Add Transpose function (#91)

* Add Transpose function

* csrcs->csrc

* Add transpose unittest

* Add reduce_max_large_dim unittest
This commit is contained in:
Jack Zhou
2022-08-10 19:00:16 +08:00
committed by GitHub
parent bf5affb510
commit 7fb8dd7916
9 changed files with 298 additions and 13 deletions

View File

@@ -12,11 +12,13 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/function/reduce.h"
#include <set>
#include "fastdeploy/function/eigen.h"
#include "fastdeploy/function/reduce.h"
#include "fastdeploy/function/reduce_functor.h"
#include "fastdeploy/function/transpose.h"
#include "fastdeploy/utils/utils.h"
namespace fastdeploy {
@@ -71,7 +73,7 @@ void ReduceFunctor(const FDTensor& input, FDTensor* output,
inline void GetShuffledDim(const std::vector<int64_t>& src_dims,
std::vector<int64_t>* dst_dims,
const std::vector<int64_t>& reduced_dims,
std::vector<int>* perm_axis) {
std::vector<int64_t>* perm_axis) {
// check if it's a reduced dim
std::vector<bool> src_dims_check(src_dims.size(), false);
size_t src_size = src_dims.size();
@@ -104,19 +106,33 @@ template <typename OutT>
void GetShuffledInput(const FDTensor& input, FDTensor* shuffled_input,
const std::vector<int64_t>& dims) {
auto shuffled_dims = input.shape;
std::vector<int> perm_axis(input.shape.size());
std::vector<int64_t> perm_axis(input.shape.size());
GetShuffledDim(input.shape, &shuffled_dims, dims, &perm_axis);
shuffled_input->Allocate(shuffled_dims, input.dtype);
// TODO(zhoushunjie) : Need to implement trans function
// phi::funcs::TransposeNormal<DeviceContext, OutT> trans;
// trans(dev_ctx, input, shuffled_input, perm_axis);
Transpose(input, shuffled_input, perm_axis);
}
//////////////// HandleLargeDim
template <typename OutT, typename Functor>
void HandleLargeDim(const FDTensor& input, FDTensor* output,
const std::vector<int64_t>& dims, bool keep_dim) {
auto out_dims = input.shape;
std::vector<int64_t> dims_ref = dims;
auto x_rank = input.shape.size();
for (size_t i = 0; i < dims_ref.size(); ++i) {
if (dims_ref[i] < 0) dims_ref[i] = x_rank + dims_ref[i];
out_dims[dims_ref[i]] = 1;
}
if (!keep_dim) {
const int kDelFlag = -2;
for (size_t i = 0; i < dims_ref.size(); ++i) {
out_dims[dims_ref[i]] = kDelFlag;
}
out_dims.erase(remove(out_dims.begin(), out_dims.end(), kDelFlag),
out_dims.end());
}
output->Allocate(out_dims, TypeToDataType<OutT>::dtype);
// shuffle the reduced dim to the end
FDTensor shuffled_input;
GetShuffledInput<OutT>(input, &shuffled_input, dims);
@@ -126,11 +142,9 @@ void HandleLargeDim(const FDTensor& input, FDTensor* output,
const int64_t reduced = shuffled_input.Numel() / unreduced;
shuffled_input.Allocate({unreduced, reduced}, TypeToDataType<OutT>::dtype);
auto output_dim = output->shape;
output->Allocate({unreduced}, TypeToDataType<OutT>::dtype);
output->shape = {unreduced};
ReduceFunctor<OutT, 2, 1, Functor>(shuffled_input, output, {1}, keep_dim);
output->shape = output_dim;
output->shape = out_dims;
}
////////////// ReduceKernel
@@ -152,7 +166,7 @@ void ReduceKernelImpl(const FDTensor& input, FDTensor* output,
} else {
int ndim = input.shape.size();
int rdim = dims.size();
if (ndim > 3) {
if (ndim > 4) {
HandleLargeDim<OutT, Functor>(input, output, dims, keep_dim);
} else {
HANDLE_REDUCE_DIM(4, 3);

