mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00
[NewFeature]Support dp multi api server && Fix some bug in mixed ep && merge develop (#3598)
* [Feature] update ep * fix ci * fix ci * fix ci * fix ci * fix ci * fix ci * fix ci * fix queue ports idx * fix ci * fix ci * fix ci * fix ci * fix ci * fix ci * fix ci * fix ci * Update engine.py * fix ci * fix some bug in mixed ep * add server fix and op fix * rm some log * fix code style * ltd fix * fix * fix * fix some bug * fix bug * fix bug * fix style * Update config.py * Update splitwise_connector.py * Update cache_messager.py * Update __init__.py * merge and fix * Update engine.py * Update common_engine.py * Update run_ci_xpu.sh * Update ernie_processor.py * Update ernie_processor.py --------- Co-authored-by: ltd0924 <ltd0924@sina.com> Co-authored-by: ltd0924 <32387785+ltd0924@users.noreply.github.com>
This commit is contained in:
@@ -25,12 +25,9 @@ import weakref
|
||||
|
||||
import numpy as np
|
||||
|
||||
from fastdeploy.engine.resource_manager import ResourceManager
|
||||
from fastdeploy.inter_communicator import EngineWorkerQueue, IPCSignal
|
||||
from fastdeploy.metrics.metrics import main_process_metrics
|
||||
from fastdeploy.output.token_processor import TokenProcessor
|
||||
from fastdeploy.splitwise.splitwise_connector import SplitwiseConnector
|
||||
from fastdeploy.utils import EngineError, console_logger, llm_logger
|
||||
from fastdeploy.engine.common_engine import EngineSevice
|
||||
from fastdeploy.inter_communicator import IPCSignal
|
||||
from fastdeploy.utils import console_logger, envs, llm_logger
|
||||
|
||||
|
||||
class ExpertService:
|
||||
@@ -49,36 +46,16 @@ class ExpertService:
|
||||
Args:
|
||||
cfg (Config): Config object containing all the configuration parameters.
|
||||
"""
|
||||
|
||||
self.cfg = cfg
|
||||
start_pos = (local_data_parallel_id * self.cfg.parallel_config.tensor_parallel_size) % cfg.worker_num_per_node
|
||||
end_pos = start_pos + self.cfg.parallel_config.tensor_parallel_size
|
||||
if cfg.splitwise_role != "mixed":
|
||||
self.cfg.cache_config.rdma_comm_ports = self.cfg.cache_config.rdma_comm_ports[start_pos:end_pos]
|
||||
self.cfg.local_device_ids = self.cfg.device_ids.split(",")[start_pos:end_pos]
|
||||
self.cfg.parallel_config.local_data_parallel_id = local_data_parallel_id
|
||||
llm_logger.info(f"local_data_parallel_id: {local_data_parallel_id}")
|
||||
self.cfg.disaggregate_info = None
|
||||
|
||||
self.scheduler = cfg.scheduler_config.scheduler()
|
||||
if cfg.splitwise_role != "mixed":
|
||||
self.scheduler.reset_nodeid(f"{self.scheduler.infer.nodeid}_{local_data_parallel_id!s}")
|
||||
|
||||
self.cfg.parallel_config.local_data_parallel_id = local_data_parallel_id
|
||||
|
||||
address = (cfg.master_ip, cfg.engine_worker_queue_port)
|
||||
self.engine_worker_queue = EngineWorkerQueue(
|
||||
address=address,
|
||||
is_server=False,
|
||||
client_id=0,
|
||||
num_client=cfg.parallel_config.tensor_parallel_size,
|
||||
local_data_parallel_id=local_data_parallel_id,
|
||||
)
|
||||
self.resource_manager = ResourceManager(
|
||||
cfg.max_num_seqs,
|
||||
cfg,
|
||||
cfg.parallel_config.tensor_parallel_size,
|
||||
cfg.splitwise_role,
|
||||
local_data_parallel_id,
|
||||
)
|
||||
if cfg.splitwise_role != "mixed":
|
||||
if len(self.cfg.cache_config.pd_comm_port) == 1:
|
||||
