[Feature] Support return logprob of generated tokens (#2784)

* online chat support logprobs

* check xpu

* check vl_gpu_model_runner

* only cuda support logprob

* get_worker() check platform

---------

Co-authored-by: Jiang-Jia-Jun <163579578+Jiang-Jia-Jun@users.noreply.github.com>
This commit is contained in:
chen
2025-07-10 15:47:42 +08:00
committed by GitHub
parent 39d2a1de46
commit 823a47e64a
21 changed files with 592 additions and 105 deletions

View File

@@ -30,9 +30,11 @@ from fastdeploy.inter_communicator import IPCSignal
from fastdeploy.metrics.metrics import main_process_metrics
from fastdeploy.platforms import current_platform
from fastdeploy.utils import llm_logger, spec_logger
from fastdeploy.worker.output import LogprobsLists
RECOVERY_STOP_SIGNAL = -3
MAX_BSZ = 512
K = 20
MAX_DRAFT_TOKENS = 6
SPECULATE_MAX_BSZ = 256
@@ -62,6 +64,13 @@ class TokenProcessor(object):
],
fill_value=2,
dtype="int64")
elif self.cfg.enable_logprob:
self.output_tokens = paddle.full(
shape=[MAX_BSZ * (K + 1) + 2, 1], fill_value=2, dtype="int64")
self.output_scores = paddle.full(
shape=[MAX_BSZ * (K + 1), 1], fill_value=0.0, dtype="float32")
self.output_ranks = paddle.full(
shape=[MAX_BSZ], fill_value=0, dtype="int64")
else:
self.output_tokens = paddle.full(shape=[MAX_BSZ + 2, 1],
fill_value=2,
@@ -109,12 +118,51 @@ class TokenProcessor(object):
assert self.resource_manager is not None, "The resource manager is None, cannot run."
if self.worker is not None:
raise Exception("Worker is already running!")
use_logprobs = (
self.cfg.enable_logprob
and not self.speculative_decoding
and not self.cfg.parallel_config.enable_expert_parallel
)
target_func = (
self.process_sampling_with_logprob_results
if use_logprobs else
self.process_sampling_results
)
self.worker = threading.Thread(target=target_func)
self.worker = threading.Thread(target=self.process_sampling_results,
args=())
self.worker.daemon = True
self.worker.start()
def process_sampling_with_logprob_results(self):
"""
read tokens from paddle inference engine and process logprob results
"""
if current_platform.is_cuda():
from fastdeploy.model_executor.ops.gpu import get_output_topk
else:
raise NotImplementedError("Only CUDA platform supports logprob.")
rank_id = self.cfg.parallel_config.local_data_parallel_id
while True:
try:
is_blocking = True
get_output_topk(self.output_tokens, self.output_scores, self.output_ranks, K, rank_id, is_blocking)
if self.output_tokens[0, 0] == -2:
continue
llm_logger.debug(
f"rank_id {rank_id} self.output_tokens[0, 0] {self.output_tokens[0, 0]}"
f"rank_id {rank_id} self.output_scores[0, 0] {self.output_scores[0, 0]}"
)
self._process_prefill_metrics()
self._process_sampling_with_logprob_batch_output()
except Exception as e:
llm_logger.info("while get input_data error: {0} {1}".format(
e, str(traceback.format_exc())))
def process_sampling_results(self):
"""
read tokens from paddle inference engine and process
@@ -245,6 +293,122 @@ class TokenProcessor(object):
self.number_of_output_tokens = 0
self.total_step = 0
def _process_sampling_with_logprob_batch_output(self):
"""
batch post-processing logprob output function
"""
batch = self.output_tokens[1, 0]
tokens = self.output_tokens[2:batch * (K + 1) + 2].numpy().reshape(
[batch, K + 1])[:, :(K + 1)]
scores = self.output_scores[:batch * (K + 1)].numpy().reshape(
[batch, K + 1])[:, :(K + 1)]
ranks = self.output_ranks[:batch].numpy()
batch_result = list()
for i in range(batch):
if self.resource_manager.stop_flags[i]:
continue
task = self.resource_manager.tasks_list[i]
task_id = task.request_id
token_id = int(tokens[i, 0])
token_ids = [token_id]
recovery_stop = token_id == RECOVERY_STOP_SIGNAL
if recovery_stop:
llm_logger.info(
f"recovery stop signal found at task {task_id}")
if not recovery_stop and token_id < 0:
continue
if task.get("prefill_chunk_info", None) is not None:
prefill_chunk_num = task.get("prefill_chunk_num", 0)
task.prefill_chunk_num = prefill_chunk_num + 1
if task.prefill_chunk_num < len(task.prefill_chunk_info):
continue
self.total_step += 1
current_time = time.time()
if self.tokens_counter[task_id] == 0:
metrics = RequestMetrics(
arrival_time=task.arrival_time,
inference_start_time=task.inference_start_time,
first_token_time=time.time() - task.inference_start_time,
time_in_queue=task.schedule_start_time -
task.preprocess_end_time,
preprocess_cost_time=task.preprocess_end_time -
task.preprocess_start_time)
self._record_first_token_metrics(task, current_time)
else:
metrics = RequestMetrics(
arrival_time=time.time(),
request_start_time=task.arrival_time,
)
self.number_of_output_tokens += len(token_ids)
self._record_metrics(task, current_time, token_ids)
result = RequestOutput(request_id=task_id,
outputs=CompletionOutput(
index=i,
send_idx=self.tokens_counter[task_id],
token_ids=[],
logprob = None,
draft_token_ids=[],
top_logprobs=None,
),
finished=False,
metrics=metrics)
if self.tokens_counter[task_id] == 0:
if task.messages is not None:
result.prompt = task.messages
result.num_cached_tokens = task.num_cached_tokens
is_prefill = task.disaggregate_info is not None and task.disaggregate_info[
"role"] == "prefill"
if is_prefill and len(token_ids) > 1:
result.outputs.draft_token_ids = copy.deepcopy(token_ids)
for idx, token_id in enumerate(token_ids):
self.tokens_counter[task_id] += 1
if token_id != RECOVERY_STOP_SIGNAL:
result.outputs.token_ids.append(token_id)
result.outputs.logprob = float(scores[i, 0])
# Construct top_logprobs
topk_token_ids = tokens[i, :].tolist()
topk_logprobs = scores[i, :].tolist()
sampled_rank = ranks[i].item()
result.outputs.top_logprobs = LogprobsLists(
logprob_token_ids=[topk_token_ids],
logprobs=[topk_logprobs],
sampled_token_ranks=[sampled_rank]
)
if token_id in task.eos_token_ids or is_prefill or recovery_stop:
result.finished = True
result.prompt = task.prompt
result.prompt_token_ids = task.prompt_token_ids
if recovery_stop:
result.error_msg = "Recover is not supported, the result is incomplete!"
llm_logger.info(
f"Request: {task_id} finished, number of "
f"generated tokens: {self.tokens_counter[task_id]}.")
llm_logger.info(
f"Request: {task_id} token ratio: {self.tokens_counter[task_id] / (time.time() - task.inference_start_time)}"
)
llm_logger.info(f"{self.resource_manager.info()}")
if self.cfg.speculative_config.method:
self._compute_speculative_status()
if not is_prefill:
self._record_completion_metrics(task, current_time)
self._recycle_resources(task_id, i, task, result,
is_prefill)
break
if not is_prefill or self.cfg.scheduler_config.name == "splitwise":
batch_result.append(result)
self.postprocess(batch_result)
def _process_batch_output(self):
"""
batch post-processing function