[NewFeture]add ep rollout model init and update/clear ep buffer (#4039)

* fix gid

* merge

* fix test

* fix bug

* fix

* fix ci
This commit is contained in:
gaoziyuan
2025-09-17 20:24:53 +08:00
committed by GitHub
parent 0d3a57a2c6
commit 896e3bb606
12 changed files with 348 additions and 293 deletions

View File

@@ -33,6 +33,11 @@
__VA_ARGS__ \
break; \
} \
case 3: { \
constexpr size_t NUM_EXPERTS_PER_RANK = 3; \
__VA_ARGS__ \
break; \
} \
case 6: { \
constexpr size_t NUM_EXPERTS_PER_RANK = 6; \
__VA_ARGS__ \

View File

@@ -338,20 +338,26 @@ class ParallelConfig:
else:
self.pd_disaggregation_mode = "None"
def set_tp_group(self):
def set_communicate_group(self):
# different tp group id
# prevent different tp_groups using the same group_id
tp_gid_offset = envs.FD_TP_GROUP_GID_OFFSET
dist.collective._set_custom_gid(self.data_parallel_rank + tp_gid_offset)
self.tp_group = dist.new_group(
range(
self.data_parallel_rank * self.tensor_parallel_size,
(self.data_parallel_rank + 1) * self.tensor_parallel_size,
)
)
dist.collective._set_custom_gid(None)
# same ep group id
if self.enable_expert_parallel:
dist.collective._set_custom_gid(self.data_parallel_size + tp_gid_offset)
self.ep_group = dist.new_group(range(self.expert_parallel_size))
dist.collective._set_custom_gid(None)
logger.info(
f"data_parallel_size: {self.data_parallel_size}, tensor_parallel_size: {self.tensor_parallel_size}, expert_parallel_size: {self.expert_parallel_size}, data_parallel_rank: {self.data_parallel_rank}, tensor_parallel_rank: {self.tensor_parallel_rank}, expert_parallel_rank: {self.expert_parallel_rank}, tp_group: {self.tp_group}."
)
@@ -833,6 +839,7 @@ class LoadConfig:
load_strategy: Specifies the weight loading method when enabled:
- 'ipc': Real-time IPC streaming with automatic resharding
- 'ipc_snapshot': Load from disk snapshot of IPC weights
- 'meta': Only model meta messages
- None: No dynamic loading
"""
@@ -843,7 +850,7 @@ class LoadConfig:
self.load_choices: Union[str, LoadChoices] = LoadChoices.DEFAULT.value
self.use_fastsafetensor = int(envs.FD_USE_FASTSAFETENSOR) == 1
self.dynamic_load_weight: bool = False
self.load_strategy: Optional[Literal["ipc", "ipc_snapshot"]] = None
self.load_strategy: Optional[Literal["ipc", "ipc_snapshot", "meta", "normal"]] = "normal"
for key, value in args.items():
if hasattr(self, key):
setattr(self, key, value)
@@ -1201,12 +1208,10 @@ class FDConfig:
num_ranks = self.parallel_config.tensor_parallel_size * self.parallel_config.data_parallel_size
self.max_chips_per_node = 16 if current_platform.is_iluvatar() else 8
if num_ranks > self.max_chips_per_node:
if num_ranks > self.max_chips_per_node and self.load_config.load_strategy != "meta":
self.worker_num_per_node = self.max_chips_per_node
nnode = ceil_div(num_ranks, self.worker_num_per_node)
assert nnode == self.nnode, f"nnode: {nnode}, but got {self.nnode}"
# assert nnode == self.nnode, f"nnode: {nnode}, but got {self.nnode}"
else:
self.worker_num_per_node = num_ranks

View File

@@ -135,7 +135,7 @@ class EngineArgs:
"""
dynamic load weight
"""
load_strategy: str = "ipc_snapshot"
load_strategy: str = "normal"
"""
dynamic load weight strategy
"""