self.cfg.cache_config.pd_comm_port[0] = (
|
||||
@@ -86,29 +63,11 @@ class ExpertService:
|
||||
)
|
||||
else:
|
||||
self.cfg.cache_config.pd_comm_port = [self.cfg.cache_config.pd_comm_port[local_data_parallel_id]]
|
||||
self.cfg.parallel_config.local_data_parallel_id = local_data_parallel_id
|
||||
|
||||
self.split_connector = SplitwiseConnector(
|
||||
self.cfg,
|
||||
self.scheduler,
|
||||
self.engine_worker_queue,
|
||||
self.resource_manager,
|
||||
)
|
||||
|
||||
self.token_processor = TokenProcessor(
|
||||
cfg=cfg,
|
||||
cached_generated_tokens=self.scheduler,
|
||||
engine_worker_queue=self.engine_worker_queue,
|
||||
split_connector=self.split_connector,
|
||||
)
|
||||
self.token_processor.set_resource_manager(self.resource_manager)
|
||||
|
||||
self.partial_chunked_tokens = [0] * (self.cfg.max_num_partial_prefills + 1)
|
||||
for idx in range(1, self.cfg.max_num_partial_prefills + 1):
|
||||
self.partial_chunked_tokens[idx] = (
|
||||
(self.cfg.max_num_batched_tokens // idx)
|
||||
// self.cfg.cache_config.block_size
|
||||
* self.cfg.cache_config.block_size
|
||||
)
|
||||
self.engine = EngineSevice(self.cfg)
|
||||
if self.cfg.scheduler_config.name == "splitwise":
|
||||
self.engine.scheduler.reset_nodeid(f"{self.engine.scheduler.infer.nodeid}_{local_data_parallel_id!s}")
|
||||
|
||||
self._finalizer = weakref.finalize(self, self._exit_sub_services)
|
||||
|
||||
@@ -119,245 +78,62 @@ class ExpertService:
|
||||
to keep getting request from zmq_server.
|
||||
"""
|
||||
# assert not self.is_started, "The engine is already started."
|
||||
|
||||
start_time = time.time()
|
||||
self.engine.start()
|
||||
if ipc_signal_suffix is not None:
|
||||
self.api_server_pid = ipc_signal_suffix
|
||||
self.engine.start_zmq_service(ipc_signal_suffix)
|
||||
else:
|
||||
ipc_signal_suffix = self.cfg.engine_worker_queue_port[0]
|
||||
|
||||
llm_logger.info(f"start expert service {local_data_parallel_id}")
|
||||
if self.cfg.splitwise_role != "mixed":
|
||||
self.cache_manager_processes = self.resource_manager.cache_manager.launch_cache_manager(
|
||||
cache_config=self.cfg.cache_config,
|
||||
tensor_parallel_size=self.cfg.parallel_config.tensor_parallel_size,
|
||||
device_ids=self.cfg.local_device_ids,
|
||||
pod_ip=self.cfg.master_ip,
|
||||
engine_worker_queue_port=self.cfg.engine_worker_queue_port,
|
||||
pid_suffix=f"{local_data_parallel_id}_{ipc_signal_suffix}",
|
||||
self.engine.start_cache_service(self.cfg.local_device_ids, ipc_signal_suffix)
|
||||
self.engine.split_mode_get_tasks()
|
||||
|
||||
if self.cfg.scheduler_config.name == "splitwise":
|
||||
self.cfg.init_cache_info()
|
||||
role = self.cfg.splitwise_role
|
||||
host_ip = self.cfg.host_ip
|
||||
disaggregate = self.cfg.disaggregate_info
|
||||
self.engine.scheduler.start(role, host_ip, disaggregate)
|
||||
|
||||
if self.cfg.splitwise_role != "mixed":
|
||||
self.splitwise_receive_thread = threading.Thread(
|
||||
target=self.engine.split_connector.start_receiver, args=()
|
||||
)
|
||||
self.split_mode_get_tasks()
|
||||
|
||||
self.insert_task_to_worker_thread = threading.Thread(target=self._insert_task_to_worker, args=())
|
||||
self.insert_task_to_worker_thread.daemon = True
|
||||
self.insert_task_to_worker_thread.start()
|
||||
|
||||
# Start TokenProcessor thread
|
||||
