[Backend] Add OCR、Seg、 KeypointDetection、Matting、 ernie-3.0 and adaface models for XPU Deploy (#960)

* [FlyCV] Bump up FlyCV -> official release 1.0.0

* add seg models for XPU

* add ocr model for XPU

* add matting

* add matting python

* fix infer.cc

* add keypointdetection support for XPU

* Add adaface support for XPU

* add ernie-3.0

* fix doc

Co-authored-by: DefTruth <qiustudent_r@163.com>
Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
This commit is contained in:
yeliang2258
2022-12-26 15:02:58 +08:00
committed by GitHub
parent 3b29e86add
commit 7b15f72516
39 changed files with 304 additions and 25 deletions

View File

@@ -33,6 +33,8 @@ wget https://bj.bcebos.com/paddlehub/fastdeploy/000000018491.jpg
./infer_demo PP_PicoDet_V2_S_Pedestrian_320x320_infer PP_TinyPose_256x192_infer 000000018491.jpg 1
# GPU上TensorRT推理
./infer_demo PP_PicoDet_V2_S_Pedestrian_320x320_infer PP_TinyPose_256x192_infer 000000018491.jpg 2
# XPU推理
./infer_demo PP_PicoDet_V2_S_Pedestrian_320x320_infer PP_TinyPose_256x192_infer 000000018491.jpg 3
```
运行完成可视化结果如下图所示

View File

@@ -66,6 +66,55 @@ void CpuInfer(const std::string& det_model_dir,
<< std::endl;
}
void XpuInfer(const std::string& det_model_dir,
const std::string& tinypose_model_dir,
const std::string& image_file) {
auto option = fastdeploy::RuntimeOption();
option.UseXpu();
auto det_model_file = det_model_dir + sep + "model.pdmodel";
auto det_params_file = det_model_dir + sep + "model.pdiparams";
auto det_config_file = det_model_dir + sep + "infer_cfg.yml";
auto det_model = fastdeploy::vision::detection::PicoDet(
det_model_file, det_params_file, det_config_file, option);
if (!det_model.Initialized()) {
std::cerr << "Detection Model Failed to initialize." << std::endl;
return;
}
auto tinypose_model_file = tinypose_model_dir + sep + "model.pdmodel";
auto tinypose_params_file = tinypose_model_dir + sep + "model.pdiparams";
auto tinypose_config_file = tinypose_model_dir + sep + "infer_cfg.yml";
auto tinypose_model = fastdeploy::vision::keypointdetection::PPTinyPose(
tinypose_model_file, tinypose_params_file, tinypose_config_file, option);
if (!tinypose_model.Initialized()) {
std::cerr << "TinyPose Model Failed to initialize." << std::endl;
return;
}
auto im = cv::imread(image_file);
fastdeploy::vision::KeyPointDetectionResult res;
auto pipeline =
fastdeploy::pipeline::PPTinyPose(
&det_model, &tinypose_model);
pipeline.detection_model_score_threshold = 0.5;
if (!pipeline.Predict(&im, &res)) {
std::cerr << "TinyPose Prediction Failed." << std::endl;
return;
} else {
std::cout << "TinyPose Prediction Done!" << std::endl;
}
// 输出预测框结果
std::cout << res.Str() << std::endl;
// 可视化预测结果
auto vis_im =
fastdeploy::vision::VisKeypointDetection(im, res, 0.2);
cv::imwrite("vis_result.jpg", vis_im);
std::cout << "TinyPose visualized result saved in ./vis_result.jpg"
<< std::endl;
}
void GpuInfer(const std::string& det_model_dir,
const std::string& tinypose_model_dir,
const std::string& image_file) {
@@ -180,7 +229,7 @@ int main(int argc, char* argv[]) {
"./test.jpeg 0"
<< std::endl;
std::cout << "The data type of run_option is int, 0: run with cpu; 1: run "
"with gpu; 2: run with gpu and use tensorrt backend."
"with gpu; 2: run with gpu and use tensorrt backend; 3: run with xpu."
<< std::endl;
return -1;
}
@@ -191,6 +240,8 @@ int main(int argc, char* argv[]) {
GpuInfer(argv[1], argv[2], argv[3]);
} else if (std::atoi(argv[4]) == 2) {
TrtInfer(argv[1], argv[2], argv[3]);
} else if (std::atoi(argv[4]) == 3) {
XpuInfer(argv[1], argv[2], argv[3]);
}
return 0;
}