[V1 Loader] support weight_only (#3413)
Some checks failed
CE Compile Job / ce_job_pre_check (push) Has been cancelled
CE Compile Job / print_ce_job_pre_check_outputs (push) Has been cancelled
CE Compile Job / FD-Clone-Linux (push) Has been cancelled
CE Compile Job / Show Code Archive Output (push) Has been cancelled
CE Compile Job / BUILD_SM8090 (push) Has been cancelled
CE Compile Job / BUILD_SM8689 (push) Has been cancelled
CE Compile Job / CE_UPLOAD (push) Has been cancelled
Deploy GitHub Pages / deploy (push) Has been cancelled
Publish Job / publish_pre_check (push) Has been cancelled
Publish Job / print_publish_pre_check_outputs (push) Has been cancelled
Publish Job / FD-Clone-Linux (push) Has been cancelled
Publish Job / Show Code Archive Output (push) Has been cancelled
Publish Job / BUILD_SM8090 (push) Has been cancelled
Publish Job / BUILD_SM8689 (push) Has been cancelled
Publish Job / PADDLE_PYPI_UPLOAD_8090 (push) Has been cancelled
Publish Job / PADDLE_PYPI_UPLOAD_8689 (push) Has been cancelled
Publish Job / Run FastDeploy Unit Tests and Coverage (push) Has been cancelled
Publish Job / Run FastDeploy LogProb Tests (push) Has been cancelled
Publish Job / Extracted partial CE model tasks to run in CI. (push) Has been cancelled
Publish Job / Run Base Tests (push) Has been cancelled
Publish Job / Run Accuracy Tests (push) Has been cancelled

* support wint4/wint8

* delete smoe case

* update ci

* print log
This commit is contained in:
bukejiyu
2025-08-23 13:13:41 +08:00
committed by GitHub
parent 93e1b63200
commit 77514e3e1e
24 changed files with 1055 additions and 524 deletions

View File

@@ -22,7 +22,7 @@ from paddle import nn
from paddle.distributed import fleet
from fastdeploy.config import FDConfig
from fastdeploy.model_executor.models.utils import set_weight_attrs
from fastdeploy.model_executor.utils import set_weight_attrs
from .utils import get_tensor

View File

@@ -23,7 +23,7 @@ from paddle import nn
from fastdeploy.config import FDConfig
from fastdeploy.distributed.communication import tensor_model_parallel_all_reduce
from fastdeploy.model_executor.layers.quantization.quant_base import QuantMethodBase
from fastdeploy.model_executor.models.utils import (
from fastdeploy.model_executor.utils import (
default_weight_loader,
set_weight_attrs,
slice_fn,
@@ -39,6 +39,7 @@ class UnquantizedLinearMethod(QuantMethodBase):
def create_weights(self, layer: nn.Layer, **extra_weight_attrs):
"""
extra_weight_attrs is a dictionary that may include parameters like:
- split_axis: axis along which to split the tensor in a distributed environment
- output_dim: determines whether the split is applied along the output dimension (rows) or input dimension (columns)
- weight_loader: a callable or method responsible for loading the weight data
"""
@@ -48,12 +49,16 @@ class UnquantizedLinearMethod(QuantMethodBase):
is_bias=False,
default_initializer=paddle.nn.initializer.Constant(0),
)
split_axis = extra_weight_attrs.get("split_axis")
if hasattr(layer, "nranks") and layer.nranks > 0:
_set_var_distributed(layer.weight, split_axis=split_axis)
set_weight_attrs(
layer.weight,
{"weight_loader": extra_weight_attrs.get("weight_loader", default_weight_loader(layer.fd_config))},
{
**extra_weight_attrs,
"weight_loader": extra_weight_attrs.get("weight_loader", default_weight_loader(layer.fd_config)),
},
)
if hasattr(layer, "nranks") and layer.nranks > 1:
set_weight_attrs(layer.weight, {"output_dim": extra_weight_attrs.get("output_dim")})
def process_loaded_weights(self, layer, weights) -> None:
# mlp.gate.weight is precision-sensitive, so we cast it to float32 for computation
@@ -340,7 +345,6 @@ class ColumnParallelLinear(LinearBase):
),
)
if self.nranks > 0:
_set_var_distributed(self.weight, split_axis=1)
if self.with_bias:
# col parallel
_set_var_distributed(self.bias, split_axis=1)
@@ -399,28 +403,27 @@ class MergedColumnParallelLinear(ColumnParallelLinear):
)
def weight_loader(self, param, loaded_weight, loaded_shard_id: Optional[str] = None):
output_dim = getattr(param, "output_dim", None)
shard_dim = -1 if output_dim else 0
output_size = param.shape[shard_dim]
if loaded_shard_id is None:
# Loaded weight is already fused on disk.
if self.nranks != 1:
shard_offsets = [
# (shard_id, shard_offset, shard_size)
("gate", 0, self.output_size * self.nranks // 2),
("up", self.output_size * self.nranks // 2, self.output_size * self.nranks // 2),
("gate", 0, output_size * self.nranks // 2),
("up", output_size * self.nranks // 2, output_size * self.nranks // 2),
]
for shard_id, shard_offset, shard_size in shard_offsets:
loaded_weight_shard = loaded_weight[..., shard_offset : shard_offset + shard_size]
loaded_weight_shard = slice_fn(
loaded_weight, output_dim, start=shard_offset, end=shard_offset + shard_size
)
self.weight_loader(param, loaded_weight_shard, shard_id)
else:
loaded_weight = get_tensor(loaded_weight)
param.copy_(loaded_weight, False)
else:
# 1.fused gate_up in disk
# 2.split gate up
# split gate up
assert loaded_shard_id in ["gate", "up"]
output_dim = getattr(param, "output_dim", None)
# Tensor parallelism splits the weight along the output_dim
if output_dim is not None:
dim = -1
if self.nranks != 1:
dim = -1 if output_dim else 0
if isinstance(loaded_weight, np.ndarray):
size = loaded_weight.shape[dim]
else:
@@ -428,15 +431,20 @@ class MergedColumnParallelLinear(ColumnParallelLinear):
block_size = size // self.nranks
shard_offset = self.local_rank * block_size
shard_size = (self.local_rank + 1) * block_size
loaded_weight = loaded_weight[..., shard_offset:shard_size]
loaded_weight = slice_fn(loaded_weight, output_dim, start=shard_offset, end=shard_size)
loaded_weight = get_tensor(loaded_weight)
if not param._is_initialized():
param.initialize()
param_shard_size = output_size // 2
if loaded_shard_id == "gate":
param = param[:, : self.output_size // 2]
elif loaded_shard_id == "up":
param = param[:, self.output_size // 2 :]
param_shard_offset = 0
else:
# loaded_shard_id == "up"
param_shard_offset = param_shard_size
if hasattr(param, "tensor_track"):
param.tensor_track.mark(start=param_shard_offset, end=param_shard_offset + param_shard_size)
param = slice_fn(param, output_dim, start=param_shard_offset, end=param_shard_offset + param_shard_size)
assert param.shape == loaded_weight.shape, (
f" Attempted to load weight ({loaded_weight.shape}) " f"into parameter ({param.shape})"
)
@@ -513,30 +521,25 @@ class QKVParallelLinear(ColumnParallelLinear):
def weight_loader(self, param, loaded_weight, loaded_shard_id: Optional[str] = None):
output_dim = getattr(param, "output_dim", None)
head_dim = param.shape[output_dim] // (self.num_heads_per_rank + 2 * self.kv_num_heads_per_rank)
if loaded_shard_id is None:
# Loaded weight is already fused on disk
if self.nranks != 1:
shard_offsets = [
# (shard_id, shard_offset, shard_size)
("q", 0, self.num_heads * self.head_dim),
("k", self.num_heads * self.head_dim, self.kv_num_heads * self.head_dim),
("v", (self.num_heads + self.kv_num_heads) * self.head_dim, self.kv_num_heads * self.head_dim),
("q", 0, self.num_heads * head_dim),
("k", self.num_heads * head_dim, self.kv_num_heads * head_dim),
("v", (self.num_heads + self.kv_num_heads) * head_dim, self.kv_num_heads * head_dim),
]
for shard_id, shard_offset, shard_size in shard_offsets:
loaded_weight_shard = loaded_weight_shard = slice_fn(
loaded_weight_shard = slice_fn(
loaded_weight, output_dim, start=shard_offset, end=shard_offset + shard_size
)
self.weight_loader(param, loaded_weight_shard, shard_id)
else:
loaded_weight = get_tensor(loaded_weight)
split_loaded_weight = loaded_weight
param.copy_(split_loaded_weight, False)
else:
# 1.fused qkv in disk
# 2.split q k v
# split q k v
assert loaded_shard_id in ["q", "k", "v"]
# Tensor parallelism splits the weight along the output_dim
if output_dim is not None:
if self.nranks != 1:
dim = -1 if output_dim else 0
if isinstance(loaded_weight, np.ndarray):
size = loaded_weight.shape[dim]
@@ -545,20 +548,25 @@ class QKVParallelLinear(ColumnParallelLinear):
block_size = size // self.nranks
shard_offset = self.local_rank * block_size
shard_size = (self.local_rank + 1) * block_size
loaded_weight = loaded_weight[..., shard_offset:shard_size]
loaded_weight = slice_fn(loaded_weight, output_dim, start=shard_offset, end=shard_size)
loaded_weight = get_tensor(loaded_weight)
if not param._is_initialized():
param.initialize()
if loaded_shard_id == "q":
param_shard_offset = 0
param_shard_size = self.num_heads_per_rank * self.head_dim
param_shard_size = self.num_heads_per_rank * head_dim
elif loaded_shard_id == "k":
param_shard_offset = self.num_heads_per_rank * self.head_dim
param_shard_size = self.kv_num_heads_per_rank * self.head_dim
param_shard_offset = self.num_heads_per_rank * head_dim
param_shard_size = self.kv_num_heads_per_rank * head_dim
else:
# loaded_shard_id == "v"
param_shard_offset = (self.num_heads_per_rank + self.kv_num_heads_per_rank) * self.head_dim
param_shard_size = self.kv_num_heads_per_rank * self.head_dim
param_shard_offset = (self.num_heads_per_rank + self.kv_num_heads_per_rank) * head_dim
param_shard_size = self.kv_num_heads_per_rank * head_dim
if hasattr(param, "tensor_track"):
param.tensor_track.mark(start=param_shard_offset, end=param_shard_offset + param_shard_size)
param = slice_fn(param, output_dim, start=param_shard_offset, end=param_shard_offset + param_shard_size)
assert param.shape == loaded_weight.shape, (
f" Attempted to load weight ({loaded_weight.shape}) " f"into parameter ({param.shape})"
@@ -706,7 +714,6 @@ class RowParallelLinear(LinearBase):
),
)
if self.nranks > 0:
_set_var_distributed(self.weight, split_axis=0)
if self.with_bias:
# col parallel
_set_var_distributed(self.bias, split_axis=0)
@@ -732,7 +739,7 @@ class RowParallelLinear(LinearBase):
return out
class KVBatchLinear(LinearBase):
class KVBatchLinear(nn.Layer):
"""
KVBatchLinear Layer for handling combined KV projections with bmm.
"""
@@ -740,13 +747,12 @@ class KVBatchLinear(LinearBase):
def __init__(
self,
fd_config: FDConfig,
kv_b_proj: nn.Layer,
prefix: str = "",
kv_lora_rank: int = None,
num_attention_heads: int = None,
qk_nope_head_dim: int = None,
v_head_dim: int = None,
with_bias: bool = False,
skip_quant: bool = False,
):
"""
Initializes a KV batch linear layer that internally splits into K and V projections.
@@ -761,6 +767,7 @@ class KVBatchLinear(LinearBase):
with_bias (bool): Whether to include bias or not. Defaults to False.
skip_quant (bool): Whether to skip quantization. Defaults to False.
"""
super().__init__()
self.nranks = fd_config.parallel_config.tensor_parallel_size
self.kv_lora_rank = kv_lora_rank
self.num_attention_heads = num_attention_heads
@@ -770,69 +777,27 @@ class KVBatchLinear(LinearBase):
self.num_heads_per_partition = divide(num_attention_heads, self.nranks)
self.local_rank = fd_config.parallel_config.tensor_parallel_rank
# Initialize parent with combined dimensions
super().__init__(
fd_config=fd_config,
prefix=prefix,
input_size=None, # Will be determined from weight shape
output_size=None, # Will be determined from weight shape
with_bias=with_bias,
add_bias=False,
skip_quant=skip_quant,
)
self.weight_dtype = self._dtype
self.kv_b_proj = kv_b_proj
self.weight_dtype = self._helper.get_default_dtype()
# Override weight keys to use the combined kv_b_proj
self.weight_key = f"{prefix}.weight" # e.g., "kv_b_proj.weight"
self.k_weight_key = f"{prefix.replace('kv_b_proj', 'k_b_proj')}.weight"
self.v_weight_key = f"{prefix.replace('kv_b_proj', 'v_b_proj')}.weight"
self.k_b_proj_weight = self.create_parameter(
shape=[self.num_heads_per_partition, self.qk_nope_head_dim, self.kv_lora_rank],
dtype=self.weight_dtype,
is_bias=False,
default_initializer=paddle.nn.initializer.Constant(0),
)
def process_weights_after_loading(self):
self.v_b_proj_weight = self.create_parameter(
shape=[self.num_heads_per_partition, self.kv_lora_rank, self.v_head_dim],
dtype=self.weight_dtype,
is_bias=False,
default_initializer=paddle.nn.initializer.Constant(0),
)
set_weight_attrs(
self.k_b_proj_weight,
{"weight_loader": self.weight_loader},
)
if self.nranks > 0:
_set_var_distributed(self.k_b_proj_weight, split_axis=1)
set_weight_attrs(self.k_b_proj_weight, {"output_dim": True})
def weight_loader(self, param, loaded_weight, loaded_shard_id: Optional[str] = None):
output_dim = getattr(param, "output_dim", None)
# Tensor parallelism splits the weight along the output_dim
if output_dim is not None:
dim = -1
size = loaded_weight.get_shape()[dim]
block_size = size // self.nranks
shard_offset = self.local_rank * block_size
shard_size = (self.local_rank + 1) * block_size
loaded_weight = loaded_weight[..., shard_offset:shard_size]
w = (
get_tensor(loaded_weight)
.reshape(
w = self.kv_b_proj.weight.reshape(
[
self.kv_lora_rank,
self.num_heads_per_partition,
-1,
]
)
.transpose(perm=[1, 2, 0])
)
if param.dtype != w.dtype:
w = w.cast(param.dtype)
).transpose(perm=[1, 2, 0])
self.kv_b_proj = None
if w.dtype != self.weight_dtype:
w = w.cast(self.weight_dtype)
# Split into K and V weights
# wk_b: [num_heads, qk_nope_head_dim, kv_lora_rank]
wk_b = w[:, : self.qk_nope_head_dim, :]
@@ -840,9 +805,8 @@ class KVBatchLinear(LinearBase):
raise ValueError("self.v_head_dim should not be None")
# wv_b: [num_heads, kv_lora_rank, v_head_dim]
wv_b = w[:, -self.v_head_dim :, :].transpose(perm=[0, 2, 1])
self.k_b_proj_weight.set_value(wk_b)
self.v_b_proj_weight.set_value(wv_b)
self.k_b_proj_weight = wk_b
self.v_b_proj_weight = wv_b
def load_state_dict(self, state_dict: dict):
"""
@@ -916,7 +880,7 @@ class KVBatchLinear(LinearBase):
out = paddle.bmm(x, self.v_b_proj_weight)
return out
def forward_cuda(self, x: paddle.Tensor, proj_type: str = "k") -> paddle.Tensor:
def forward(self, x: paddle.Tensor, proj_type: str = "k") -> paddle.Tensor:
"""
Forward function that can handle both K and V projections