os.environ["INFERENCE_MSG_QUEUE_ID"] = str(local_data_parallel_id + int(self.cfg.engine_worker_queue_port))
|
||||
|
||||
self.token_processor.run()
|
||||
self.cfg.init_cache_info()
|
||||
role = self.cfg.splitwise_role
|
||||
host_ip = self.cfg.host_ip
|
||||
disaggregate = self.cfg.disaggregate_info
|
||||
self.scheduler.start(role, host_ip, disaggregate)
|
||||
self.splitwise_receive_thread.daemon = True
|
||||
self.splitwise_receive_thread.start()
|
||||
self.cfg.print()
|
||||
|
||||
launched_expert_service_signal_data = np.zeros(
|
||||
shape=[self.cfg.parallel_config.data_parallel_size // self.cfg.nnode], dtype=np.int32
|
||||
)
|
||||
self.launched_expert_service_signal = IPCSignal(
|
||||
name="launched_expert_service_signal",
|
||||
array=launched_expert_service_signal_data,
|
||||
dtype=np.int32,
|
||||
suffix=ipc_signal_suffix,
|
||||
create=False,
|
||||
)
|
||||
local_rank = local_data_parallel_id % self.cfg.worker_num_per_node
|
||||
self.launched_expert_service_signal.value[local_rank] = 1
|
||||
|
||||
if not envs.FD_ENABLE_MULTI_API_SERVER:
|
||||
launched_expert_service_signal_data = np.zeros(
|
||||
shape=[self.cfg.parallel_config.data_parallel_size // self.cfg.nnode], dtype=np.int32
|
||||
)
|
||||
self.launched_expert_service_signal = IPCSignal(
|
||||
name="launched_expert_service_signal",
|
||||
array=launched_expert_service_signal_data,
|
||||
dtype=np.int32,
|
||||
suffix=ipc_signal_suffix,
|
||||
create=False,
|
||||
)
|
||||
self.launched_expert_service_signal.value[local_rank] = 1
|
||||
|
||||
console_logger.info(
|
||||
f"Worker processes(rank {local_rank}) are launched with {time.time() - start_time} seconds."
|
||||
)
|
||||
return True
|
||||
|
||||
def _insert_task_to_worker(self):
|
||||
"""
|
||||
Insert task to engine thread, monitor scheduler request queue.
|
||||
if the engine has resource, insert task to engine
|
||||
"""
|
||||
current_id = -1
|
||||
while True:
|
||||
try:
|
||||
if self.resource_manager.available_batch() == 0:
|
||||
time.sleep(0.001)
|
||||
continue
|
||||
if self.engine_worker_queue.num_tasks() > 0:
|
||||
time.sleep(0.001)
|
||||
continue
|
||||
if len(self.split_connector.current_request_ids) > 0:
|
||||
time.sleep(0.001)
|
||||
continue
|
||||
|
||||
num_prefill_batch = min(
|
||||
int(self.resource_manager.available_batch()),
|
||||
self.cfg.max_prefill_batch,
|
||||
)
|
||||
|
||||
self.resource_manager.check_and_free_block_tables()
|
||||
tasks = self.scheduler.get_requests(
|
||||
available_blocks=self.resource_manager.available_block_num(),
|
||||
block_size=self.cfg.cache_config.block_size,
|
||||
reserved_output_blocks=self.cfg.cache_config.enc_dec_block_num,
|
||||
max_num_batched_tokens=self.cfg.max_num_batched_tokens,
|
||||
batch=num_prefill_batch,
|
||||
)
|
||||
|
||||
if len(tasks) == 0:
|
||||
time.sleep(0.001)
|
||||
continue
|
||||
|
||||
if self.cfg.splitwise_role != "mixed":
|
||||
llm_logger.info("Inserting splitwise tasks")
|
||||
self.split_connector.send_splitwise_tasks(tasks, current_id)
|
||||
|
||||
current_id = (current_id + 1) % 100003
|
||||
|
||||
self.insert_tasks(tasks, current_id)
|
||||
|
||||
main_process_metrics.num_requests_waiting.dec(len(tasks))
|
||||
main_process_metrics.num_requests_running.inc(len(tasks))
|
||||
except Exception as e:
|
||||
err_msg = f"Error happend while insert task to engine: {e}, {traceback.format_exc()!s}."