View File

@@ -0,0 +1,115 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/function/transpose.h"
#include "fastdeploy/function/eigen.h"
#include "fastdeploy/utils/utils.h"
namespace fastdeploy {
#ifdef ENABLE_FDTENSOR_FUNC
template <typename T>
struct TransposeNormalKernel {
void operator()(const FDTensor& in, FDTensor* out,
const std::vector<int64_t>& axis) {
const int rank = axis.size();
auto in_stride = GetStride(in.shape);
auto out_stride = GetStride(out->shape);
const T* in_ptr = reinterpret_cast<const T*>(in.Data());
T* out_ptr = reinterpret_cast<T*>(out->Data());
auto transpose_helper = [&](int64_t beg, int64_t end) {
for (int64_t out_idx = beg; out_idx < end; ++out_idx) {
int64_t in_idx = 0;
int64_t tmp_idx = out_idx;
// calculate the input index
for (int i = 0; i < rank; ++i) {
const int64_t coordinate = tmp_idx / out_stride[i];
tmp_idx -= coordinate * out_stride[i];
in_idx += coordinate * in_stride[axis[i]];
}
out_ptr[out_idx] = in_ptr[in_idx];
}
};
transpose_helper(0, out->Numel());
}
};
template <typename T, int Rank>
struct TransposeKernelImpl {
void operator()(const FDTensor& in, FDTensor* out,
const std::vector<int64_t>& axis) {
Eigen::array<int, Rank> permute;
for (int i = 0; i < Rank; i++) {
permute[i] = axis[i];
}
auto& place = *EigenDeviceWrapper::GetInstance()->GetDevice();
auto eigen_in = EigenTensor<T, Rank>::From(in);
auto eigen_out = EigenTensor<T, Rank>::From(*out);
eigen_out.device(place) = eigen_in.shuffle(permute);
}
};
template <typename T>
void TransposeKernel(const FDTensor& x, FDTensor* out,
const std::vector<int64_t>& axis) {
int rank = axis.size();
switch (rank) {
case 1:
TransposeKernelImpl<T, 1> trans1;
trans1(x, out, axis);
break;
case 2:
TransposeKernelImpl<T, 2> trans2;
trans2(x, out, axis);
break;
case 3:
TransposeKernelImpl<T, 3> trans3;
trans3(x, out, axis);
break;
case 4:
TransposeKernelImpl<T, 4> trans4;
trans4(x, out, axis);
break;
default:
// for rank >= 4 situation
TransposeNormalKernel<T> trans_normal;
trans_normal(x, out, axis);
}
}
void Transpose(const FDTensor& x, FDTensor* out,
const std::vector<int64_t>& dims) {
size_t dims_size = dims.size();
FDASSERT(dims_size == x.shape.size(),
"The input tensor's dimension should be equal to the dims's size.");
std::vector<int> count(dims_size, 0);
for (size_t i = 0; i < dims_size; i++) {
FDASSERT(dims[i] >= 0, "The dims should be greater than or equal to 0.");
FDASSERT(dims[i] < static_cast<int>(dims_size) && ++count[dims[i]] == 1,
"Each element of Attribute axis should be a unique value range "
"from 0 to (dims - 1), where the dims is the axis's size, unique "
"value means this axis value can appear only once. ");
}
std::vector<int64_t> out_dims(dims_size);
for (size_t i = 0; i < dims_size; i++) {
out_dims[i] = x.shape[dims[i]];
}
out->Allocate(out_dims, x.dtype);
FD_VISIT_ALL_TYPES(x.dtype, "TransposeKernel",
([&] { TransposeKernel<data_t>(x, out, dims); }));
}
#endif
} // namespace fastdeploy

View File

@@ -0,0 +1,29 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "fastdeploy/core/fd_tensor.h"
namespace fastdeploy {
#ifdef ENABLE_FDTENSOR_FUNC
/** Excute the transpose operation for input FDTensor along given dims.
@param x The input tensor.
@param out The output tensor which stores the result.
@param dims The vector of axis which the input tensor will transpose.
*/
FASTDEPLOY_DECL void Transpose(const FDTensor& x, FDTensor* out,
const std::vector<int64_t>& dims);
#endif
} // namespace fastdeploy