View File

@@ -20,168 +20,139 @@ import paddle
from paddle import nn
from paddleformers.utils.log import logger
from fastdeploy.platforms import current_platform
if current_platform.is_cuda():
try:
from paddle.distributed.communication import deep_ep
except:
logger.warning("import deep_ep Failed!")
from typing import Optional
import fastdeploy
from fastdeploy.config import MoEPhase
from fastdeploy.model_executor.layers.moe.moe import get_moe_scores
from fastdeploy.utils import singleton
class DeepEPEngineBase:
class DeepEPBufferManager:
_engine: Optional["DeepEPEngine"] = None
@classmethod
def set_engine(cls, engine: "DeepEPEngine"):
cls._engine = engine
@classmethod
def clear_buffer(cls):
if cls._engine:
cls._engine.clear_deep_ep_buffer()
@classmethod
def recreate_buffer(cls):
if cls._engine:
cls._engine.create_deep_ep_buffer()
class DeepEPBuffer:
"""
A wrapper class for DeepEP engine.
Encapsulates DeepEP buffer creation, management and cleanup.
"""
def __init__(
self,
num_max_dispatch_tokens_per_rank: int,
hidden: int,
group,
hidden_size: int,
num_experts: int,
ep_size: int,
ep_rank: int,
num_max_dispatch_tokens_per_rank: int,
splitwise_role: str,
moe_phase: MoEPhase,
async_finish: bool = False,
group=None,
):
"""
Initialize the DeepEP engine.
Args:
group: The MPI group object.
ep_size: The number of ranks.
rank_id: The rank id.
num_max_dispatch_tokens_per_rank: The maximum number of tokens per rank to dispatch.
hidden: The hidden dimension of the model.
num_experts: The number of experts.
"""
self.num_max_dispatch_tokens_per_rank = num_max_dispatch_tokens_per_rank
self.hidden = hidden
self.group = group
self.hidden_size = hidden_size
self.num_experts = num_experts
self.ep_size = ep_size
self.rank_id = ep_rank
self.num_max_dispatch_tokens_per_rank = num_max_dispatch_tokens_per_rank
self.splitwise_role = splitwise_role
self.moe_phase = moe_phase
self.async_finish = async_finish
# TODO(@wufeisheng): Support configurable EP size
if group is None:
group = paddle.distributed.new_group(range(ep_size))
self.group = group
self.num_local_experts = num_experts // ep_size
self.deepep_engine = None
self.init_deepep_engine()
@abstractmethod
def init_deepep_engine(self):
raise NotImplementedError
self.deepep_buffer = None
self.num_nvl_bytes = 0
self.num_rdma_bytes = 0
# Precompute buffer sizes
self._compute_buffer_sizes()
@singleton
class DeepEPEngine(DeepEPEngineBase):
"""
A wrapper class for DeepEP engine.
"""
def _compute_buffer_sizes(self, param_bytes: int = 2):
hidden_bytes = self.hidden_size * param_bytes # bf16 or fp16
def __init__(
self,
num_max_dispatch_tokens_per_rank: int,
hidden: int,
num_experts: int,
ep_size: int,
ep_rank: int,
splitwise_role: str,
moe_phase: MoEPhase,
async_finish: bool = False,
group=None,
for config in (
deep_ep.Buffer.get_dispatch_config(self.group.world_size),
deep_ep.Buffer.get_combine_config(self.group.world_size),
):
"""
Initialize the DeepEP engine.
Args:
group: The MPI group object.
ep_size: The number of ranks.
rank_id: The rank id.
num_max_dispatch_tokens_per_rank: The maximum number of tokens per rank to dispatch.
hidden: The hidden dimension of the model.
num_experts: The number of experts.
"""
super().__init__(
num_max_dispatch_tokens_per_rank,
hidden,
num_experts,
ep_size,
ep_rank,
splitwise_role,
moe_phase,
async_finish,
group,
self.num_nvl_bytes = max(
config.get_nvl_buffer_size_hint(hidden_bytes, self.group.world_size), self.num_nvl_bytes
)
self.num_rdma_bytes = max(
config.get_rdma_buffer_size_hint(hidden_bytes, self.group.world_size), self.num_rdma_bytes
)
def init_deepep_engine(self):
from paddle.base.core import Config
if self.splitwise_role == "mixed" or self.moe_phase.phase == "decode":
num_rdma_bytes = deep_ep.Buffer.get_low_latency_rdma_size_hint(
self.num_max_dispatch_tokens_per_rank,
self.hidden_size,
self.ep_size,
self.num_experts,
)
self.num_rdma_bytes = max(self.num_rdma_bytes, num_rdma_bytes)
self.ep_config = Config(24, 6, 256)
logger.info(f"DeepEP num nvl bytes : {self.num_nvl_bytes}, num rdma bytes : {self.num_rdma_bytes}")