View File

@@ -22,7 +22,7 @@ from paddle import nn
from paddle.distributed import fleet
from fastdeploy.config import FDConfig
from fastdeploy.model_executor.models.utils import set_weight_attrs
from fastdeploy.model_executor.utils import set_weight_attrs
from .utils import get_tensor

View File

@@ -19,7 +19,7 @@ from abc import abstractmethod
import paddle
from paddle import nn
from fastdeploy.model_executor.layers.utils import set_weight_attrs
from fastdeploy.model_executor.utils import set_weight_attrs
from fastdeploy.platforms import current_platform
from ..quantization.quant_base import QuantMethodBase
@@ -185,9 +185,11 @@ class UnquantizedFusedMoEMethod(MoEMethodBase):
if current_platform.is_cuda():
self.up_gate_proj_weight_shape = [layer.num_experts, layer.hidden_size, layer.moe_intermediate_size * 2]
self.down_proj_weight_shape = [layer.num_experts, layer.moe_intermediate_size, layer.hidden_size]
extra_weight_attrs = {**extra_weight_attrs, "SHARD_ID_TO_SHARDED_DIM": {"gate": 1, "down": 0, "up": 1}}
else:
self.up_gate_proj_weight_shape = [layer.num_experts, layer.moe_intermediate_size * 2, layer.hidden_size]
self.down_proj_weight_shape = [layer.num_experts, layer.hidden_size, layer.moe_intermediate_size]
extra_weight_attrs = {**extra_weight_attrs, "SHARD_ID_TO_SHARDED_DIM": {"gate": 0, "down": 1, "up": 0}}
layer.up_gate_proj_weight = layer.create_parameter(
shape=self.up_gate_proj_weight_shape,
@@ -203,10 +205,3 @@ class UnquantizedFusedMoEMethod(MoEMethodBase):
set_weight_attrs(layer.up_gate_proj_weight, extra_weight_attrs)
set_weight_attrs(layer.down_proj_weight, extra_weight_attrs)
if layer.moe_use_gate_correction_bias:
gate_correction_bias_shape = [1, layer.num_experts]
layer.gate_correction_bias = layer.create_parameter(
shape=gate_correction_bias_shape,
dtype="float32",
)