|
||||
llm_logger.error(err_msg)
|
||||
|
||||
def split_mode_get_tasks(self):
|
||||
"""
|
||||
Split mode get tasks
|
||||
"""
|
||||
waiting_requests = []
|
||||
|
||||
def receiver_loop():
|
||||
while True:
|
||||
try:
|
||||
if len(waiting_requests) > 0:
|
||||
for task in waiting_requests:
|
||||
if self.resource_manager.is_resource_sufficient(task.prompt_token_ids_len):
|
||||
self.insert_tasks([task])
|
||||
waiting_requests.remove(task)
|
||||
else:
|
||||
break
|
||||
if not self.engine_worker_queue.disaggregate_queue_empty():
|
||||
items = self.engine_worker_queue.get_disaggregated_tasks()
|
||||
for item in items:
|
||||
role = item[0]
|
||||
tasks = item[1]
|
||||
if role == "prefill":
|
||||
llm_logger.info("get prefill tasks")
|
||||
for task in tasks:
|
||||
task.max_tokens = task.min_tokens = 2
|
||||
self.insert_tasks(tasks)
|
||||
elif role == "decode":
|
||||
llm_logger.info(f"get decode tasks {tasks}")
|
||||
if hasattr(tasks[0], "finished"):
|
||||
if not isinstance(tasks, list):
|
||||
tasks = [tasks]
|
||||
for task in tasks:
|
||||
task.finished = False
|
||||
# self.scheduler.put_results(tasks)
|
||||
|
||||
self.insert_tasks(tasks, allocated=True)
|
||||
else:
|
||||
if len(waiting_requests):
|
||||
for task in tasks:
|
||||
waiting_requests.append(task)
|
||||
else:
|
||||
for task in tasks:
|
||||
if not self.resource_manager.is_resource_sufficient(
|
||||
task.prompt_token_ids_len
|
||||
):
|
||||
waiting_requests.append(task)
|
||||
else:
|
||||
self.insert_tasks([task])
|
||||
|
||||
else:
|
||||
time.sleep(0.001)
|
||||
continue
|
||||
except Exception as e:
|
||||
llm_logger.error(f"get decode tasks error: {e}, {str(traceback.format_exc())}")
|
||||
|
||||
threading.Thread(target=receiver_loop, daemon=True).start()
|
||||
|
||||
def insert_tasks(self, tasks, current_id=-1, allocated=False):
|
||||
"""
|
||||
Insert tasks to engine.
|
||||
"""
|
||||
if allocated:
|
||||
current_tasks = []
|
||||
for task in tasks:
|
||||
cur_task_idx = self.resource_manager.req_dict[task.request_id]
|
||||
del self.resource_manager.req_dict[task.request_id]
|
||||
cur_task = self.resource_manager.tasks_list[cur_task_idx]
|
||||
if task.error_code != 200:
|
||||
self.resource_manager.stop_flags[cur_task_idx] = True
|
||||
self.resource_manager.tasks_list[cur_task_idx] = None
|
||||
self.resource_manager._recycle_block_tables(cur_task)
|
||||
if task.request_id in self.token_processor.tokens_counter:
|
||||
del self.token_processor.tokens_counter[task.request_id]
|
||||
self.scheduler.put_results([task])
|
||||
llm_logger.warning(
|
||||
f"{task.request_id} prefill failed with msg:{task.error_msg}, recycle resource."