# In mixed EP mode on a single node, we dynamically switch between
# high throughput and low latency modes.
def create_buffer(self):
"""Create or recreate buffer based on role and phase."""
if self.deepep_buffer is not None:
self.clear_buffer()
if self.splitwise_role == "mixed":
self.deepep_engine = deep_ep.Buffer(
logger.info("Initializing mixed mode buffer (low latency).")
self.deepep_buffer = deep_ep.Buffer(
self.group,
int(2e9),
int(6e9),
self.num_nvl_bytes,
self.num_rdma_bytes,
low_latency_mode=True,
num_qps_per_rank=24,
)
# In disaggregated mode on multiple nodes, we either use
# high throughput mode or low latency mode.
self.deepep_buffer.set_num_sms(14) # TODO: tune in future
else:
if self.moe_phase.phase == "decode":
logger.info("Initializing Low Latency Buffer")
self.get_low_latency_buffer()
self._create_low_latency_buffer()
elif self.moe_phase.phase == "prefill":
self.deepep_engine = deep_ep.Buffer(
logger.info("Initializing High Throughput Buffer for prefill phase.")
self.deepep_buffer = deep_ep.Buffer(
self.group,
int(5e8),
self.num_nvl_bytes,
0,
low_latency_mode=False,
num_qps_per_rank=1,
)
else:
raise ValueError(f"Unknown generation phase {self.moe_phase}")
raise ValueError(f"Unknown generation phase: {self.moe_phase.phase}")
def get_low_latency_buffer(self):
"""
Get the DeepEP buffer.
Args:
group: The MPI group object.
num_max_dispatch_tokens_per_rank: The maximum number of tokens per rank to dispatch.
hidden: The hidden dimension of the model.
"""
# NOTES: the low-latency mode will consume much more space than the normal mode
# So we recommend that `num_max_dispatch_tokens_per_rank`
# (the actual batch size in the decoding engine) should be less than 256
logger.info("DeepEP buffer created successfully.")
def _create_low_latency_buffer(self):
num_rdma_bytes = deep_ep.Buffer.get_low_latency_rdma_size_hint(
self.num_max_dispatch_tokens_per_rank,
self.hidden,
self.hidden_size,
self.ep_size,
self.num_experts,
)
# Allocate a buffer if not existed or not enough buffer size
if (
self.deepep_engine is None
or self.deepep_engine.group != self.group
or not self.deepep_engine.low_latency_mode
or self.deepep_engine.num_rdma_bytes < num_rdma_bytes
self.deepep_buffer is None
or self.deepep_buffer.group != self.group
or not self.deepep_buffer.low_latency_mode
or self.deepep_buffer.num_rdma_bytes < num_rdma_bytes
):
# NOTES: for best performance, the QP number **must** be equal to the number of the local experts
assert self.num_experts % self.ep_size == 0
self.deepep_engine = deep_ep.Buffer(
self.deepep_buffer = deep_ep.Buffer(
self.group,
0,
num_rdma_bytes,
@@ -189,6 +160,91 @@ class DeepEPEngine(DeepEPEngineBase):
num_qps_per_rank=self.num_experts // self.ep_size,
)
def clear_buffer(self):
"""Clear buffer and free memory."""
if self.deepep_buffer is not None:
del self.deepep_buffer
self.deepep_buffer = None
logger.info("DeepEP buffer cleared.")
def get_buffer(self):
return self.deepep_buffer
def clean_low_latency_buffer(self):
if self.deepep_buffer is not None:
self.deepep_buffer.clean_low_latency_buffer(
self.num_max_dispatch_tokens_per_rank,
self.hidden_size,
self.num_experts,
)
def barrier_all(self):
if self.deepep_buffer is not None:
self.deepep_buffer.barrier_all()
@singleton
class DeepEPEngine:
"""
A wrapper class for DeepEP engine.
Manages buffer lifecycle based on role and phase.
"""
def __init__(
self,
num_max_dispatch_tokens_per_rank: int,
hidden_size: int,
num_experts: int,
ep_size: int,
ep_rank: int,
splitwise_role: str,
moe_phase: MoEPhase,
async_finish: bool = False,
group=None,
):
if group is None:
group = paddle.distributed.new_group(range(ep_size))
self.group = group
self.ep_size = ep_size
self.rank_id = ep_rank
self.hidden_size = hidden_size
self.num_experts = num_experts
self.num_local_experts = num_experts // ep_size
self.async_finish = async_finish
from paddle.base.core import Config
self.ep_config = Config(24, 6, 256)
# Store phase and role for buffer management
self._splitwise_role = splitwise_role
self._moe_phase = moe_phase