View File

@@ -38,6 +38,8 @@ elif current_platform.is_iluvatar():
moe_expert_reduce,
)
from fastdeploy.model_executor.utils import TensorTracker, free_tensor, set_weight_attrs
# used for deepseek_v3
def get_moe_scores(
@@ -93,8 +95,8 @@ class CutlassMoEMethod(UnquantizedFusedMoEMethod):
return fastdeploy.model_executor.ops.iluvatar.moe_expert_ffn(
permute_input,
token_nums_per_expert,
layer.up_gate_proj_weight,
layer.down_proj_weight,
getattr(layer, self.added_weight_attrs[0]),
getattr(layer, self.added_weight_attrs[1]),
None,
(layer.up_gate_proj_weight_scale if hasattr(layer, "up_gate_proj_weight_scale") else None),
(layer.down_proj_weight_scale if hasattr(layer, "down_proj_weight_scale") else None),
@@ -106,8 +108,8 @@ class CutlassMoEMethod(UnquantizedFusedMoEMethod):
return fastdeploy.model_executor.ops.gpu.moe_expert_ffn(
permute_input,
token_nums_per_expert,
layer.up_gate_proj_weight,
layer.down_proj_weight,
getattr(layer, self.added_weight_attrs[0]),
getattr(layer, self.added_weight_attrs[1]),
None,
(layer.up_gate_proj_weight_scale if hasattr(layer, "up_gate_proj_weight_scale") else None),
(layer.down_proj_weight_scale if hasattr(layer, "down_proj_weight_scale") else None),
@@ -392,12 +394,12 @@ class CutlassW4A8MoEMethod(CutlassMoEMethod):
Paddle cutlass create weight process.
"""
self.weight_dtype = "int8"
self.ffn1_weight_shape = [
self.up_gate_proj_weight_shape = [
layer.num_local_experts,
layer.hidden_size // 2,
layer.moe_intermediate_size * 2,
]
self.ffn2_weight_shape = [
self.down_proj_weight_shape = [
layer.num_local_experts,
layer.moe_intermediate_size // 2,
layer.hidden_size,
@@ -406,7 +408,7 @@ class CutlassW4A8MoEMethod(CutlassMoEMethod):
layer,
self.added_weight_attrs[0],
layer.create_parameter(
shape=self.ffn1_weight_shape,
shape=self.up_gate_proj_weight_shape,
dtype=self.weight_dtype,
default_initializer=paddle.nn.initializer.Constant(0),
),
@@ -415,7 +417,7 @@ class CutlassW4A8MoEMethod(CutlassMoEMethod):
layer,
self.added_weight_attrs[1],
layer.create_parameter(
shape=self.ffn2_weight_shape,
shape=self.down_proj_weight_shape,
dtype=self.weight_dtype,
default_initializer=paddle.nn.initializer.Constant(0),
),
@@ -625,39 +627,73 @@ class CutlassWeightOnlyMoEMethod(CutlassMoEMethod):
Paddle cutlass create weight process.
"""
self.default_dtype = layer._helper.get_default_dtype()
self.weight_dtype = "int8"
up_gate_proj_weight_name = self.added_weight_attrs[0]
down_proj_weight_name = self.added_weight_attrs[1]
if self.moe_quant_type == "weight_only_int4":
self.ffn1_weight_shape = [
self.up_gate_proj_weight_shape = [
layer.num_local_experts,
layer.moe_intermediate_size,
layer.hidden_size,
]
else:
self.ffn1_weight_shape = [
self.up_gate_proj_weight_shape = [
layer.num_local_experts,
layer.moe_intermediate_size * 2,
layer.hidden_size,
]
if self.moe_quant_type == "weight_only_int4":
self.ffn2_weight_shape = [
self.down_proj_weight_shape = [
layer.num_local_experts,
layer.hidden_size // 2,
layer.moe_intermediate_size,
]
else:
self.ffn2_weight_shape = [
self.down_proj_weight_shape = [
layer.num_local_experts,
layer.hidden_size,
layer.moe_intermediate_size,
]
self.up_gate_proj_scale_shape = [layer.num_local_experts, layer.moe_intermediate_size * 2]
self.down_proj_scale_shape = [layer.num_local_experts, layer.hidden_size]
if layer.fd_config.load_config.load_choices == "default_v1":
layer.up_gate_proj_weight = layer.create_parameter(
shape=[layer.num_experts, layer.hidden_size, layer.moe_intermediate_size * 2],
dtype=layer.weight_dtype,
default_initializer=paddle.nn.initializer.Constant(0),
)
layer.down_proj_weight = layer.create_parameter(
shape=[layer.num_experts, layer.moe_intermediate_size, layer.hidden_size],
dtype=layer.weight_dtype,
default_initializer=paddle.nn.initializer.Constant(0),
)
set_weight_attrs(
layer.up_gate_proj_weight,
{
**extra_weight_attrs,
"tensor_track": TensorTracker(shape=layer.up_gate_proj_weight.shape, output_dim=True),
},
)
set_weight_attrs(
layer.down_proj_weight,
{
**extra_weight_attrs,
"tensor_track": TensorTracker(shape=layer.down_proj_weight.shape, output_dim=False),
},
)
else:
self.weight_dtype = "int8"
up_gate_proj_weight_name = self.added_weight_attrs[0]
down_proj_weight_name = self.added_weight_attrs[1]
up_gate_proj_scale_name = self.added_scale_attrs[0]
down_proj_scale_name = self.added_scale_attrs[1]
setattr(
layer,
up_gate_proj_weight_name,
layer.create_parameter(
shape=self.ffn1_weight_shape,
shape=self.up_gate_proj_weight_shape,
dtype=self.weight_dtype,
default_initializer=paddle.nn.initializer.Constant(0),
),
@@ -666,7 +702,7 @@ class CutlassWeightOnlyMoEMethod(CutlassMoEMethod):
layer,
down_proj_weight_name,
layer.create_parameter(
shape=self.ffn2_weight_shape,
shape=self.down_proj_weight_shape,
dtype=self.weight_dtype,
default_initializer=paddle.nn.initializer.Constant(0),
),
@@ -674,23 +710,95 @@ class CutlassWeightOnlyMoEMethod(CutlassMoEMethod):
# weight_scale
setattr(
layer,
self.added_scale_attrs[0],
up_gate_proj_scale_name,
layer.create_parameter(
shape=[layer.num_local_experts, layer.moe_intermediate_size * 2],
shape=self.up_gate_proj_scale_shape,
dtype=self.default_dtype,
default_initializer=paddle.nn.initializer.Constant(0),
),
)
setattr(
layer,
self.added_scale_attrs[1],
down_proj_scale_name,
layer.create_parameter(
shape=[layer.num_local_experts, layer.hidden_size],
shape=self.down_proj_scale_shape,
dtype=self.default_dtype,
default_initializer=paddle.nn.initializer.Constant(0),
),
)
moe_extra_weight_attrs = {**extra_weight_attrs, "SHARD_ID_TO_SHARDED_DIM": {"gate": 0, "down": 1, "up": 0}}
set_weight_attrs(layer.up_gate_proj_weight, moe_extra_weight_attrs)
set_weight_attrs(layer.down_proj_weight, moe_extra_weight_attrs)
scale_extra_weight_attrs = {
**extra_weight_attrs,
"SHARD_ID_TO_SHARDED_DIM": {"gate": 0, "up": 0, "down": None},
}
set_weight_attrs(layer.up_gate_proj_weight_scale, scale_extra_weight_attrs)
set_weight_attrs(layer.down_proj_weight_scale, scale_extra_weight_attrs)
def process_weights_after_loading(self, layer):
""" """
if not layer.fd_config.load_config.load_choices == "default_v1":
return
weight_id_map = {"gate_up": 0, "down": 1}
if (
hasattr(layer.up_gate_proj_weight, "tensor_track")
and layer.up_gate_proj_weight.tensor_track is not None
and layer.up_gate_proj_weight.tensor_track.is_fully_copied()
):
weight_type = "gate_up"
else:
weight_type = "down"
# 1.init shape and type
# weight
weight_name = self.added_weight_attrs[weight_id_map[weight_type]]
unquantized_weight_name = weight_name.replace("quant_weight", "weight")
weight_shape = self.up_gate_proj_weight_shape if weight_type == "gate_up" else self.down_proj_weight_shape
weight_dtype = "int8"
# scale
scale_name = self.added_scale_attrs[weight_id_map[weight_type]]
scale_shape = self.up_gate_proj_scale_shape if weight_type == "gate_up" else self.down_proj_scale_shape
scale_dtype = self.default_dtype
# 2.crate tmp tensor
weight = paddle.empty(weight_shape, dtype=weight_dtype)
scale = paddle.empty(scale_shape, dtype=scale_dtype)
# 3.quantize weight
for expert_id in range(layer.num_experts):
weight[expert_id], scale[expert_id] = weight_quantize(
getattr(layer, unquantized_weight_name)[expert_id], algo=self.moe_quant_type
)
free_tensor(getattr(layer, unquantized_weight_name))
# create weight
setattr(
layer,
weight_name,
layer.create_parameter(
shape=weight_shape,
dtype=weight_dtype,
default_initializer=paddle.nn.initializer.Constant(0),
),
)
# create scale
setattr(
layer,
scale_name,
layer.create_parameter(
shape=scale_shape,
dtype=scale_dtype,
default_initializer=paddle.nn.initializer.Constant(0),
),
)
getattr(layer, weight_name).copy_(weight, False)
getattr(layer, scale_name).copy_(scale, False)
def process_loaded_weights(self, layer: nn.Layer, state_dict):
"""
Paddle cutlass load weight process.