|
||||
)
|
||||
continue
|
||||
llm_logger.info(f"{cur_task_idx} {task.request_id}")
|
||||
cur_task.prompt_token_ids[0] = task.outputs.token_ids[0]
|
||||
self.token_processor.tokens_counter[task.request_id] = 1
|
||||
current_tasks.append(cur_task)
|
||||
self.engine_worker_queue.put_tasks((current_tasks, self.resource_manager.real_bsz))
|
||||
return True
|
||||
|
||||
self.resource_manager.check_and_free_block_tables()
|
||||
|
||||
if not isinstance(tasks, list):
|
||||
tasks = [tasks]
|
||||
|
||||
for item in tasks:
|
||||
item.schedule_start_time = time.time()
|
||||
|
||||
available_batch = np.sum(self.resource_manager.stop_flags)
|
||||
if len(tasks) > available_batch:
|
||||
llm_logger.error(f"Inserting batch:{len(tasks)} exceeds the available batch:{available_batch}.")
|
||||
llm_logger.error("The exceeded part will be ignored!")
|
||||
tasks = tasks[:available_batch]
|
||||
|
||||
req_ids = [t.request_id for t in tasks]
|
||||
|
||||
tasks = self.resource_manager.allocate_resources_for_new_tasks(tasks)
|
||||
|
||||
if not tasks:
|
||||
error_msg = f"The request required resources is exceed the limit, request id={req_ids}."
|
||||
llm_logger.error(error_msg)
|
||||
raise EngineError(error_msg, error_code=500)
|
||||
return False
|
||||
|
||||
self.token_processor.number_of_tasks += len(tasks)
|
||||
|
||||
is_decode = False
|
||||
is_prefill = False
|
||||
for i in range(len(tasks)):
|
||||
if tasks[i].disaggregate_info is not None:
|
||||
if tasks[i].disaggregate_info["role"] == "decode":
|
||||
is_decode = True
|
||||
else:
|
||||
is_prefill = True
|
||||
self.token_processor.number_of_input_tokens += tasks[i].prompt_token_ids_len
|
||||
if is_decode or is_prefill:
|
||||
self.split_connector.send_cache_infos(tasks, current_id)
|
||||
for task in tasks:
|
||||
task.infer_start_time = time.time()
|
||||
if not is_decode:
|
||||
llm_logger.info(f"Tasks are sent to engine, req_ids={req_ids}")
|
||||
if not is_prefill and self.cfg.cache_config.enable_chunked_prefill:
|
||||
if not self.cfg.model_config.enable_mm:
|
||||
self.update_requests_chunk_size(tasks)
|
||||
else:
|
||||
self.update_mm_requests_chunk_size(tasks)
|
||||
self.engine_worker_queue.put_tasks((tasks, self.resource_manager.real_bsz))
|
||||
return True
|
||||
|
||||
def _exit_sub_services(self):
|
||||
"""
|
||||
exit sub services
|
||||
"""
|
||||
|
||||
if hasattr(self, "cache_manager_processes"):
|
||||
self.resource_manager.cache_manager.shm_cache_task_flag_broadcast.clear()
|
||||
self.resource_manager.cache_manager.cache_ready_signal.clear()
|
||||
self.engine.resource_manager.cache_manager.shm_cache_task_flag_broadcast.clear()
|
||||
self.engine.resource_manager.cache_manager.cache_ready_signal.clear()
|
||||
for p in self.cache_manager_processes:
|
||||
llm_logger.info(f"Killing cache manager process {p.pid}")
|
||||
try:
|
||||
@@ -369,13 +145,16 @@ class ExpertService:
|
||||
self.zmq_server.close()
|
||||
|
||||
|
||||
def start_expert_service(cfg, local_data_parallel_id, ipc_signal_suffix):
|
||||
def start_data_parallel_service(cfg, local_data_parallel_id, ipc_signal_suffix=None):
|
||||
"""
|
||||
Start expert service
|
||||
"""
|
||||
expert_service = ExpertService(cfg, local_data_parallel_id)
|
||||
|
||||
try:
|
||||
expert_service.start(ipc_signal_suffix, local_data_parallel_id)
|
||||
expert_service.split_connector.start_receiver()
|
||||
while True:
|
||||
time.sleep(1000)
|
||||
|
||||
except Exception as e:
|
||||
llm_logger.exception(f"Expert service failed to start: {e}, {str(traceback.format_exc())}")
|
||||
|
Reference in New Issue
Block a user