# Initialize buffer manager
self.buffer = DeepEPBuffer(
group=self.group,
hidden_size=hidden_size,
num_experts=num_experts,
ep_size=ep_size,
num_max_dispatch_tokens_per_rank=num_max_dispatch_tokens_per_rank,
splitwise_role=splitwise_role,
moe_phase=moe_phase,
)
self.buffer.create_buffer()
# Register for global buffer management
DeepEPBufferManager.set_engine(self)
@property
def deepep_engine(self):
"""Backward compatibility alias."""
return self.buffer.get_buffer()
def clear_deep_ep_buffer(self):
self.buffer.clear_buffer()
def create_deep_ep_buffer(self):
self.buffer.create_buffer()
def low_latency_dispatch(
self,
hidden_states: paddle.Tensor,
@@ -196,22 +252,9 @@ class DeepEPEngine(DeepEPEngineBase):
expertwise_scale,
use_fp8: bool = False,
):
"""
Args:
hidden_states: [token_num, hidden] 'bfloat16/int8'
topk_idx: [token_num, num_topk] 'int64'
if self.deepep_engine is None:
raise RuntimeError("DeepEP buffer not initialized!")
Returns:
recv_hidden_states: [num_local_experts,
num_max_dispatch_tokens_per_rank * ep_size, hidden]
ep_size * num_local_experts = num_experts
recv_count: [num_local_experts]
recv_count: a tensor shaped `[num_local_experts]` with type `torch.int`, indicating how many tokens each
expert receive. As mentioned before, all not tokens are valid in `recv_x`.
handle: the communication handle to be used in the `low_latency_combine` function.
event: the event after executing the kernel (valid only if `async_finish` is set).
hook: the receiving hook function (valid only if `return_recv_hook` is set).
"""
(
packed_recv_x,
recv_expert_count,
@@ -222,7 +265,7 @@ class DeepEPEngine(DeepEPEngineBase):
hidden_states,
topk_idx,
expertwise_scale,
self.num_max_dispatch_tokens_per_rank,
self.buffer.num_max_dispatch_tokens_per_rank,
self.num_experts,
use_fp8=use_fp8,
async_finish=False,
@@ -238,27 +281,14 @@ class DeepEPEngine(DeepEPEngineBase):
topk_weights: paddle.Tensor,
handle,
):
"""
Return:
combined_hidden_states: [num_tokens, hidden]
"""
if paddle.__version__ != "0.0.0" and paddle.__version__ <= "3.1.0": # not develop version of PaddlePaddle
if paddle.__version__ != "0.0.0" and paddle.__version__ <= "3.1.0":
# TODO(@wanglongzhi): Delete them when deepep in PaddlePaddle is fixed
# and when the default recommended version of PaddlePaddle is greater than 3.1.0
(
src_info,
layout_range,
num_max_dispatch_tokens_per_rank,
num_experts,
) = handle
handle = (
src_info,
layout_range,
num_max_dispatch_tokens_per_rank,
None,
num_experts,
)
src_info, layout_range, num_max_dispatch_tokens_per_rank, num_experts = handle
handle = (src_info, layout_range, num_max_dispatch_tokens_per_rank, None, num_experts)
if self.deepep_engine is None:
raise RuntimeError("DeepEP buffer not initialized!")
combined_hidden_states, _, combine_hook = self.deepep_engine.low_latency_combine(
hidden_states,
@@ -271,18 +301,10 @@ class DeepEPEngine(DeepEPEngineBase):
return combined_hidden_states, combine_hook
def clean_low_latency_buffer(self):
"""
clean_low_latency_buffer
"""
self.deepep_engine.clean_low_latency_buffer(
self.num_max_dispatch_tokens_per_rank, self.hidden, self.num_experts
)
self.buffer.clean_low_latency_buffer()
def barrier_all(self):
"""
barrier_all
"""
self.deepep_engine.barrier_all()
self.buffer.barrier_all()
class EPRunner:
@@ -293,7 +315,7 @@ class EPRunner:
def __init__(
self,
top_k: int,
hidden: int,
hidden_size: int,
num_experts: int,
splitwise_role: str,
moe_phase: MoEPhase,
@@ -304,33 +326,20 @@ class EPRunner:
ep_group=None,
):
self.top_k = top_k
self.hidden = hidden
self.num_experts = num_experts
self.splitwise_role = splitwise_role
self.moe_phase = moe_phase
self.num_max_dispatch_tokens_per_rank = num_max_dispatch_tokens_per_rank
self.ep_size = ep_size
self.ep_rank = ep_rank
self.redundant_experts_num = redundant_experts_num
self.ep_group = ep_group
self.init_ep_engine()
def init_ep_engine(self):
self.ep_engine = DeepEPEngine(
num_max_dispatch_tokens_per_rank=self.num_max_dispatch_tokens_per_rank,
hidden=self.hidden,
num_experts=self.num_experts + self.redundant_experts_num,