View File

@@ -23,6 +23,7 @@ from paddleformers.utils.log import logger
from fastdeploy import envs
from fastdeploy.model_executor.layers.utils import get_tensor
from fastdeploy.model_executor.utils import slice_fn
from fastdeploy.platforms import current_platform
from fastdeploy.worker.experts_manager import RedundantExpertManger
@@ -78,6 +79,7 @@ class FusedMoE(nn.Layer):
routed_scaling_factor: float = 1.0,
layer_idx: int = -1,
moe_tag: str = "",
gate_correction_bias=None,
weight_key_map: dict = {},
):
"""
@@ -155,9 +157,10 @@ class FusedMoE(nn.Layer):
# It's for RL to build model
self.init_moe_weights()
else:
self.gate_correction_bias_key = self.weight_key_map.get("gate_correction_bias_key", None)
if self.gate_correction_bias_key is not None:
self.gate_correction_bias = self.create_parameter(shape=[1, self.num_experts], dtype="float32")
if gate_correction_bias is not None:
self.gate_correction_bias = gate_correction_bias
else:
self.gate_correction_bias = None
if moe_quant_config:
if (
moe_quant_config
@@ -179,54 +182,72 @@ class FusedMoE(nn.Layer):
def weight_loader(self, param, loaded_weight, expert_id, shard_id: Optional[str] = None):
from fastdeploy.platforms import current_platform
if shard_id is None:
# 1.gate up fused in disk
if self.tp_size > 1:
shard_offsets = [
# (shard_id, shard_offset, shard_size)
("gate", 0, self.moe_intermediate_size * self.tp_size),
("up", self.moe_intermediate_size * self.tp_size, self.moe_intermediate_size * self.tp_size),
]
for shard_id, shard_offset, shard_size in shard_offsets:
loaded_weight_shard = loaded_weight[..., shard_offset : shard_offset + shard_size]
self.weight_loader(param, loaded_weight_shard, expert_id, shard_id)
else:
expert_param = param[expert_id - self.expert_id_offset]
loaded_weight = get_tensor(loaded_weight)
expert_param.copy_(loaded_weight, False)
else:
# 2.gate up splited in disk
assert shard_id in ["gate", "down", "up"]
if current_platform.is_cuda():
if hasattr(param, "SHARD_ID_TO_SHARDED_DIM"):
SHARD_ID_TO_SHARDED_DIM = param.SHARD_ID_TO_SHARDED_DIM
elif current_platform.is_cuda():
SHARD_ID_TO_SHARDED_DIM = {"gate": 1, "down": 0, "up": 1}
else:
SHARD_ID_TO_SHARDED_DIM = {"gate": 0, "down": 1, "up": 0}
if not param._is_initialized():
param.initialize()
if shard_id is None:
# 1.gate up fused in disk
output_size = param[expert_id - self.expert_id_offset].shape[SHARD_ID_TO_SHARDED_DIM["gate"]]
shard_offsets = [
# (shard_id, shard_offset, shard_size)
("gate", 0, output_size // 2 * self.tp_size),
("up", output_size // 2 * self.tp_size, output_size // 2 * self.tp_size),
]
for shard_id, shard_offset, shard_size in shard_offsets:
loaded_weight_shard = slice_fn(
loaded_weight, SHARD_ID_TO_SHARDED_DIM[shard_id], shard_offset, shard_offset + shard_size
)
self.weight_loader(param, loaded_weight_shard, expert_id, shard_id)
else:
# 2.gate up splited in disk
assert shard_id in ["gate", "down", "up"]
self._load_expert_weight(
param=param,
expert_id=expert_id,
shard_dim=SHARD_ID_TO_SHARDED_DIM[shard_id],
loaded_weight=loaded_weight,
shard_id=shard_id,
shard_dim=SHARD_ID_TO_SHARDED_DIM[shard_id],
)
def _load_gate_up_weight(self, expert_param, shard_dim, loaded_weight, shard_id):
tensor_size = expert_param.shape[shard_dim] // 2
if shard_id == "gate":
expert_param = expert_param[..., :tensor_size] if shard_dim else expert_param[:tensor_size, ...]
elif shard_id == "up":
expert_param = expert_param[..., tensor_size:] if shard_dim else expert_param[tensor_size:, ...]
def _load_gate_up_weight(self, param, expert_id, loaded_weight, shard_id, shard_dim=None):
dim = -1 if shard_dim else 0
if self.tp_size > 1:
if isinstance(loaded_weight, np.ndarray):
size = loaded_weight.shape[-1]
size = loaded_weight.shape[dim]
else:
size = loaded_weight.get_shape()[-1]
size = loaded_weight.get_shape()[dim]
block_size = size // self.tp_size
shard_offset = self.tp_rank * block_size
shard_size = (self.tp_rank + 1) * block_size
loaded_weight = loaded_weight[..., shard_offset:shard_size]
loaded_weight = slice_fn(loaded_weight, shard_dim, shard_offset, shard_size)
loaded_weight = get_tensor(loaded_weight)
expert_param = param[expert_id - self.expert_id_offset]
param_shard_size = expert_param.shape[dim] // 2
if shard_id == "gate":
param_shard_offset = 0
else:
# shard_id == "up":
param_shard_offset = param_shard_size
expert_param = slice_fn(
expert_param, shard_dim, start=param_shard_offset, end=param_shard_offset + param_shard_size
)
if hasattr(param, "tensor_track"):
# for dyn quant
param.tensor_track.mark(
start=param_shard_offset,
end=param_shard_offset + param_shard_size,
batch_id=expert_id - self.expert_id_offset,
)
# To ensure compatibility across backends, apply an extra transpose for GCU and XPU
if expert_param.shape != loaded_weight.shape:
loaded_weight = loaded_weight.transpose([1, 0])
@@ -235,17 +256,22 @@ class FusedMoE(nn.Layer):
)
expert_param.copy_(loaded_weight, False)
def _load_down_weight(self, expert_param, shard_dim, loaded_weight, shard_id):
if self.tp_size > 1:
def _load_down_weight(self, param, expert_id, loaded_weight, shard_id, shard_dim=None):
if self.tp_size > 1 and shard_dim is not None:
dim = -1 if shard_dim else 0
if isinstance(loaded_weight, np.ndarray):
size = loaded_weight.shape[shard_dim]
size = loaded_weight.shape[dim]
else:
size = loaded_weight.get_shape()[shard_dim]
size = loaded_weight.get_shape()[dim]
block_size = size // self.tp_size
shard_offset = self.tp_rank * block_size
shard_size = (self.tp_rank + 1) * block_size
loaded_weight = loaded_weight[shard_offset:shard_size, ...]
loaded_weight = slice_fn(loaded_weight, shard_dim, shard_offset, shard_size)
loaded_weight = get_tensor(loaded_weight)
expert_param = param[expert_id - self.expert_id_offset]
if hasattr(param, "tensor_track"):
# for dyn quant
param.tensor_track.mark(start=0, batch_id=expert_id - self.expert_id_offset)
# To ensure compatibility across backends, apply an extra transpose for GCU and XPU
if expert_param.shape != loaded_weight.shape:
loaded_weight = loaded_weight.transpose([1, 0])
@@ -258,15 +284,14 @@ class FusedMoE(nn.Layer):
self,
param,
expert_id,
shard_dim,
loaded_weight,
shard_id,
shard_dim=None,
):
expert_param = param[expert_id - self.expert_id_offset]
if shard_id == "down":
self._load_down_weight(expert_param, shard_dim, loaded_weight, shard_id)
self._load_down_weight(param, expert_id, loaded_weight, shard_id, shard_dim)
elif shard_id in ["gate", "up"]:
self._load_gate_up_weight(expert_param, shard_dim, loaded_weight, shard_id)
self._load_gate_up_weight(param, expert_id, loaded_weight, shard_id, shard_dim)
@classmethod
def make_expert_params_mapping(
@@ -314,13 +339,6 @@ class FusedMoE(nn.Layer):
Combines weight shape initialization and parameter creation into a single function.
"""
# Initialize weight shapes
gate_correction_bias_shape = [1, self.num_experts]
if self.fd_config.model_config.moe_use_aux_free:
self.gate_correction_bias = self.create_parameter(
shape=gate_correction_bias_shape,
dtype="float32",
)
up_gate_proj_output_dim = self.moe_intermediate_size * 2
if self.moe_quant_type in ["block_wise_fp8", "wint8"]:
up_gate_proj_weight_shape = [
@@ -535,19 +553,6 @@ class FusedMoE(nn.Layer):
"""
load_state_dict function.
"""
if not is_rearrange:
if self.moe_use_gate_correction_bias:
gate_correction_bias_tensor = self.extract_gate_correction_bias(
self.gate_correction_bias_key, state_dict
)
if self.gate_correction_bias.shape != gate_correction_bias_tensor.shape:
gate_correction_bias_tensor = gate_correction_bias_tensor.reshape(self.gate_correction_bias.shape)
self.gate_correction_bias.set_value(gate_correction_bias_tensor)
else:
self.gate_correction_bias = None
else:
self.gate_correction_bias = None
if is_supported_moe_backend is not None and is_supported_moe_backend(self.quant_method):
if self.fd_config.model_config.is_quantized:
if getattr(self.fd_config.quant_config, "is_permuted", True):

View File

@@ -21,6 +21,11 @@ from typing import Optional
import paddle
from paddle.nn.quant import weight_only_linear, weight_quantize
from fastdeploy.model_executor.layers.linear import (
MergedColumnParallelLinear,
QKVParallelLinear,
)
from fastdeploy.model_executor.utils import TensorTracker, free_tensor, set_weight_attrs
from fastdeploy.platforms import current_platform
from ..moe import FusedMoE
@@ -135,9 +140,7 @@ class WINT8Config(WeightOnlyConfig):
weight only int8 config
"""
def __init__(
self,
) -> None:
def __init__(self) -> None:
super().__init__("weight_only_int8")
@classmethod
@@ -179,15 +182,32 @@ class WeightOnlyLinearMethod(QuantMethodBase):
self.quant_config = quant_config
def create_weights(self, layer, **extra_weight_attrs):
if layer.fd_config.load_config.load_choices == "default_v1":
layer.weight = layer.create_parameter(
shape=layer.weight_shape,
dtype=layer.weight_dtype,
is_bias=False,
default_initializer=paddle.nn.initializer.Constant(0),
)
quant_attrs = extra_weight_attrs
if isinstance(layer, MergedColumnParallelLinear) or isinstance(layer, QKVParallelLinear):
quant_attrs = {
**extra_weight_attrs,
"tensor_track": TensorTracker(
shape=layer.weight_shape, output_dim=extra_weight_attrs.get("output_dim")
),
}
set_weight_attrs(
layer.weight,
quant_attrs,
)
else:
# The scale shape should be equal to the output dim of weight using Per-Channel Quantization.
weight_scale_shape = [layer.weight_shape[1]]
layer.weight_shape.reverse()
if self.quant_config.name() == "wint4":
layer.weight_shape[0] //= 2
layer.weight_dtype = "int8"
layer.weight = layer.create_parameter(
shape=layer.weight_shape,
dtype=layer.weight_dtype,
@@ -195,12 +215,57 @@ class WeightOnlyLinearMethod(QuantMethodBase):
default_initializer=paddle.nn.initializer.Constant(0),
)
output_dim = extra_weight_attrs.get("output_dim")
output_dim = not output_dim
weight_loader = extra_weight_attrs.get("weight_loader")
set_weight_attrs(
layer.weight,
{
"weight_loader": weight_loader,
"output_dim": output_dim,
},
)
layer.weight_scale = layer.create_parameter(
shape=weight_scale_shape,
dtype=layer._dtype,
is_bias=False,
)
set_weight_attrs(
layer.weight_scale,
{
"weight_loader": weight_loader,
"output_dim": output_dim,
},
)
def process_weights_after_loading(self, layer) -> None:
if not layer.fd_config.load_config.load_choices == "default_v1":
return
quanted_weight_tensor, weight_scale_tensor = weight_quantize(
layer.weight,
algo=self.quant_config.algo,
arch=self.quant_config.weight_only_linear_arch,
)
free_tensor(layer.weight)
layer.weight = layer.create_parameter(
shape=quanted_weight_tensor.shape,
dtype="int8",
is_bias=False,
default_initializer=paddle.nn.initializer.Constant(0),
)
layer.weight_scale = layer.create_parameter(
shape=weight_scale_tensor.shape,
dtype=layer._dtype,
is_bias=False,
default_initializer=paddle.nn.initializer.Constant(0),
)
layer.weight.copy_(quanted_weight_tensor, False)
layer.weight_scale.copy_(weight_scale_tensor, False)
@abstractmethod
def process_loaded_weights(self, layer, weights) -> None:
raise NotImplementedError

View File

@@ -15,7 +15,7 @@
"""
import functools
from typing import Any, Optional, Tuple, Union
from typing import Tuple, Union
import numpy as np
import paddle
@@ -45,14 +45,6 @@ if cache_params != "none":
c8_state_dict = paddle.load(cache_params, return_numpy=True)
# TODO(lulinjun): delete it, import from fastdeploy.model_executor.models.utils after supporting all backends
def set_weight_attrs(param, param_attr_map: Optional[dict[str, Any]]):
if param_attr_map is None:
return
for key, value in param_attr_map.items():
setattr(param, key, value)
def per_block_cast_to_fp8(x: Tensor, block_size: list = [128, 128]) -> Tuple[Tensor, Tensor]:
"""
Only used in deep_gemm block wise quant weight.

