Correct PP-Series models' name

This commit is contained in:
jiangjiajun
2022-10-09 02:49:58 +00:00
parent 0a0b601853
commit 7afcd4b373
13 changed files with 11 additions and 11 deletions

View File

@@ -0,0 +1,150 @@
# PPOCRSystemv2 C++部署示例
本目录下提供`infer.cc`快速完成PPOCRSystemv2在CPU/GPU以及GPU上通过TensorRT加速部署的示例。
在部署前,需确认以下两个步骤
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/environment.md)
- 2. 根据开发环境下载预编译部署库和samples代码参考[FastDeploy预编译库](../../../../../docs/quick_start)
以Linux上CPU推理为例在本目录执行如下命令即可完成编译测试
```
mkdir build
cd build
wget https://https://bj.bcebos.com/paddlehub/fastdeploy/cpp/fastdeploy-linux-x64-gpu-0.2.1.tgz
tar xvf fastdeploy-linux-x64-0.2.1.tgz
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-0.2.1
make -j
# 下载模型,图片和字典文件
wget https://bj.bcebos.com/paddlehub/fastdeploy/ch_PP-OCRv2_det_infer.tar.gz
tar -xvf ch_PP-OCRv2_det_infer.tar.gz
wget https://bj.bcebos.com/paddlehub/fastdeploy/ch_ppocr_mobile_v2.0_cls_infer.tar.gz
tar -xvf ch_ppocr_mobile_v2.0_cls_infer.tar.gz
wget https://bj.bcebos.com/paddlehub/fastdeploy/ch_PP-OCRv2_rec_infer.tar.gz
tar -xvf ch_PP-OCRv2_rec_infer.tar.gz
wget https://gitee.com/paddlepaddle/PaddleOCR/raw/release/2.6/doc/imgs/12.jpg
wget https://gitee.com/paddlepaddle/PaddleOCR/raw/release/2.6/ppocr/utils/ppocr_keys_v1.txt
# CPU推理
./infer_demo ./ch_PP-OCRv2_det_infer ./ch_ppocr_mobile_v2.0_cls_infer ./ch_PP-OCRv2_rec_infer ./ppocr_keys_v1.txt ./12.jpg 0
# GPU推理
./infer_demo ./ch_PP-OCRv2_det_infer ./ch_ppocr_mobile_v2.0_cls_infer ./ch_PP-OCRv2_rec_infer ./ppocr_keys_v1.txt ./12.jpg 1
# GPU上TensorRT推理
./infer_demo ./ch_PP-OCRv2_det_infer ./ch_ppocr_mobile_v2.0_cls_infer ./ch_PP-OCRv2_rec_infer ./ppocr_keys_v1.txt ./12.jpg 2
```
以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考:
- [如何在Windows中使用FastDeploy C++ SDK](../../../../../docs/compile/how_to_use_sdk_on_windows.md)
运行完成可视化结果如下图所示
<img width="640" src="https://user-images.githubusercontent.com/109218879/185826024-f7593a0c-1bd2-4a60-b76c-15588484fa08.jpg">
## PPOCRSystemv2 C++接口
### PPOCRSystemv2类
```
fastdeploy::application::ocrsystem::PPOCRSystemv2(fastdeploy::vision::ocr::DBDetector* det_model,
fastdeploy::vision::ocr::Classifier* cls_model,
fastdeploy::vision::ocr::Recognizer* rec_model);
```
PPOCRSystemv2 的初始化,由检测,分类和识别模型串联构成
**参数**
> * **DBDetector**(model): OCR中的检测模型
> * **Classifier**(model): OCR中的分类模型
> * **Recognizer**(model): OCR中的识别模型
```
fastdeploy::application::ocrsystem::PPOCRSystemv2(fastdeploy::vision::ocr::DBDetector* det_model,
fastdeploy::vision::ocr::Recognizer* rec_model);
```
PPOCRSystemv2 的初始化,由检测,识别模型串联构成(无分类器)
**参数**
> * **DBDetector**(model): OCR中的检测模型
> * **Recognizer**(model): OCR中的识别模型
#### Predict函数
> ```
> bool Predict(cv::Mat* img, fastdeploy::vision::OCRResult* result);
> ```
>
> 模型预测接口输入一张图片返回OCR预测结果
>
> **参数**
>
> > * **img**: 输入图像注意需为HWCBGR格式
> > * **result**: OCR预测结果,包括由检测模型输出的检测框位置,分类模型输出的方向分类,以及识别模型输出的识别结果, OCRResult说明参考[视觉模型预测结果](../../../../../docs/api/vision_results/)
## DBDetector C++接口
### DBDetector类
```
fastdeploy::vision::ocr::DBDetector(const std::string& model_file, const std::string& params_file = "",
const RuntimeOption& custom_option = RuntimeOption(),
const ModelFormat& model_format = ModelFormat::PADDLE);
```
DBDetector模型加载和初始化其中模型为paddle模型格式。
**参数**
> * **model_file**(str): 模型文件路径
> * **params_file**(str): 参数文件路径当模型格式为ONNX时此参数传入空字符串即可
> * **runtime_option**(RuntimeOption): 后端推理配置默认为None即采用默认配置
> * **model_format**(ModelFormat): 模型格式默认为Paddle格式
### Classifier类与DBDetector类相同
### Recognizer类
```
Recognizer(const std::string& model_file,
const std::string& params_file = "",
const std::string& label_path = "",
const RuntimeOption& custom_option = RuntimeOption(),
const ModelFormat& model_format = ModelFormat::PADDLE);
```
Recognizer类初始化时,需要在label_path参数中,输入识别模型所需的label文件其他参数均与DBDetector类相同
**参数**
> * **label_path**(str): 识别模型的label文件路径
### 类成员变量
#### DBDetector预处理参数
用户可按照自己的实际需求,修改下列预处理参数,从而影响最终的推理和部署效果
> > * **max_side_len**(int): 检测算法前向时图片长边的最大尺寸当长边超出这个值时会将长边resize到这个大小短边等比例缩放,默认为960
> > * **det_db_thresh**(double): DB模型输出预测图的二值化阈值默认为0.3
> > * **det_db_box_thresh**(double): DB模型输出框的阈值低于此值的预测框会被丢弃默认为0.6
> > * **det_db_unclip_ratio**(double): DB模型输出框扩大的比例默认为1.5
> > * **det_db_score_mode**(string):DB后处理中计算文本框平均得分的方式,默认为slow即求polygon区域的平均分数的方式
> > * **use_dilation**(bool):是否对检测输出的feature map做膨胀处理,默认为Fasle
#### Classifier预处理参数
用户可按照自己的实际需求,修改下列预处理参数,从而影响最终的推理和部署效果
> > * **cls_thresh**(double): 当分类模型输出的得分超过此阈值输入的图片将被翻转默认为0.9
## 其它文档
- [PPOCR 系列模型介绍](../../)
- [PPOCRv2 Python部署](../python)
- [模型预测结果说明](../../../../../docs/api/vision_results/)
- [如何切换模型推理后端引擎](../../../../../docs/runtime/how_to_change_backend.md)