ep_size=self.ep_size,
ep_rank=self.ep_rank,
splitwise_role=self.splitwise_role,
moe_phase=self.moe_phase,
group=self.ep_group,
num_max_dispatch_tokens_per_rank=num_max_dispatch_tokens_per_rank,
hidden_size=hidden_size,
num_experts=num_experts + redundant_experts_num,
ep_size=ep_size,
ep_rank=ep_rank,
splitwise_role=splitwise_role,
moe_phase=moe_phase,
group=ep_group,
)
def moe_select(self, layer: nn.Layer, gate_out: paddle.Tensor):
"""
moe_select
"""
if layer.redundant_table_manger is not None:
(
ep_rank_to_expert_id_list,
@@ -346,12 +355,14 @@ class EPRunner:
tokens_per_expert_stats_list=tokens_per_expert_stats_list,
bias=layer.gate_correction_bias,
moe_topk=self.top_k,
apply_norm_weight=True, # apply_norm_weight
apply_norm_weight=True,
enable_softmax_top_k_fused=False,
redundant_ep_rank_num_plus_one=layer.fd_config.model_config.redundant_experts_num + 1,
)
else:
if layer.topk_method == "noaux_tc":
from fastdeploy.model_executor.layers.moe.moe import get_moe_scores
score, topk_weights, topk_idx = get_moe_scores(
gate_out,
layer.n_group,
@@ -365,28 +376,28 @@ class EPRunner:
gate_out,
layer.gate_correction_bias,
self.top_k,
True, # apply_norm_weight,
True,
False,
)
return topk_idx, topk_weights
@abstractmethod
def dispatch(self, *args, **kwargs):
"""
dispatch
"""
raise NotImplementedError
@abstractmethod
def combine(self, *args, **kwargs):
"""
combine
"""
raise NotImplementedError
def clean_low_latency_buffer(self):
self.ep_engine.clean_low_latency_buffer()
def clear_deep_ep_buffer(self):
self.ep_engine.clear_deep_ep_buffer()
def create_deep_ep_buffer(self):
self.ep_engine.create_deep_ep_buffer()
class EPPrefillRunner(EPRunner):
"""
@@ -396,19 +407,19 @@ class EPPrefillRunner(EPRunner):
def __init__(
self,
top_k: int,
hidden: int,
hidden_size: int,
num_experts: int,
splitwise_role: str,
num_max_dispatch_tokens_per_rank: int,
ep_size: int = 1,
ep_rank: int = 0,
redundant_experts_num: int = 0,
ep_group=None,
moe_phase: MoEPhase = MoEPhase("prefill"),
ep_group=None,
):
super().__init__(
top_k,
hidden,
hidden_size,
num_experts,
splitwise_role,
moe_phase,
@@ -427,6 +438,9 @@ class EPPrefillRunner(EPRunner):
*args,
**kwargs,
):
buffer = self.ep_engine.deepep_engine
if buffer is None:
raise RuntimeError("DeepEP buffer not initialized!")
(
num_tokens_per_rank,
@@ -434,7 +448,7 @@ class EPPrefillRunner(EPRunner):
num_tokens_per_expert,
is_token_in_rank,
_,
) = self.ep_engine.deepep_engine.get_dispatch_layout(topk_idx, self.num_experts)
) = buffer.get_dispatch_layout(topk_idx, self.num_experts)
x_scale_tensor = kwargs.get("x_scale_tensor", None)
dispatch_args = {
@@ -443,12 +457,12 @@ class EPPrefillRunner(EPRunner):
"num_tokens_per_rdma_rank": num_tokens_per_rdma_rank,
"is_token_in_rank": is_token_in_rank,
"num_tokens_per_expert": num_tokens_per_expert,
"config": self.ep_engine.ep_config,
"config": self.ep_engine.ep_config, # assuming ep_config still in engine
"async_finish": self.ep_engine.async_finish,
"topk_idx": topk_idx,
"topk_weights": topk_weights,
}
return self.ep_engine.deepep_engine.dispatch(**dispatch_args)
return buffer.dispatch(**dispatch_args)
def combine(
self,
@@ -456,6 +470,10 @@ class EPPrefillRunner(EPRunner):
handle: tuple,
recv_topk_weights: paddle.Tensor,
):
buffer = self.ep_engine.deepep_engine
if buffer is None:
raise RuntimeError("DeepEP buffer not initialized!")
combine_args = {
"x": tmp_ffn_out,
"handle": handle,
@@ -463,8 +481,7 @@ class EPPrefillRunner(EPRunner):
"async_finish": self.ep_engine.async_finish,
"topk_weights": recv_topk_weights,
}
fused_moe_out, _, _ = self.ep_engine.deepep_engine.combine(**combine_args)
fused_moe_out, _, _ = buffer.combine(**combine_args)
return fused_moe_out
@@ -476,7 +493,7 @@ class EPDecoderRunner(EPRunner):
def __init__(
self,
top_k: int,
hidden: int,
hidden_size: int,
num_experts: int,
splitwise_role: str,
num_max_dispatch_tokens_per_rank: int,
@@ -488,7 +505,7 @@ class EPDecoderRunner(EPRunner):
):
super().__init__(
top_k,
hidden,
hidden_size,
num_experts,
splitwise_role,
moe_phase,