View File

@@ -14,8 +14,6 @@
# limitations under the License.
"""
import contextlib
import paddle
from paddle import nn
from paddleformers.utils.log import logger
@@ -56,15 +54,12 @@ class DefaultModelLoaderV1(BaseModelLoader):
def load_model(self, fd_config: FDConfig) -> nn.Layer:
architectures = fd_config.model_config.architectures[0]
logger.info(f"Starting to load model {architectures}")
context = paddle.LazyGuard()
if fd_config.load_config.dynamic_load_weight:
# register rl model
import fastdeploy.rl # noqa
architectures = architectures + "RL"
context = paddle.LazyGuard()
else:
context = contextlib.nullcontext()
with context:
model_cls = ModelRegistry.get_class(architectures)
@@ -75,6 +70,5 @@ class DefaultModelLoaderV1(BaseModelLoader):
# RL model not need set_state_dict
if fd_config.load_config.dynamic_load_weight:
return model
self.load_weights(model, fd_config)
return model

View File

@@ -17,6 +17,7 @@
from __future__ import annotations
import math
import re
from functools import partial
import paddle
@@ -122,6 +123,25 @@ class DeepSeekV3MoE(nn.Layer):
"down_proj_expert_weight_key": f"{prefix}.experts.{{}}.down_proj.weight",
}
self.gate = ReplicatedLinear(
fd_config=fd_config,
prefix=f"{prefix}.gate",
input_size=fd_config.model_config.hidden_size,
output_size=fd_config.model_config.n_routed_experts,
with_bias=False,
skip_quant=True,
weight_dtype="float32",
)
if fd_config.model_config.topk_method == "noaux_tc":
self.gate.e_score_correction_bias = self.create_parameter(
shape=[1, fd_config.model_config.n_routed_experts],
dtype="float32",
default_initializer=paddle.nn.initializer.Constant(0),
)
else:
self.gate.e_score_correction_bias = None
self.experts = FusedMoE(
fd_config=fd_config,
reduce_results=False,
@@ -133,19 +153,10 @@ class DeepSeekV3MoE(nn.Layer):
n_group=fd_config.model_config.n_group,
routed_scaling_factor=fd_config.model_config.routed_scaling_factor,
layer_idx=layer_id,
gate_correction_bias=self.gate.e_score_correction_bias,
weight_key_map=weight_key_map,
)
self.gate = ReplicatedLinear(
fd_config=fd_config,
prefix=f"{prefix}.gate",
input_size=fd_config.model_config.hidden_size,
output_size=fd_config.model_config.n_routed_experts,
with_bias=False,
skip_quant=True,
weight_dtype="float32",
)
self.num_shared_experts = fd_config.model_config.n_shared_experts
shared_experts_intermediate_size = self.num_shared_experts * fd_config.model_config.moe_intermediate_size
@@ -258,6 +269,7 @@ class DeepseekV3MLAAttention(nn.Layer):
self.kv_b_proj_bmm = KVBatchLinear(
fd_config=fd_config,
kv_b_proj=self.kv_b_proj,
prefix=f"{prefix}.kv_b_proj",
kv_lora_rank=self.kv_lora_rank,
num_attention_heads=self.num_attention_heads,
@@ -617,7 +629,10 @@ class DeepseekV3ForCausalLM(ModelForCasualLM):
Args:
weights_iterator (Iterator): An iterator yielding (name, weight) pairs.
"""
from fastdeploy.model_executor.models.utils import default_weight_loader
from fastdeploy.model_executor.utils import (
default_weight_loader,
process_weights_after_loading,
)
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
@@ -637,7 +652,7 @@ class DeepseekV3ForCausalLM(ModelForCasualLM):
param_down_proj_name="experts.down_proj_",
)
params_dict = dict(self.named_parameters())
process_weights_after_loading_fn = process_weights_after_loading(dict(self.named_sublayers()))
for loaded_weight_name, loaded_weight in weights_iterator:
loaded_weight_name = loaded_weight_name.replace("deepseek_v3", "model")
@@ -668,19 +683,18 @@ class DeepseekV3ForCausalLM(ModelForCasualLM):
weight_loader(param, loaded_weight, shard_id=shard_id, expert_id=expert_id)
break
else:
if loaded_weight_name not in params_dict:
model_param_name = loaded_weight_name
if model_param_name not in params_dict:
continue
param = params_dict[loaded_weight_name]
param = params_dict[model_param_name]
weight_loader = getattr(param, "weight_loader", default_weight_loader(self.fd_config))
weight_loader(param, loaded_weight)
if "kv_b_proj.weight" in loaded_weight_name:
# handle kv_b_proj_bmm
model_param_name = loaded_weight_name.replace(
"kv_b_proj.weight", "kv_b_proj_bmm.k_b_proj_weight"
)
param = params_dict[model_param_name]
weight_loader = getattr(param, "weight_loader", None)
weight_loader(param, loaded_weight, shard_id)
model_sublayer_name = re.sub(r"\.(up_gate_proj_weight|down_proj_weight|weight)$", "", model_param_name)
if "kv_b_proj" in model_sublayer_name:
kv_model_sublayer_name = model_sublayer_name.replace("kv_b_proj", "kv_b_proj_bmm")
process_weights_after_loading_fn(kv_model_sublayer_name)
process_weights_after_loading_fn(model_sublayer_name, param)
def compute_logits(self, hidden_states: paddle.Tensor):
""" """

View File

@@ -17,6 +17,7 @@
from __future__ import annotations
import inspect
import re
from functools import partial
from typing import Dict, Union
@@ -149,15 +150,6 @@ class Ernie4_5_MoE(nn.Layer):
"down_proj_expert_weight_key": f"{prefix}.experts.{{}}.down_proj.weight",
}
self.experts = FusedMoE(
fd_config=fd_config,
moe_intermediate_size=fd_config.model_config.moe_intermediate_size,
num_experts=fd_config.model_config.moe_num_experts,
top_k=fd_config.model_config.moe_k,
layer_idx=layer_id,
weight_key_map=weight_key_map,
)
self.gate = ReplicatedLinear(
fd_config=fd_config,
prefix=f"{prefix}.gate",
@@ -168,6 +160,25 @@ class Ernie4_5_MoE(nn.Layer):
weight_dtype="float32",
)
self.experts = FusedMoE(
fd_config=fd_config,
moe_intermediate_size=fd_config.model_config.moe_intermediate_size,
num_experts=fd_config.model_config.moe_num_experts,
top_k=fd_config.model_config.moe_k,
layer_idx=layer_id,
gate_correction_bias=None,
weight_key_map=weight_key_map,
)
if fd_config.model_config.moe_use_aux_free:
self.experts.gate_correction_bias = self.create_parameter(
shape=[1, fd_config.model_config.moe_num_experts],
dtype="float32",
default_initializer=paddle.nn.initializer.Constant(0),
)
else:
self.experts.gate_correction_bias = None
self.num_shared_experts = fd_config.model_config.moe_num_shared_experts
if self.num_shared_experts > 0:
shared_experts_hidden_dim = self.num_shared_experts * fd_config.model_config.moe_intermediate_size
@@ -180,6 +191,13 @@ class Ernie4_5_MoE(nn.Layer):
def load_state_dict(self, state_dict):
self.gate.load_state_dict(state_dict)
self.experts.load_state_dict(state_dict)
if self.experts.gate_correction_bias is not None:
gate_correction_bias_tensor = state_dict.pop(self.experts.gate_correction_bias_key)
if self.experts.gate_correction_bias.shape != gate_correction_bias_tensor.shape:
gate_correction_bias_tensor = gate_correction_bias_tensor.reshape(
self.experts.gate_correction_bias.shape
)
self.experts.gate_correction_bias.set_value(gate_correction_bias_tensor)
if self.num_shared_experts > 0:
self.shared_experts.load_state_dict(state_dict)
@@ -441,12 +459,16 @@ class Ernie4_5_MoeForCausalLM(ModelForCasualLM):
weights_iterator (Iterator): An iterator yielding (name, weight) pairs.
"""
from fastdeploy.model_executor.models.utils import default_weight_loader
from fastdeploy.model_executor.utils import (
default_weight_loader,
process_weights_after_loading,
)
general_params_mapping = [
# (param_name, weight_name, expert_id, shard_id)
("embed_tokens.embeddings", "embed_tokens", None, None),
("lm_head.linear", "lm_head", None, None),
("experts.gate_correction_bias", "moe_statics.e_score_correction_bias", None, None),
]
expert_params_mapping = []
@@ -458,13 +480,10 @@ class Ernie4_5_MoeForCausalLM(ModelForCasualLM):
param_gate_up_proj_name="experts.up_gate_proj_",
param_down_proj_name="experts.down_proj_",
)
expert_params_mapping.append(
("experts.gate_correction_bias", "moe_statics.e_score_correction_bias", None, "gate_bias")
)
logger.info(f"expert params mapping:{expert_params_mapping}")
all_param_mapping = general_params_mapping + expert_params_mapping
params_dict = dict(self.named_parameters())
process_weights_after_loading_fn = process_weights_after_loading(dict(self.named_sublayers()))
expert_id = None
shard_id = None
@@ -478,9 +497,10 @@ class Ernie4_5_MoeForCausalLM(ModelForCasualLM):
shard_id = shard_id
break
else:
if loaded_weight_name not in params_dict.keys():
model_param_name = loaded_weight_name
if model_param_name not in params_dict.keys():
continue
param = params_dict[loaded_weight_name]
param = params_dict[model_param_name]
# Get weight loader from parameter and set weight
weight_loader = getattr(param, "weight_loader", default_weight_loader(self.fd_config))
@@ -490,6 +510,8 @@ class Ernie4_5_MoeForCausalLM(ModelForCasualLM):
else:
weight_loader(param, loaded_weight)
model_sublayer_name = re.sub(r"\.(up_gate_proj_weight|down_proj_weight|weight)$", "", model_param_name)
process_weights_after_loading_fn(model_sublayer_name, param)
if self.tie_word_embeddings:
self.lm_head.linear.weight.set_value(self.ernie.embed_tokens.embeddings.weight.transpose([1, 0]))

