mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 17:17:14 +08:00
[Model] Support PP-ShiTuV2 models for PaddleClas (#1900)
* [cmake] add faiss.cmake -> pp-shituv2 * [PP-ShiTuV2] Support PP-ShituV2-Det model * [PP-ShiTuV2] Support PP-ShiTuV2-Det model * [PP-ShiTuV2] Add PPShiTuV2Recognizer c++&python support * [PP-ShiTuV2] Add PPShiTuV2Recognizer c++&python support * [Bug Fix] fix ppshitu_pybind error * [benchmark] Add ppshituv2-det c++ benchmark * [examples] Add PP-ShiTuV2 det & rec examples * [vision] Update vision classification result * [Bug Fix] fix trt shapes setting errors
This commit is contained in:
@@ -15,6 +15,10 @@ from __future__ import absolute_import
|
||||
|
||||
from .contrib.yolov5cls import YOLOv5Cls
|
||||
from .ppcls import *
|
||||
from .ppshitu import PPShiTuV2Detector
|
||||
from .ppshitu import PPShiTuV2Recognizer
|
||||
from .ppshitu import PPShiTuV2RecognizerPreprocessor
|
||||
from .ppshitu import PPShiTuV2RecognizerPostprocessor
|
||||
from .contrib.resnet import ResNet
|
||||
|
||||
PPLCNet = PaddleClasModel
|
||||
|
131
python/fastdeploy/vision/classification/ppshitu/__init__.py
Normal file
131
python/fastdeploy/vision/classification/ppshitu/__init__.py
Normal file
@@ -0,0 +1,131 @@
|
||||
from __future__ import absolute_import
|
||||
import logging
|
||||
from .... import FastDeployModel, ModelFormat
|
||||
from .... import c_lib_wrap as C
|
||||
from ...common import ProcessorManager
|
||||
from ...detection.ppdet import PicoDet
|
||||
|
||||
|
||||
class PPShiTuV2Detector(PicoDet):
|
||||
"""Detect main body from an input image.
|
||||
"""
|
||||
...
|
||||
|
||||
|
||||
class PPShiTuV2RecognizerPreprocessor(ProcessorManager):
|
||||
def __init__(self, config_file):
|
||||
"""Create a preprocessor for PPShiTuV2Recognizer from configuration file
|
||||
|
||||
:param config_file: (str)Path of configuration file, e.g PPLCNet/inference_cls.yaml
|
||||
"""
|
||||
super(PPShiTuV2RecognizerPreprocessor, self).__init__()
|
||||
self._manager = C.vision.classification.PPShiTuV2RecognizerPreprocessor(
|
||||
config_file)
|
||||
|
||||
def disable_normalize(self):
|
||||
"""
|
||||
This function will disable normalize in preprocessing step.
|
||||
"""
|
||||
self._manager.disable_normalize()
|
||||
|
||||
def disable_permute(self):
|
||||
"""
|
||||
This function will disable hwc2chw in preprocessing step.
|
||||
"""
|
||||
self._manager.disable_permute()
|
||||
|
||||
def initial_resize_on_cpu(self, v):
|
||||
"""
|
||||
When the initial operator is Resize, and input image size is large,
|
||||
maybe it's better to run resize on CPU, because the HostToDevice memcpy
|
||||
is time consuming. Set this True to run the initial resize on CPU.
|
||||
:param: v: True or False
|
||||
"""
|
||||
self._manager.initial_resize_on_cpu(v)
|
||||
|
||||
|
||||
class PPShiTuV2RecognizerPostprocessor:
|
||||
def __init__(self, topk=1):
|
||||
"""Create a postprocessor for PPShiTuV2Recognizer
|
||||
|
||||
"""
|
||||
self._postprocessor = C.vision.classification.PPShiTuV2RecognizerPostprocessor(
|
||||
)
|
||||
|
||||
def run(self, runtime_results):
|
||||
"""Postprocess the runtime results for PPShiTuV2Recognizer
|
||||
|
||||
:param: runtime_results: (list of FDTensor)The output FDTensor results from runtime
|
||||
:return: list of ClassifyResult, the feature vector is ClassifyResult.feature (If the runtime_results is predict by batched samples, the length of this list equals to the batch size)
|
||||
"""
|
||||
return self._postprocessor.run(runtime_results)
|
||||
|
||||
|
||||
class PPShiTuV2Recognizer(FastDeployModel):
|
||||
def __init__(self,
|
||||
model_file,
|
||||
params_file,
|
||||
config_file,
|
||||
runtime_option=None,
|
||||
model_format=ModelFormat.PADDLE):
|
||||
"""Load a image PPShiTuV2Recognizer model exported by PaddleClas.
|
||||
|
||||
:param model_file: (str)Path of model file, e.g PPLCNet/inference.pdmodel
|
||||
:param params_file: (str)Path of parameters file, e.g PPLCNet/inference.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
|
||||
:param config_file: (str) Path of configuration file for deploy, e.g PPLCNet/inference_cls.yaml
|
||||
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
|
||||
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
|
||||
"""
|
||||
|
||||
super(PPShiTuV2Recognizer, self).__init__(runtime_option)
|
||||
self._model = C.vision.classification.PPShiTuV2Recognizer(
|
||||
model_file, params_file, config_file, self._runtime_option,
|
||||
model_format)
|
||||
assert self.initialized, "PPShiTuV2Recognizer model initialize failed."
|
||||
|
||||
def clone(self):
|
||||
"""Clone PPShiTuV2Recognizer object
|
||||
|
||||
:return: a new PPShiTuV2Recognizer object
|
||||
"""
|
||||
|
||||
class PPShiTuV2RecognizerCloneModel(PPShiTuV2Recognizer):
|
||||
def __init__(self, model):
|
||||
self._model = model
|
||||
|
||||
clone_model = PPShiTuV2RecognizerCloneModel(self._model.clone())
|
||||
return clone_model
|
||||
|
||||
def predict(self, im):
|
||||
"""Extract feature from an input image
|
||||
|
||||
:param im: (numpy.ndarray) The input image data, a 3-D array with layout HWC, BGR format
|
||||
:return: ClassifyResult
|
||||
"""
|
||||
|
||||
return self._model.predict(im)
|
||||
|
||||
def batch_predict(self, images):
|
||||
"""Extract features from a batch of input image
|
||||
|
||||
:param im: (list of numpy.ndarray) The input image list, each element is a 3-D array with layout HWC, BGR format
|
||||
:return list of ClassifyResult, the feature vector is ClassifyResult.feature
|
||||
"""
|
||||
|
||||
return self._model.batch_predict(images)
|
||||
|
||||
@property
|
||||
def preprocessor(self):
|
||||
"""Get PPShiTuV2RecognizerPreprocessor object of the loaded model
|
||||
|
||||
:return PPShiTuV2RecognizerPreprocessor
|
||||
"""
|
||||
return self._model.preprocessor
|
||||
|
||||
@property
|
||||
def postprocessor(self):
|
||||
"""Get PPShiTuV2RecognizerPostprocessor object of the loaded model
|
||||
|
||||
:return PPShiTuV2RecognizerPostprocessor
|
||||
"""
|
||||
return self._model.postprocessor
|
Reference in New Issue
Block a user