View File

@@ -40,67 +40,52 @@ class MoEMethodBase(QuantMethodBase):
"down_proj_weight_scale",
]
self.pack_num = 1
def import_backend_ep_runner(self) -> None:
from .ep import EPDecoderRunner, EPPrefillRunner
self.EPPrefillRunner = EPPrefillRunner
self.EPDecoderRunner = EPDecoderRunner
self.ep_prefill_runner = None
self.ep_decoder_runner = None
def init_ep(self, layer: nn.Layer) -> None:
"""
Init EP related module
Initialize EP (Expert Parallel) related modules.
"""
self.import_backend_ep_runner()
if layer.ep_size > 1:
if layer.fd_config.parallel_config.splitwise_role == "mixed":
self.ep_prefill_runner = self.EPPrefillRunner(
layer.top_k,
layer.hidden_size,
layer.num_experts,
layer.fd_config.parallel_config.splitwise_role,
layer.fd_config.model_config.num_max_dispatch_tokens_per_rank,
layer.ep_size,
layer.ep_rank,
layer.fd_config.model_config.redundant_experts_num,
ep_group=layer.fd_config.parallel_config.ep_group,
)
self.ep_decoder_runner = self.EPDecoderRunner(
layer.top_k,
layer.hidden_size,
layer.num_experts,
layer.fd_config.parallel_config.splitwise_role,
layer.fd_config.model_config.num_max_dispatch_tokens_per_rank,
layer.ep_size,
layer.ep_rank,
layer.fd_config.model_config.redundant_experts_num,
ep_group=layer.fd_config.parallel_config.ep_group,
)
if layer.ep_size <= 1:
return
# Lazy import to avoid circular dependency or unnecessary loading
from .ep import EPDecoderRunner, EPPrefillRunner
# Common arguments for both runners
common_args = {
"top_k": layer.top_k,
"hidden_size": layer.hidden_size,
"num_experts": layer.num_experts,
"splitwise_role": layer.fd_config.parallel_config.splitwise_role,
"num_max_dispatch_tokens_per_rank": layer.fd_config.model_config.num_max_dispatch_tokens_per_rank,
"ep_size": layer.ep_size,
"ep_rank": layer.ep_rank,
"redundant_experts_num": layer.fd_config.model_config.redundant_experts_num,
"ep_group": layer.fd_config.parallel_config.ep_group,
}
config = layer.fd_config
splitwise_role = config.parallel_config.splitwise_role
load_strategy = config.load_config.load_strategy
# For "mixed" splitwise role: conditionally initialize both or none
if splitwise_role == "mixed":
if load_strategy == "meta":
# for RL init model without deepep buff
return
else:
if layer.fd_config.parallel_config.moe_phase.phase == "prefill":
self.ep_prefill_runner = self.EPPrefillRunner(
layer.top_k,
layer.hidden_size,
layer.num_experts,
layer.fd_config.parallel_config.splitwise_role,
layer.fd_config.model_config.num_max_dispatch_tokens_per_rank,
layer.ep_size,
layer.ep_rank,
layer.fd_config.model_config.redundant_experts_num,
ep_group=layer.fd_config.parallel_config.ep_group,
)
self.ep_prefill_runner = EPPrefillRunner(**common_args)
self.ep_decoder_runner = EPDecoderRunner(**common_args)
return
# For non-mixed ep
phase = config.parallel_config.moe_phase.phase
if phase == "prefill":
self.ep_prefill_runner = EPPrefillRunner(**common_args)
else:
self.ep_decoder_runner = self.EPDecoderRunner(
layer.top_k,
layer.hidden_size,
layer.num_experts,
layer.fd_config.parallel_config.splitwise_role,
layer.fd_config.model_config.num_max_dispatch_tokens_per_rank,
layer.ep_size,
layer.ep_rank,
layer.fd_config.model_config.redundant_experts_num,
ep_group=layer.fd_config.parallel_config.ep_group,
)
self.ep_decoder_runner = EPDecoderRunner(**common_args)
def process_loaded_weights(self, layer, weights) -> None:
"""
@@ -190,20 +175,12 @@ class UnquantizedFusedMoEMethod(MoEMethodBase):
def create_weights(self, layer: nn.Layer, **extra_weight_attrs):
if current_platform.is_cuda():
self.up_gate_proj_weight_shape = [
layer.num_local_experts,
layer.hidden_size,
layer.moe_intermediate_size * 2,
]
self.down_proj_weight_shape = [layer.num_local_experts, layer.moe_intermediate_size, layer.hidden_size]
self.up_gate_proj_weight_shape = [layer.num_experts, layer.hidden_size, layer.moe_intermediate_size * 2]
self.down_proj_weight_shape = [layer.num_experts, layer.moe_intermediate_size, layer.hidden_size]
extra_weight_attrs = {**extra_weight_attrs, "SHARD_ID_TO_SHARDED_DIM": {"gate": 1, "down": 0, "up": 1}}
else:
self.up_gate_proj_weight_shape = [
layer.num_local_experts,
layer.moe_intermediate_size * 2,
layer.hidden_size,
]
self.down_proj_weight_shape = [layer.num_local_experts, layer.hidden_size, layer.moe_intermediate_size]
self.up_gate_proj_weight_shape = [layer.num_experts, layer.moe_intermediate_size * 2, layer.hidden_size]
self.down_proj_weight_shape = [layer.num_experts, layer.hidden_size, layer.moe_intermediate_size]
extra_weight_attrs = {**extra_weight_attrs, "SHARD_ID_TO_SHARDED_DIM": {"gate": 0, "down": 1, "up": 0}}
layer.up_gate_proj_weight = layer.create_parameter(
@@ -217,17 +194,18 @@ class UnquantizedFusedMoEMethod(MoEMethodBase):
dtype=layer.weight_dtype,
default_initializer=paddle.nn.initializer.Constant(0),
)
set_weight_attrs(
layer.up_gate_proj_weight,
{
"weight_loader": extra_weight_attrs.get("weight_loader", default_weight_loader(layer.fd_config)),
"weight_need_transpose": extra_weight_attrs.get("model_format") == "torch",
"model_format": extra_weight_attrs.get("model_format", ""),
},
)
set_weight_attrs(
layer.down_proj_weight,
{
"weight_loader": extra_weight_attrs.get("weight_loader", default_weight_loader(layer.fd_config)),
"weight_need_transpose": extra_weight_attrs.get("model_format") == "torch",
"model_format": extra_weight_attrs.get("model_format", ""),
},
)

View File

@@ -39,7 +39,6 @@ elif current_platform.is_iluvatar():
moe_expert_reduce,
)
from fastdeploy.model_executor.layers.moe.moe import get_moe_scores
from fastdeploy.model_executor.utils import TensorTracker, free_tensor, set_weight_attrs
@@ -127,7 +126,7 @@ class CutlassMoEMethod(UnquantizedFusedMoEMethod):
# 3. Compute ffn
if token_all_num > 0:
logger.info(f"token_all_num {token_all_num}")
logger.debug(f"token_all_num {token_all_num}")
(
permute_input,
permute_indices_per_token,
@@ -228,6 +227,8 @@ class CutlassMoEMethod(UnquantizedFusedMoEMethod):
"""
gate_out = gate(x.cast("float32"))
if layer.topk_method == "noaux_tc":
from fastdeploy.model_executor.layers.moe.moe import get_moe_scores
gate_out, _, _ = get_moe_scores(
gate_out,
layer.n_group,