View File

@@ -34,7 +34,7 @@ from paddle.nn.functional.flash_attention import (
from paddleformers.transformers.model_utils import PretrainedModel
from fastdeploy.model_executor.layers.utils import divide, get_tensor
from fastdeploy.model_executor.models.utils import set_weight_attrs
from fastdeploy.model_executor.utils import set_weight_attrs
from .activation import ACT2FN
from .configuration import DFNRopeVisionTransformerConfig

View File

@@ -17,6 +17,7 @@
from __future__ import annotations
import inspect
import re
from dataclasses import dataclass
from functools import partial
from typing import Dict, Optional, Union
@@ -38,7 +39,6 @@ from fastdeploy.model_executor.layers.linear import ReplicatedLinear
from fastdeploy.model_executor.layers.lm_head import ParallelLMHead
from fastdeploy.model_executor.layers.moe.moe import FusedMoE
from fastdeploy.model_executor.layers.normalization import RMSNorm
from fastdeploy.model_executor.layers.utils import get_tensor
from fastdeploy.model_executor.models.ernie4_5_moe import (
Ernie4_5_Attention,
Ernie4_5_MLP,
@@ -75,7 +75,15 @@ class VLMoEMeta:
class Ernie4_5_VLMoeBlock(nn.Layer):
def __init__(self, fd_config: FDConfig, layer_id: int, prefix: str, moe_tag: str, expert_id_offset: int) -> None:
def __init__(
self,
fd_config: FDConfig,
layer_id: int,
prefix: str,
moe_tag: str,
expert_id_offset: int,
gate_correction_bias=None,
) -> None:
super().__init__()
moe_quant_type = ""
if hasattr(fd_config, "quant_config") and fd_config.quant_config is not None:
@@ -120,6 +128,7 @@ class Ernie4_5_VLMoeBlock(nn.Layer):
layer_idx=layer_id,
moe_tag=moe_tag,
weight_key_map=weight_key_map,
gate_correction_bias=gate_correction_bias,
)
self.gate = ReplicatedLinear(
@@ -133,29 +142,10 @@ class Ernie4_5_VLMoeBlock(nn.Layer):
weight_key="weight" if moe_tag == "Text" else "weight_1",
)
if moe_tag == "Text":
self.experts.extract_gate_correction_bias = self.extract_gate_correction_bias_text
elif moe_tag == "Image":
self.experts.extract_gate_correction_bias = self.extract_gate_correction_bias_image
def forward(self, hidden_states: paddle.Tensor):
out = self.experts(hidden_states, self.gate)
return out
def extract_gate_correction_bias_text(self, gate_correction_bias_key, state_dict):
"""
extract_gate_correction_bias function.
"""
gate_correction_bias_tensor = get_tensor(state_dict[gate_correction_bias_key]).astype("float32")
return gate_correction_bias_tensor[0].unsqueeze(0)
def extract_gate_correction_bias_image(self, gate_correction_bias_key, state_dict):
"""
extract_gate_correction_bias function.
"""
gate_correction_bias_tensor = get_tensor(state_dict[gate_correction_bias_key]).astype("float32")
return gate_correction_bias_tensor[1].unsqueeze(0)
def load_state_dict(self, state_dict):
self.experts.load_state_dict(state_dict)
self.gate.load_state_dict(state_dict)
@@ -186,10 +176,25 @@ class Ernie4_5_VLMoE(nn.Layer):
image_moe_layer_end_index = moe_layer_end_index[1]
assert text_moe_layer_start_index <= text_moe_layer_end_index
if fd_config.model_config.moe_use_aux_free:
self.gate_correction_bias = self.create_parameter(
shape=[2, fd_config.model_config.moe_num_experts[0]],
dtype="float32",
default_initializer=paddle.nn.initializer.Constant(0),
)
if not self.gate_correction_bias._is_initialized():
self.gate_correction_bias.initialize()
else:
self.gate_correction_bias = None
if layer_id >= text_moe_layer_start_index and layer_id <= text_moe_layer_end_index:
self.text_fused_moe = Ernie4_5_VLMoeBlock(
fd_config=fd_config, layer_id=layer_id, prefix=f"{prefix}", moe_tag="Text", expert_id_offset=0
fd_config=fd_config,
layer_id=layer_id,
prefix=f"{prefix}",
moe_tag="Text",
expert_id_offset=0,
gate_correction_bias=self.gate_correction_bias[0] if fd_config.model_config.moe_use_aux_free else None,
)
else:
self.text_fused_moe = Ernie4_5_VLMLP(
@@ -207,6 +212,7 @@ class Ernie4_5_VLMoE(nn.Layer):
prefix=f"{prefix}",
moe_tag="Image",
expert_id_offset=fd_config.model_config.moe_num_experts[0],
gate_correction_bias=self.gate_correction_bias[1] if fd_config.model_config.moe_use_aux_free else None,
)
else:
self.image_fused_moe = Ernie4_5_VLMLP(
@@ -226,10 +232,13 @@ class Ernie4_5_VLMoE(nn.Layer):
)
def load_state_dict(self, state_dict):
if self.gate_correction_bias is not None:
gate_correction_bias_tensor = state_dict.pop(self.text_fused_moe.experts.gate_correction_bias_key)
if self.gate_correction_bias.shape != gate_correction_bias_tensor.shape:
gate_correction_bias_tensor = gate_correction_bias_tensor.reshape(self.gate_correction_bias.shape)
self.gate_correction_bias.set_value(gate_correction_bias_tensor)
self.text_fused_moe.load_state_dict(state_dict)
self.image_fused_moe.load_state_dict(state_dict)
if self.text_fused_moe.experts.moe_use_gate_correction_bias:
state_dict.pop(self.text_fused_moe.experts.gate_correction_bias_key)
if self.num_shared_experts > 0:
self.shared_experts.load_state_dict(state_dict)
@@ -563,19 +572,6 @@ class Ernie4_5_VLMoeForConditionalGeneration(ModelForCasualLM):
def name(self):
return "Ernie4_5_VLMoeForConditionalGeneration"
def gate_correction_bias_loader(self, params_dict, loaded_weight_name, loaded_weight):
text_param_name = loaded_weight_name.replace(
"moe_statics.e_score_correction_bias", "text_fused_moe.experts.gate_correction_bias"
)
image_param_name = loaded_weight_name.replace(
"moe_statics.e_score_correction_bias", "image_fused_moe.experts.gate_correction_bias"
)
text_param = params_dict[text_param_name]
image_param = params_dict[image_param_name]
loaded_weight = get_tensor(loaded_weight)
text_param.copy_(loaded_weight[0].unsqueeze(0), False)
image_param.copy_(loaded_weight[1].unsqueeze(0), False)
@paddle.no_grad()
def load_weights(self, weights_iterator) -> None:
"""
@@ -585,7 +581,10 @@ class Ernie4_5_VLMoeForConditionalGeneration(ModelForCasualLM):
weights_iterator (Iterator): An iterator yielding (name, weight) pairs.
"""
from fastdeploy.model_executor.models.utils import default_weight_loader
from fastdeploy.model_executor.utils import (
default_weight_loader,
process_weights_after_loading,
)
general_params_mapping = [
# (param_name, weight_name, expert_id, shard_id)
@@ -594,6 +593,8 @@ class Ernie4_5_VLMoeForConditionalGeneration(ModelForCasualLM):
("mlp.image_fused_moe.gate.weight", "mlp.gate.weight_1", None, "gate"),
("mlp.text_fused_moe.gate.weight", "mlp.gate.weight", None, "gate"),
("resampler_model", "ernie.resampler_model", None, None),
("vision_model", "ernie.vision_model", None, None),
("gate_correction_bias", "moe_statics.e_score_correction_bias", None, None),
]
text_expert_params_mapping = []
@@ -617,6 +618,7 @@ class Ernie4_5_VLMoeForConditionalGeneration(ModelForCasualLM):
all_param_mapping = general_params_mapping + text_expert_params_mapping + image_expert_params_mapping
params_dict = dict(self.named_parameters())
process_weights_after_loading_fn = process_weights_after_loading(dict(self.named_sublayers()))
expert_id = None
shard_id = None
for loaded_weight_name, loaded_weight in weights_iterator:
@@ -629,10 +631,6 @@ class Ernie4_5_VLMoeForConditionalGeneration(ModelForCasualLM):
shard_id = shard_id
break
else:
# text and image gate_correction_bias is fused in ckpt and need load independently
if "moe_statics.e_score_correction_bias" in loaded_weight_name:
self.gate_correction_bias_loader(params_dict, loaded_weight_name, loaded_weight)
continue
if loaded_weight_name not in params_dict.keys():
continue
model_param_name = loaded_weight_name
@@ -646,7 +644,8 @@ class Ernie4_5_VLMoeForConditionalGeneration(ModelForCasualLM):
weight_loader(param, loaded_weight, expert_id=expert_id, shard_id=shard_id)
else:
weight_loader(param, loaded_weight)
model_sublayer_name = re.sub(r"\.(up_gate_proj_weight|down_proj_weight|weight)$", "", model_param_name)
process_weights_after_loading_fn(model_sublayer_name, param)
if self.tie_word_embeddings:
self.lm_head.linear.weight.set_value(self.ernie.embed_tokens.embeddings.weight.transpose([1, 0]))

