Revert "【New Feature】W4afp8 supports per group quantization (#4272)" (#4854)

This reverts commit 93fcf7e4ec.
This commit is contained in:
YuBaoku
2025-11-06 17:48:28 +08:00
committed by GitHub
parent 3478d20262
commit 819b2dbbae
26 changed files with 1718 additions and 4378 deletions

View File

@@ -17,20 +17,16 @@ import unittest
import numpy as np
import paddle
from fastdeploy.model_executor.ops.gpu import (
w4afp8_gemm,
w4afp8_gemm_scale_permute,
w4afp8_gemm_weight_convert,
)
from fastdeploy.model_executor.ops.gpu import w4afp8_gemm, w4afp8_gemm_weight_convert
class TestW4AFP8GEMM(unittest.TestCase):
def setUp(self):
paddle.seed(0)
self.tokens_per_group = 1
self.N = 1792
self.K = 8192
self.BATCH = 64
self.tokens_per_group = 256
self.N = 256
self.K = 256
self.BATCH = 1
self.TokenPadding = 0
tokens = [self.tokens_per_group] * self.BATCH
@@ -42,15 +38,14 @@ class TestW4AFP8GEMM(unittest.TestCase):
self.input_fp8 = paddle.randn([self.all_tokens, self.K], dtype="bfloat16").astype(paddle.float8_e4m3fn)
self.input_bf16 = self.input_fp8.astype("bfloat16")
self.weight = paddle.randn([self.BATCH, self.N, self.K], dtype="bfloat16")
self.weight = paddle.randn([self.BATCH, self.N, self.K], dtype="bfloat16") / 10
self.weight_scale = 7 / self.weight.abs().max(axis=-1).reshape([self.BATCH, self.N, 1])
self.weight_quant = (self.weight * self.weight_scale).astype("int")
self.weight_quant = paddle.clip(self.weight_quant, -7, 7)
self.weight_quant_naive = self.weight_quant.astype("float32")
self.weight_quant = (self.weight * self.weight_scale).astype("int") + 7
self.weight_quant = paddle.clip(self.weight_quant, 0, 14)
self.weight_quant = self.weight_quant.astype("bfloat16")
self.weight_quant = paddle.where(self.weight_quant > 0, self.weight_quant, 8 - self.weight_quant)
self.weight_dequant_scale = 1 / self.weight_scale.astype("float32")
self.input_row_sum = self.input_bf16.sum(axis=1) * -7 / 512
self.max_tokens = int(self.tokens.max())
def w4afp8_gemm_naive(self, input_bf16, weight_quant, tokens, weight_dequant_scale):
@@ -59,7 +54,7 @@ class TestW4AFP8GEMM(unittest.TestCase):
pre_fix_token = 0
for i in range(self.BATCH):
input = input_bf16[pre_fix_token : pre_fix_token + tokens[i], :]
weight = weight_quant[i] * weight_dequant_scale[i]
weight = (weight_quant[i] - 7.0) * weight_dequant_scale[i]
out_i = paddle.matmul(input, weight.astype("bfloat16"), transpose_y=True)
out[pre_fix_token : pre_fix_token + tokens[i], :] = out_i
pre_fix_token += tokens[i]
@@ -76,53 +71,37 @@ class TestW4AFP8GEMM(unittest.TestCase):
weight_scale[b, n + j + 1] = temp[j // 2 + 8]
return weight_scale
def get_per_group_scale(self, processed_weight_scale):
processed_weight_scale = processed_weight_scale.repeat_interleave(self.K // 128, axis=-1)
origin_shape = processed_weight_scale.shape
processed_weight_scale = processed_weight_scale.transpose([0, 2, 1])
processed_weight_scale = processed_weight_scale.reshape([-1, processed_weight_scale.shape[-1]])
processed_weight_scale = w4afp8_gemm_scale_permute(processed_weight_scale)
processed_weight_scale = processed_weight_scale.reshape(
[origin_shape[0], origin_shape[2], origin_shape[1] // 128, 128]
)
processed_weight_scale = processed_weight_scale.transpose([0, 2, 1, 3])
return processed_weight_scale
def test_w4afp8_gemm(self):
out_naive = self.w4afp8_gemm_naive(
self.input_bf16, self.weight_quant_naive, self.tokens, self.weight_dequant_scale
)
out_naive = self.w4afp8_gemm_naive(self.input_bf16, self.weight_quant, self.tokens, self.weight_dequant_scale)
# weight_dequant_scale = paddle.to_tensor(self.permute_scale(self.weight_dequant_scale) * 512)
weight_dequant_scale = self.get_per_group_scale(self.weight_dequant_scale * 512)
weight_int4 = w4afp8_gemm_weight_convert(self.weight_quant.astype("uint8").cpu()).cuda()
weight_dequant_scale = paddle.to_tensor(self.permute_scale(self.weight_dequant_scale) * 512)
weight_int4 = w4afp8_gemm_weight_convert(self.weight_quant.astype("uint8").cpu())
if self.TokenPadding == 0:
out_cuda = w4afp8_gemm(
self.input_fp8,
weight_int4,
weight_int4.cuda(),
self.tokens_prefix_sum,
self.input_row_sum.astype("float32"),
weight_dequant_scale.astype("float32"),
None,
int(self.TokenPadding),
self.all_tokens,
self.max_tokens,
True,
)
else:
out_cuda = w4afp8_gemm(
self.input_fp8,
weight_int4,
weight_int4.cuda(),
self.tokens,
self.input_row_sum.astype("float32"),
weight_dequant_scale.astype("float32"),
None,
int(self.TokenPadding),
self.max_tokens,
True,
)
gap = (out_cuda - out_naive).abs()
self.assertLess(float(gap.mean()), 0.11)
self.assertLess(float(gap.mean()), 0.07)
if __name__ == "__main__":