View File

@@ -341,7 +341,7 @@ class DeepGemmFusedMoeMethod(MoEMethodBase):
# 4. Compute ffn
if token_all_num > 0:
logger.info(f"token_all_num {token_all_num}")
logger.debug(f"token_all_num {token_all_num}")
(recv_x, recv_x_scale) = recv_x
token_nums_this_rank = count_tokens_per_expert_func(recv_topk_idx, layer.num_local_experts)

View File

@@ -19,7 +19,6 @@ from paddle import nn
import fastdeploy
from fastdeploy.distributed.communication import tensor_model_parallel_all_reduce
from fastdeploy.model_executor.layers.moe.moe import get_moe_scores
from fastdeploy.model_executor.ops.gpu import (
MoeWna16MarlinGemmApi,
tritonmoe_preprocess_func,
@@ -255,6 +254,8 @@ class MarlinWeightOnlyMoEMethod(QuantMethodBase):
topk_method = layer.topk_method
if topk_method == "noaux_tc":
from fastdeploy.model_executor.layers.moe.moe import get_moe_scores
gate_out, _, _ = get_moe_scores(
gate_out,
layer.n_group,

View File

@@ -48,7 +48,7 @@ class DynamicWeightManager:
logger.info(
f"✅ DynamicLoad model built successfully by {self.load_config.load_strategy}, "
f" rank={self.rank}, ranks={self.nranks}"
f" tp rank={self.rank}, dp rank={fd_config.parallel_config.local_data_parallel_id}, ep rank={fd_config.parallel_config.expert_parallel_rank}, ranks={self.nranks}, "
)
@paddle.no_grad()
@@ -63,11 +63,21 @@ class DynamicWeightManager:
start_time = time.perf_counter()
paddle.device.cuda.empty_cache()
# step1 : restart paddle process group
if not self.first_load:
paddle.distributed.restart_process_group(self.parallel_config.tp_group)
if self.parallel_config.enable_expert_parallel:
paddle.distributed.restart_process_group(self.parallel_config.ep_group)
# step2 : recreat deepep buffer when enable expert parallel
if self.parallel_config.enable_expert_parallel and not self.first_load:
from fastdeploy.model_executor.layers.moe.ep import DeepEPBufferManager
DeepEPBufferManager.recreate_buffer()
# ep barrier
paddle.distributed.barrier(self.parallel_config.ep_group)
# step3 : update model weight
strategy_handlers = {
"ipc_snapshot": self._update_ipc_snapshot,
"ipc": self._update_ipc,
@@ -80,6 +90,11 @@ class DynamicWeightManager:
logger.info(f"Update parameters in {time.perf_counter()-start_time:.2f}s")
# steps in the runner
# step4: reinitialze kv_cache in the runner
# step5: recapture cuda_graph
# step6: update weight status signal
def _update_ipc_snapshot(self):
"""Update using IPC snapshot strategy for elastic recovery."""
model_path = os.path.join(
@@ -105,18 +120,34 @@ class DynamicWeightManager:
def clear_parameters(self, pid: int = 0) -> None:
"""Clear all model parameters and free memory."""
logger.info("start clear parameters")
logger.info("start clear paramaters")
# step1: release deepep buffer
if self.parallel_config.enable_expert_parallel:
from fastdeploy.model_executor.layers.moe.ep import DeepEPBufferManager
DeepEPBufferManager.clear_buffer()
# ep barrier
paddle.distributed.barrier(self.parallel_config.ep_group)
# shutdown ep group
paddle.distributed.shutdown_process_group(self.parallel_config.ep_group)
paddle.device.cuda.empty_cache()
# step2: release model weight
for param in self.model.state_dict().values():
param._clear_data()
self._verify_parameters("clearance")
if self.parallel_config.tensor_parallel_size > 1:
# tp barrier
paddle.distributed.barrier(self.parallel_config.tp_group)
# shutdown tp group
paddle.distributed.shutdown_process_group(self.parallel_config.tp_group)
if self.parallel_config.enable_expert_parallel:
paddle.distributed.barrier(self.parallel_config.ep_group)
paddle.distributed.shutdown_process_group(self.parallel_config.ep_group)
# step3: update model weight signal
# step4: release kv cache in the runner
self._update_shared_status(pid, -2)
def _update_model_from_state(self, state_dict: Dict[str, paddle.Tensor], src_type: str):
@@ -145,10 +176,16 @@ class DynamicWeightManager:
def finalize_update(self, pid: int = 0):
"""Finalize update process with verification."""
self._verify_parameters("update")
if self.parallel_config.tensor_parallel_size > 1:
paddle.distributed.barrier(self.parallel_config.tp_group)
if self.parallel_config.enable_expert_parallel:
paddle.distributed.barrier(self.parallel_config.ep_group)
if not self.first_load:
self._update_shared_status(pid, 0)
self.first_load = False
def _get_gpu_id(self) -> int:

View File

@@ -26,13 +26,13 @@ class RolloutModelConfig:
max_model_len: int = 32768,
tensor_parallel_size: int = 4,
dynamic_load_weight: bool = True,
load_strategy: str = "ipc_snapshot",
load_strategy: str = "meta",
enable_mm: bool = False,
# Default values for all other parameters
max_num_seqs: int = 34,
total_block_num: int = 2000,
block_size: int = 64,
engine_worker_queue_port: int = 9923,
engine_worker_queue_port: str = "8002",
device_ids: str = "0",
dtype: str = "bfloat16",
enc_dec_block_num: int = 1,