View File

@@ -30,7 +30,7 @@ from fastdeploy.model_executor.models.ernie4_5_vl.dist_utils import (
reduce_scatter_group,
scatter_axis,
)
from fastdeploy.model_executor.models.utils import set_weight_attrs
from fastdeploy.model_executor.utils import set_weight_attrs
class ScatterOp(PyLayer):

View File

@@ -16,6 +16,7 @@
from __future__ import annotations
import re
from functools import partial
import paddle
@@ -254,7 +255,10 @@ class Qwen3ForCausalLM(ModelForCasualLM):
weights_iterator (Iterator): An iterator yielding (name, weight) pairs.
"""
from fastdeploy.model_executor.models.utils import default_weight_loader
from fastdeploy.model_executor.utils import (
default_weight_loader,
process_weights_after_loading,
)
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
@@ -266,8 +270,8 @@ class Qwen3ForCausalLM(ModelForCasualLM):
("embed_tokens.embeddings", "embed_tokens", None),
("lm_head.linear", "lm_head", None),
]
params_dict = dict(self.named_parameters())
process_weights_after_loading_fn = process_weights_after_loading(dict(self.named_sublayers()))
for loaded_weight_name, loaded_weight in weights_iterator:
for param_name, weight_name, shard_id in stacked_params_mapping:
if weight_name not in loaded_weight_name:
@@ -280,11 +284,14 @@ class Qwen3ForCausalLM(ModelForCasualLM):
weight_loader(param, loaded_weight, shard_id)
break
else:
if loaded_weight_name not in params_dict:
model_param_name = loaded_weight_name
if model_param_name not in params_dict:
continue
param = params_dict[loaded_weight_name]
param = params_dict[model_param_name]
weight_loader = getattr(param, "weight_loader", default_weight_loader(self.fd_config))
weight_loader(param, loaded_weight)
model_sublayer_name = re.sub(r"\.(weight)$", "", model_param_name)
process_weights_after_loading_fn(model_sublayer_name, param)
if self.tie_word_embeddings:
self.lm_head.linear.weight.set_value(self.model.embed_tokens.embeddings.weight.transpose([1, 0]))

View File

@@ -16,6 +16,7 @@
from __future__ import annotations
import re
from functools import partial
import paddle
@@ -334,7 +335,10 @@ class Qwen3MoeForCausalLM(ModelForCasualLM):
weights_iterator (Iterator): An iterator yielding (name, weight) pairs.
"""
from fastdeploy.model_executor.models.utils import default_weight_loader
from fastdeploy.model_executor.utils import (
default_weight_loader,
process_weights_after_loading,
)
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
@@ -348,6 +352,7 @@ class Qwen3MoeForCausalLM(ModelForCasualLM):
]
expert_params_mapping = self.get_expert_mapping()
params_dict = dict(self.named_parameters())
process_weights_after_loading_fn = process_weights_after_loading(dict(self.named_sublayers()))
for loaded_weight_name, loaded_weight in weights_iterator:
for param_name, weight_name, shard_id in stacked_params_mapping:
if weight_name not in loaded_weight_name:
@@ -374,12 +379,16 @@ class Qwen3MoeForCausalLM(ModelForCasualLM):
weight_loader(param, loaded_weight, shard_id=shard_id, expert_id=expert_id)
break
else:
if loaded_weight_name not in params_dict:
model_param_name = loaded_weight_name
if model_param_name not in params_dict:
continue
param = params_dict[loaded_weight_name]
param = params_dict[model_param_name]
weight_loader = getattr(param, "weight_loader", default_weight_loader(self.fd_config))
weight_loader(param, loaded_weight)
model_sublayer_name = re.sub(r"\.(up_gate_proj_weight|down_proj_weight|weight)$", "", model_param_name)
process_weights_after_loading_fn(model_sublayer_name, param)
@paddle.no_grad()
def set_state_dict(self, state_dict):
"""

View File

@@ -24,7 +24,7 @@ import random
import re
import struct
from functools import partial
from typing import Any, NamedTuple, Optional, Union
from typing import NamedTuple, Optional
import numpy as np
import paddle
@@ -40,73 +40,10 @@ from paddleformers.utils.env import (
from paddleformers.utils.log import logger
from tqdm import tqdm
from fastdeploy.config import FDConfig
from fastdeploy.model_executor.layers.utils import get_tensor
MAX_BSZ = 512
MAX_DRAFT_TOKENS = 6
def set_weight_attrs(param, param_attr_map: Optional[dict[str, Any]]):
if param_attr_map is None:
return
for key, value in param_attr_map.items():
setattr(param, key, value)
def slice_fn(weight_or_paramter, output_dim, start, end, step=1):
if hasattr(weight_or_paramter, "get_shape"):
shape = weight_or_paramter.get_shape()
else:
shape = weight_or_paramter.shape
if len(shape) == 1:
weight_or_paramter = weight_or_paramter[start:end]
elif output_dim:
weight_or_paramter = weight_or_paramter[..., start:end]
else:
weight_or_paramter = weight_or_paramter[start:end, ...]
return weight_or_paramter
def default_weight_loader(fd_config: FDConfig) -> None:
"""Default weight loader"""
def fn(param, loaded_weight, shard_id: Optional[Union[int, str]] = None):
"""fn"""
try:
output_dim = getattr(param, "output_dim", None)
# Tensor parallelism splits the weight along the output_dim
if output_dim is not None:
dim = -1 if output_dim else 0
size = loaded_weight.get_shape()[dim]
block_size = size // fd_config.parallel_config.tensor_parallel_size
shard_offset = fd_config.parallel_config.tensor_parallel_rank * block_size
shard_size = (fd_config.parallel_config.tensor_parallel_rank + 1) * block_size
if output_dim:
loaded_weight = loaded_weight[..., shard_offset:shard_size]
else:
loaded_weight = loaded_weight[shard_offset:shard_size, ...]
loaded_weight = get_tensor(loaded_weight)
# mlp.gate.weight is precision-sensitive, so we cast it to float32 for computation
if param.dtype != loaded_weight.dtype:
loaded_weight = loaded_weight.cast(param.dtype)
if param.shape != loaded_weight.shape:
try:
param = param.reshape(loaded_weight.shape)
except ValueError as e:
raise ValueError(
f" Attempted to load weight ({loaded_weight.shape}) into parameter ({param.shape}). {e}"
)
param.copy_(loaded_weight, False)
except Exception:
raise
return fn
class LayerIdPlaceholder(str, enum.Enum):
"""LayerIdPlaceholder"""

View File

@@ -0,0 +1,179 @@
"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
from typing import Any, Optional, Union
from fastdeploy.config import FDConfig
from fastdeploy.model_executor.layers.utils import get_tensor
class BitMaskTracker:
def __init__(self, length: int):
"""
Track filling status along a single dimension using a bitmask.
Args:
length (int): Number of positions to track (e.g., columns or rows)
"""
self.length = length
self.mask = 0
def mark(self, start: int, end: int):
"""
Mark the range [start, end) as filled.
Args:
start (int): Start index (inclusive)
end (int): End index (exclusive)
"""
if start < 0 or end > self.length or start >= end:
raise ValueError("Invalid mark range")
block = ((1 << (end - start)) - 1) << start
self.mask |= block
def is_full(self) -> bool:
"""Return True if all positions are filled."""
return self.mask == (1 << self.length) - 1
class TensorTracker:
def __init__(self, shape: tuple, output_dim: int):
"""
Unified tracker for 2D or 3D tensors.
Args:
shape (tuple): Tensor shape
output_dim (bool):
- 2D: True = track columns (dim=1), False = track rows (dim=0)
- 3D: True = track columns (dim=2), False = track rows (dim=1)
"""
self.shape = shape
self.output_dim = output_dim
if len(shape) == 2:
self.track_dim = 1 if output_dim else 0
self.trackers = [BitMaskTracker(shape[self.track_dim])]
elif len(shape) == 3:
batch = shape[0]
self.track_dim = 2 if output_dim else 1
self.trackers = [BitMaskTracker(shape[self.track_dim]) for _ in range(batch)]
else:
raise ValueError("Only 2D or 3D tensors supported")
def mark(self, start: int = 0, end: int = None, batch_id: int = None):
"""
Mark a slice of the tensor as filled.
Args:
batch_id (int, optional): Batch index for 3D tensors
start (int): Start index along tracked dimension
end (int): End index along tracked dimension
"""
if end is None:
end = self.shape[self.track_dim]
if len(self.shape) == 2:
self.trackers[0].mark(start, end)
else:
if batch_id is None:
raise ValueError("batch_id must be provided for 3D tensor")
self.trackers[batch_id].mark(start, end)
def is_fully_copied(self) -> bool:
"""Return True if the tensor is fully filled along tracked dimension(s)."""
return all(tr.is_full() for tr in self.trackers)
def set_weight_attrs(param, param_attr_map: Optional[dict[str, Any]]):
if param_attr_map is None:
return
for key, value in param_attr_map.items():
setattr(param, key, value)
def slice_fn(weight_or_paramter, output_dim, start, end, step=1):
if hasattr(weight_or_paramter, "get_shape"):
shape = weight_or_paramter.get_shape()
else:
shape = weight_or_paramter.shape
if len(shape) == 1:
weight_or_paramter = weight_or_paramter[start:end]
elif output_dim:
weight_or_paramter = weight_or_paramter[..., start:end]
else:
weight_or_paramter = weight_or_paramter[start:end, ...]
return weight_or_paramter
def process_weights_after_loading(sublayers_dict: dict):
"""
process_weights_after_loading: e.g., handle extracted weights (quantization, reshaping, etc.)
"""
def fn(model_sublayer_name: str, param=None):
from fastdeploy.model_executor.layers.linear import KVBatchLinear
if model_sublayer_name not in sublayers_dict:
return
model_sublayer = sublayers_dict[model_sublayer_name]
if isinstance(model_sublayer, KVBatchLinear):
model_sublayer.process_weights_after_loading()
if hasattr(model_sublayer, "quant_method"):
quant_method = getattr(model_sublayer, "quant_method", None)
if not hasattr(quant_method, "process_weights_after_loading"):
return
if param is not None and hasattr(param, "tensor_track") and not param.tensor_track.is_fully_copied():
return
quant_method.process_weights_after_loading(model_sublayer)
return fn
def free_tensor(tensor):
if hasattr(tensor, "tensor_track"):
tensor.tensor_track = None
tensor.value().get_tensor()._clear()
del tensor
def default_weight_loader(fd_config: FDConfig) -> None:
"""Default weight loader"""
def fn(param, loaded_weight, shard_id: Optional[Union[int, str]] = None):
"""fn"""
output_dim = getattr(param, "output_dim", None)
# Tensor parallelism splits the weight along the output_dim
if output_dim is not None and fd_config.parallel_config.tensor_parallel_size > 1:
dim = -1 if output_dim else 0
size = loaded_weight.get_shape()[dim]
block_size = size // fd_config.parallel_config.tensor_parallel_size
shard_offset = fd_config.parallel_config.tensor_parallel_rank * block_size
shard_size = (fd_config.parallel_config.tensor_parallel_rank + 1) * block_size
loaded_weight = slice_fn(loaded_weight, output_dim, shard_offset, shard_size)
loaded_weight = get_tensor(loaded_weight)
# mlp.gate.weight is precision-sensitive, so we cast it to float32 for computation
if param.dtype != loaded_weight.dtype:
loaded_weight = loaded_weight.cast(param.dtype)
if param.shape != loaded_weight.shape:
# for e_score_correction_bias
loaded_weight = loaded_weight.reshape(param.shape)
assert param.shape == loaded_weight.shape, (
f" Attempted to load weight ({loaded_weight.shape}) " f"into parameter ({param.shape})"
)
param.copy_(loaded_weight, False)
return fn

