‘fixed-yolov7-doc’ (#85)

‘’
This commit is contained in:
leiqing
2022-08-09 20:52:58 +08:00
committed by GitHub
parent 36a54f2955
commit 78b0cc56f2
4 changed files with 41 additions and 31 deletions

View File

@@ -3,7 +3,7 @@
在部署前,需确认以下两个步骤
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/quick_start/requirements.md)
- 2. FastDeploy Python安装参考[FastDeploy Python安装](../../../../../docs/quick_start/install.md)
- 2. FastDeploy Python whl包安装,参考[FastDeploy Python安装](../../../../../docs/quick_start/install.md)
本目录下提供`infer.py`快速完成YOLOv7在CPU/GPU以及GPU上通过TensorRT加速部署的示例。执行如下脚本即可完成
@@ -12,6 +12,10 @@
wget https://bj.bcebos.com/paddlehub/fastdeploy/yolov7.onnx
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000087038.jpg
#下载部署示例代码
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd examples/vison/detection/yolov7/python/
# CPU推理
python infer.py --model yolov7.onnx --image 000000087038.jpg --device cpu
# GPU推理
@@ -22,7 +26,6 @@ python infer.py --model yolov7.onnx --image 000000087038.jpg --device gpu --use_
运行完成可视化结果如下图所示
## YOLOv7 Python接口
```
@@ -43,23 +46,23 @@ YOLOv7模型加载和初始化其中model_file为导出的ONNX模型格式
> ```
> YOLOv7.predict(image_data, conf_threshold=0.25, nms_iou_threshold=0.5)
> ```
>
> 模型预测结口,输入图像直接输出检测结果。
>
>
> **参数**
>
>
> > * **image_data**(np.ndarray): 输入数据注意需为HWCBGR格式
> > * **conf_threshold**(float): 检测框置信度过滤阈值
> > * **nms_iou_threshold**(float): NMS处理过程中iou阈值
> **返回**
>
>
> > 返回`fastdeploy.vision.DetectionResult`结构体,结构体说明参考文档[视觉模型预测结果](../../../../../docs/api/vision_results/)
### 类成员属性
> > * **size**(list | tuple): 通过此参数修改预处理过程中resize的大小包含两个整型元素表示[width, height], 默认值为[640, 640]
## 其它文档
- [YOLOv7 模型介绍](..)