View File

@@ -262,10 +262,10 @@ class PaddleDisWorkerProc:
self.nnode = int((self.parallel_config.tensor_parallel_size + 7) // 8)
req_ids = []
num_running_requests = 0
local_rank = self.local_rank % self.parallel_config.tensor_parallel_size
self.model_weights_signal = np.zeros([1], dtype=np.int32)
while True:
if self.local_rank % self.parallel_config.tensor_parallel_size == 0:
if local_rank == 0:
if self.model_weights_status.value[0] != 0:
self.model_weights_signal[0] = int(self.model_weights_status.value[0])
if self.fd_config.load_config.dynamic_load_weight and self.parallel_config.enable_expert_parallel:
@@ -283,7 +283,7 @@ class PaddleDisWorkerProc:
self.worker_healthy_live_signal.value[local_rank % self.max_chips_per_node] = int(time.time())
# The first worker detects whether there are tasks in the task queue
if self.local_rank % self.parallel_config.tensor_parallel_size == 0:
if local_rank == 0:
if self.task_queue.num_tasks() > 0:
# VL only support 1 batch to prefill
if envs.ENABLE_V1_KVCACHE_SCHEDULER or not (
@@ -598,7 +598,7 @@ def parse_args():
parser.add_argument(
"--load_strategy",
type=str,
choices=["ipc", "ipc_snapshot"],
choices=["ipc", "ipc_snapshot", "meta", "normal"],
default="ipc_snapshot",
help="Weight loading method when dynamic loading is enabled: "
"'ipc': real-time IPC streaming with automatic resharding, "
@@ -683,10 +683,11 @@ def initialize_fd_config(args, ranks: int = 1, local_rank: int = 0) -> FDConfig:
parallel_config.num_experts_per_rank = num_experts_per_rank
parallel_config.num_experts_start_offset = num_experts_start_offset
if args.load_strategy != "meta":
parallel_config.engine_worker_queue_port = parallel_config.engine_worker_queue_port[
parallel_config.local_data_parallel_id
]
parallel_config.set_tp_group()
parallel_config.set_communicate_group()
load_config = LoadConfig(vars(args))

View File

@@ -5,6 +5,7 @@ from fastdeploy.config import (
CacheConfig,
FDConfig,
GraphOptimizationConfig,
LoadConfig,
ParallelConfig,
SchedulerConfig,
)
@@ -15,10 +16,12 @@ class TestConfig(unittest.TestCase):
parallel_config = ParallelConfig({"tensor_parallel_size": 16, "expert_parallel_size": 1})
graph_opt_config = GraphOptimizationConfig({})
cache_config = CacheConfig({})
load_config = LoadConfig({})
scheduler_config = SchedulerConfig({})
fd_config = FDConfig(
parallel_config=parallel_config,
graph_opt_config=graph_opt_config,
load_config=load_config,
cache_config=cache_config,
scheduler_config=scheduler_config,
ips=["1.1.1.1", "0.0.0.0"],
@@ -31,10 +34,12 @@ class TestConfig(unittest.TestCase):
parallel_config = ParallelConfig({})
graph_opt_config = GraphOptimizationConfig({})
cache_config = CacheConfig({})
load_config = LoadConfig({})
scheduler_config = SchedulerConfig({})
fd_config = FDConfig(
parallel_config=parallel_config,
graph_opt_config=graph_opt_config,
load_config=load_config,
cache_config=cache_config,
scheduler_config=scheduler_config,
ips="0.0.0.0",
@@ -46,12 +51,14 @@ class TestConfig(unittest.TestCase):
parallel_config = ParallelConfig({})
graph_opt_config = GraphOptimizationConfig({})
cache_config = CacheConfig({})
load_config = LoadConfig({})
cache_config.enable_chunked_prefill = True
scheduler_config = SchedulerConfig({})
fd_config = FDConfig(
parallel_config=parallel_config,
graph_opt_config=graph_opt_config,
cache_config=cache_config,
load_config=load_config,
scheduler_config=scheduler_config,
ips="0.0.0.0",
test_mode=True,
@@ -64,6 +71,7 @@ class TestConfig(unittest.TestCase):
parallel_config=parallel_config,
graph_opt_config=graph_opt_config,
cache_config=cache_config,
load_config=load_config,
scheduler_config=scheduler_config,
ips="0.0.0.0",
test_mode=True,
@@ -77,11 +85,13 @@ class TestConfig(unittest.TestCase):
cache_config = CacheConfig({})
cache_config.cache_transfer_protocol = "rdma,ipc"
cache_config.pd_comm_port = "2334"
load_config = LoadConfig({})
scheduler_config = SchedulerConfig({})
fd_config = FDConfig(
parallel_config=parallel_config,
graph_opt_config=graph_opt_config,
cache_config=cache_config,
load_config=load_config,
scheduler_config=scheduler_config,
splitwise_role="prefill",
test_mode=True,