
|
{
|
||||||
|
"role": "system",
|
||||||
|
"content": "You are a helpful AI assistant."
|
||||||
|
}, # system不是必需,可选
|
||||||
|
{
|
||||||
|
"role":
|
||||||
|
"user",
|
||||||
|
"content": [{
|
||||||
|
"type": "image_url",
|
||||||
|
"image_url": {
|
||||||
|
"url":
|
||||||
|
"https://paddlenlp.bj.bcebos.com/datasets/paddlemix/demo_images/example2.jpg",
|
||||||
|
"detail": "high"
|
||||||
|
}
|
||||||
|
}, {
|
||||||
|
"type": "text",
|
||||||
|
"text": "请描述图片内容"
|
||||||
|
}]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
temperature=1,
|
||||||
|
max_tokens=53,
|
||||||
|
extra_body={"return_token_ids": False},
|
||||||
|
stream=False,
|
||||||
|
)
|
||||||
|
assert hasattr(response, 'choices')
|
||||||
|
assert len(response.choices) > 0
|
||||||
|
assert hasattr(response.choices[0], 'message')
|
||||||
|
assert hasattr(response.choices[0].message, 'prompt_token_ids')
|
||||||
|
assert response.choices[0].message.prompt_token_ids is None
|
||||||
|
assert hasattr(response.choices[0].message, 'completion_token_ids')
|
||||||
|
assert response.choices[0].message.completion_token_ids is None
|
||||||
|
|
||||||
|
|
||||||
|
def test_streaming_chat_with_return_token_ids(openai_client, capsys):
|
||||||
|
"""
|
||||||
|
Test return_token_ids option in streaming chat functionality with the local service
|
||||||
|
"""
|
||||||
|
# enable return_token_ids
|
||||||
|
response = openai_client.chat.completions.create(
|
||||||
|
model="default",
|
||||||
|
messages=[
|
||||||
|
{
|
||||||
|
"role": "system",
|
||||||
|
"content": "You are a helpful AI assistant."
|
||||||
|
}, # system不是必需,可选
|
||||||
|
{
|
||||||
|
"role":
|
||||||
|
"user",
|
||||||
|
"content": [{
|
||||||
|
"type": "image_url",
|
||||||
|
"image_url": {
|
||||||
|
"url":
|
||||||
|
"https://paddlenlp.bj.bcebos.com/datasets/paddlemix/demo_images/example2.jpg",
|
||||||
|
"detail": "high"
|
||||||
|
}
|
||||||
|
}, {
|
||||||
|
"type": "text",
|
||||||
|
"text": "请描述图片内容"
|
||||||
|
}]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
temperature=1,
|
||||||
|
max_tokens=53,
|
||||||
|
extra_body={"return_token_ids": True},
|
||||||
|
stream=True,
|
||||||
|
)
|
||||||
|
is_first_chunk = True
|
||||||
|
for chunk in response:
|
||||||
|
assert hasattr(chunk, 'choices')
|
||||||
|
assert len(chunk.choices) > 0
|
||||||
|
assert hasattr(chunk.choices[0], 'delta')
|
||||||
|
assert hasattr(chunk.choices[0].delta, 'prompt_token_ids')
|
||||||
|
assert hasattr(chunk.choices[0].delta, 'completion_token_ids')
|
||||||
|
if is_first_chunk:
|
||||||
|
is_first_chunk = False
|
||||||
|
assert isinstance(chunk.choices[0].delta.prompt_token_ids, list)
|
||||||
|
assert chunk.choices[0].delta.completion_token_ids is None
|
||||||
|
else:
|
||||||
|
assert chunk.choices[0].delta.prompt_token_ids is None
|
||||||
|
assert isinstance(chunk.choices[0].delta.completion_token_ids, list)
|
||||||
|
|
||||||
|
# disable return_token_ids
|
||||||
|
response = openai_client.chat.completions.create(
|
||||||
|
model="default",
|
||||||
|
messages=[
|
||||||
|
{
|
||||||
|
"role": "system",
|
||||||
|
"content": "You are a helpful AI assistant."
|
||||||
|
}, # system不是必需,可选
|
||||||
|
{
|
||||||
|
"role":
|
||||||
|
"user",
|
||||||
|
"content": [{
|
||||||
|
"type": "image_url",
|
||||||
|
"image_url": {
|
||||||
|
"url":
|
||||||
|
"https://paddlenlp.bj.bcebos.com/datasets/paddlemix/demo_images/example2.jpg",
|
||||||
|
"detail": "high"
|
||||||
|
}
|
||||||
|
}, {
|
||||||
|
"type": "text",
|
||||||
|
"text": "请描述图片内容"
|
||||||
|
}]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
temperature=1,
|
||||||
|
max_tokens=53,
|
||||||
|
extra_body={"return_token_ids": False},
|
||||||
|
stream=True,
|
||||||
|
)
|
||||||
|
for chunk in response:
|
||||||
|
assert hasattr(chunk, 'choices')
|
||||||
|
assert len(chunk.choices) > 0
|
||||||
|
assert hasattr(chunk.choices[0], 'delta')
|
||||||
|
assert hasattr(chunk.choices[0].delta, 'prompt_token_ids')
|
||||||
|
assert chunk.choices[0].delta.prompt_token_ids is None
|
||||||
|
assert hasattr(chunk.choices[0].delta, 'completion_token_ids')
|
||||||
|
assert chunk.choices[0].delta.completion_token_ids is None
|
||||||
|
Reference in New Issue
Block a user