mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-01 06:42:23 +08:00
[XPU]Fixed the issue of performance degradation caused by enabling ENABLE_V1_KVCACHE_SCHEDULER (#3900)
* fix bug * fix bug * update * udpate * update
This commit is contained in:
@@ -1236,7 +1236,10 @@ class FDConfig:
|
||||
|
||||
if self.max_num_batched_tokens is None:
|
||||
if int(envs.ENABLE_V1_KVCACHE_SCHEDULER):
|
||||
self.max_num_batched_tokens = 8192 # if set to max_model_len, it's easy to be OOM
|
||||
if paddle.is_compiled_with_xpu():
|
||||
self.max_num_batched_tokens = self.max_model_len
|
||||
else:
|
||||
self.max_num_batched_tokens = 8192 # if set to max_model_len, it's easy to be OOM
|
||||
else:
|
||||
if self.cache_config.enable_chunked_prefill:
|
||||
self.max_num_batched_tokens = 2048
|
||||
|
@@ -19,6 +19,8 @@ from dataclasses import asdict, dataclass
|
||||
from dataclasses import fields as dataclass_fields
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
import paddle
|
||||
|
||||
from fastdeploy import envs
|
||||
from fastdeploy.config import (
|
||||
CacheConfig,
|
||||
@@ -1006,7 +1008,10 @@ class EngineArgs:
|
||||
|
||||
if self.max_num_batched_tokens is None:
|
||||
if int(envs.ENABLE_V1_KVCACHE_SCHEDULER):
|
||||
self.max_num_batched_tokens = 8192 # if set to max_model_len, it's easy to be OOM
|
||||
if paddle.is_compiled_with_xpu():
|
||||
self.max_num_batched_tokens = self.max_model_len
|
||||
else:
|
||||
self.max_num_batched_tokens = 8192 # if set to max_model_len, it's easy to be OOM
|
||||
else:
|
||||
if self.enable_chunked_prefill:
|
||||
self.max_num_batched_tokens = 2048
|
||||
|
@@ -345,7 +345,9 @@ class ResourceManagerV1(ResourceManager):
|
||||
while self.waiting and token_budget > 0:
|
||||
if len(self.running) == self.max_num_seqs:
|
||||
break
|
||||
if self.config.model_config.enable_mm and self.exist_prefill(scheduled_reqs):
|
||||
if (self.config.model_config.enable_mm or paddle.is_compiled_with_xpu()) and self.exist_prefill(
|
||||
scheduled_reqs
|
||||
):
|
||||
break
|
||||
request = self.waiting[0]
|
||||
if request.status == RequestStatus.WAITING:
|
||||
|
@@ -383,6 +383,7 @@ class XPUModelRunner(ModelRunnerBase):
|
||||
|
||||
req_len = len(req_dicts)
|
||||
has_prefill_task = False
|
||||
has_decode_task = False
|
||||
for i in range(req_len):
|
||||
request = req_dicts[i]
|
||||
idx = request.idx
|
||||
@@ -392,6 +393,9 @@ class XPUModelRunner(ModelRunnerBase):
|
||||
prefill_end_index = request.prefill_end_index
|
||||
length = prefill_end_index - prefill_start_index
|
||||
input_ids = request.prompt_token_ids + request.output_token_ids
|
||||
logger.debug(
|
||||
f"Handle prefill request {request} at idx {idx} prefill_start_index {prefill_start_index} prefill_end_index {prefill_end_index} need_prefilled_token_num {len(input_ids)}"
|
||||
)
|
||||
self.share_inputs["input_ids"][idx : idx + 1, :length] = np.array(
|
||||
input_ids[prefill_start_index:prefill_end_index]
|
||||
)
|
||||
@@ -401,6 +405,8 @@ class XPUModelRunner(ModelRunnerBase):
|
||||
self.share_inputs["block_tables"][idx : idx + 1, :encoder_block_num] = np.array(
|
||||
request.block_tables, dtype="int32"
|
||||
)
|
||||
if self.share_inputs["is_block_step"][idx]: # has tasks to continue to decode
|
||||
has_decode_task = True
|
||||
self.share_inputs["stop_flags"][idx : idx + 1] = False
|
||||
self.share_inputs["seq_lens_decoder"][idx : idx + 1] = prefill_start_index
|
||||
self.share_inputs["seq_lens_this_time"][idx : idx + 1] = length
|
||||
@@ -474,7 +480,7 @@ class XPUModelRunner(ModelRunnerBase):
|
||||
self.share_inputs["stop_seqs"][:stop_seqs_num, : len(request.get("stop_token_ids")[0])] = np.array(
|
||||
request.get("stop_token_ids"), dtype="int64"
|
||||
)
|
||||
if has_prefill_task:
|
||||
if has_prefill_task or has_decode_task:
|
||||
self.share_inputs["not_need_stop"][0] = True
|
||||
|
||||
def process_prefill_inputs(self, req_dicts: List[Request]):
|
||||
|
Reference in New Issue
Block a user