View File

@@ -247,9 +247,9 @@ class Ernie4_5_VLMoeForConditionalGenerationRL(Ernie4_5_VLMoeForConditionalGener
)
if self.fd_config.model_config.moe_use_aux_free:
self.infer_to_train_mapping[
f"{base_name}.{layer_idx}.mlp.{moe_tag}_fused_moe.experts.gate_correction_bias"
] = f"{base_name}.{layer_idx}.mlp.moe_statics.e_score_correction_bias"
self.infer_to_train_mapping[f"{base_name}.{layer_idx}.mlp.gate_correction_bias"] = (
f"{base_name}.{layer_idx}.mlp.moe_statics.e_score_correction_bias"
)
# Initialize defaultdict for expert weights
from collections import defaultdict

View File

@@ -54,7 +54,7 @@ success_pytest=0
for file in $TEST_FILES; do
echo "Running pytest file: $file"
python -m coverage run --parallel-mode -m pytest "$file"
python -m coverage run --parallel-mode -m pytest "$file" -vv -s
status=$?
if [ "$status" -ne 0 ]; then
echo "$file" >> "$failed_tests_file"

View File

@@ -415,13 +415,12 @@ ernie.layers.1.self_attn.qkv_proj.weight
ernie.layers.1.self_attn.qkv_proj.weight_scale
ernie.layers.1.self_attn.o_proj.weight
ernie.layers.1.self_attn.o_proj.weight_scale
ernie.layers.1.mlp.text_fused_moe.experts.gate_correction_bias
ernie.layers.1.mlp.gate_correction_bias
ernie.layers.1.mlp.text_fused_moe.experts.up_gate_proj_weight_scale
ernie.layers.1.mlp.text_fused_moe.experts.down_proj_weight_scale
ernie.layers.1.mlp.text_fused_moe.experts.up_gate_proj_weight
ernie.layers.1.mlp.text_fused_moe.experts.down_proj_weight
ernie.layers.1.mlp.text_fused_moe.gate.weight
ernie.layers.1.mlp.image_fused_moe.experts.gate_correction_bias
ernie.layers.1.mlp.image_fused_moe.experts.up_gate_proj_weight_scale
ernie.layers.1.mlp.image_fused_moe.experts.down_proj_weight_scale
ernie.layers.1.mlp.image_fused_moe.experts.up_gate_proj_weight
@@ -437,13 +436,12 @@ ernie.layers.2.self_attn.qkv_proj.weight
ernie.layers.2.self_attn.qkv_proj.weight_scale
ernie.layers.2.self_attn.o_proj.weight
ernie.layers.2.self_attn.o_proj.weight_scale
ernie.layers.2.mlp.text_fused_moe.experts.gate_correction_bias
ernie.layers.2.mlp.gate_correction_bias
ernie.layers.2.mlp.text_fused_moe.experts.up_gate_proj_weight_scale
ernie.layers.2.mlp.text_fused_moe.experts.down_proj_weight_scale
ernie.layers.2.mlp.text_fused_moe.experts.up_gate_proj_weight
ernie.layers.2.mlp.text_fused_moe.experts.down_proj_weight
ernie.layers.2.mlp.text_fused_moe.gate.weight
ernie.layers.2.mlp.image_fused_moe.experts.gate_correction_bias
ernie.layers.2.mlp.image_fused_moe.experts.up_gate_proj_weight_scale
ernie.layers.2.mlp.image_fused_moe.experts.down_proj_weight_scale
ernie.layers.2.mlp.image_fused_moe.experts.up_gate_proj_weight
@@ -459,13 +457,12 @@ ernie.layers.3.self_attn.qkv_proj.weight
ernie.layers.3.self_attn.qkv_proj.weight_scale
ernie.layers.3.self_attn.o_proj.weight
ernie.layers.3.self_attn.o_proj.weight_scale
ernie.layers.3.mlp.text_fused_moe.experts.gate_correction_bias
ernie.layers.3.mlp.gate_correction_bias
ernie.layers.3.mlp.text_fused_moe.experts.up_gate_proj_weight_scale
ernie.layers.3.mlp.text_fused_moe.experts.down_proj_weight_scale
ernie.layers.3.mlp.text_fused_moe.experts.up_gate_proj_weight
ernie.layers.3.mlp.text_fused_moe.experts.down_proj_weight
ernie.layers.3.mlp.text_fused_moe.gate.weight
ernie.layers.3.mlp.image_fused_moe.experts.gate_correction_bias
ernie.layers.3.mlp.image_fused_moe.experts.up_gate_proj_weight_scale
ernie.layers.3.mlp.image_fused_moe.experts.down_proj_weight_scale
ernie.layers.3.mlp.image_fused_moe.experts.up_gate_proj_weight
@@ -481,13 +478,12 @@ ernie.layers.4.self_attn.qkv_proj.weight
ernie.layers.4.self_attn.qkv_proj.weight_scale
ernie.layers.4.self_attn.o_proj.weight
ernie.layers.4.self_attn.o_proj.weight_scale
ernie.layers.4.mlp.text_fused_moe.experts.gate_correction_bias
ernie.layers.4.mlp.gate_correction_bias
ernie.layers.4.mlp.text_fused_moe.experts.up_gate_proj_weight_scale
ernie.layers.4.mlp.text_fused_moe.experts.down_proj_weight_scale
ernie.layers.4.mlp.text_fused_moe.experts.up_gate_proj_weight
ernie.layers.4.mlp.text_fused_moe.experts.down_proj_weight
ernie.layers.4.mlp.text_fused_moe.gate.weight
ernie.layers.4.mlp.image_fused_moe.experts.gate_correction_bias
ernie.layers.4.mlp.image_fused_moe.experts.up_gate_proj_weight_scale
ernie.layers.4.mlp.image_fused_moe.experts.down_proj_weight_scale
ernie.layers.4.mlp.image_fused_moe.experts.up_gate_proj_weight
@@ -503,13 +499,12 @@ ernie.layers.5.self_attn.qkv_proj.weight
ernie.layers.5.self_attn.qkv_proj.weight_scale
ernie.layers.5.self_attn.o_proj.weight
ernie.layers.5.self_attn.o_proj.weight_scale
ernie.layers.5.mlp.text_fused_moe.experts.gate_correction_bias
ernie.layers.5.mlp.gate_correction_bias
ernie.layers.5.mlp.text_fused_moe.experts.up_gate_proj_weight_scale
ernie.layers.5.mlp.text_fused_moe.experts.down_proj_weight_scale
ernie.layers.5.mlp.text_fused_moe.experts.up_gate_proj_weight
ernie.layers.5.mlp.text_fused_moe.experts.down_proj_weight
ernie.layers.5.mlp.text_fused_moe.gate.weight
ernie.layers.5.mlp.image_fused_moe.experts.gate_correction_bias
ernie.layers.5.mlp.image_fused_moe.experts.up_gate_proj_weight_scale
ernie.layers.5.mlp.image_fused_moe.experts.down_proj_weight_scale
ernie.layers.5.mlp.image_fused_moe.experts.up_gate_proj_weight
@@ -525,13 +520,12 @@ ernie.layers.6.self_attn.qkv_proj.weight
ernie.layers.6.self_attn.qkv_proj.weight_scale
ernie.layers.6.self_attn.o_proj.weight
ernie.layers.6.self_attn.o_proj.weight_scale
ernie.layers.6.mlp.text_fused_moe.experts.gate_correction_bias
ernie.layers.6.mlp.gate_correction_bias
ernie.layers.6.mlp.text_fused_moe.experts.up_gate_proj_weight_scale
ernie.layers.6.mlp.text_fused_moe.experts.down_proj_weight_scale
ernie.layers.6.mlp.text_fused_moe.experts.up_gate_proj_weight
ernie.layers.6.mlp.text_fused_moe.experts.down_proj_weight
ernie.layers.6.mlp.text_fused_moe.gate.weight
ernie.layers.6.mlp.image_fused_moe.experts.gate_correction_bias
ernie.layers.6.mlp.image_fused_moe.experts.up_gate_proj_weight_scale
ernie.layers.6.mlp.image_fused_moe.experts.down_proj_weight_scale
ernie.layers.6.mlp.image_fused_moe.experts.up_gate_proj_weight
@@ -547,13 +541,12 @@ ernie.layers.7.self_attn.qkv_proj.weight
ernie.layers.7.self_attn.qkv_proj.weight_scale
ernie.layers.7.self_attn.o_proj.weight
ernie.layers.7.self_attn.o_proj.weight_scale
ernie.layers.7.mlp.text_fused_moe.experts.gate_correction_bias
ernie.layers.7.mlp.gate_correction_bias
ernie.layers.7.mlp.text_fused_moe.experts.up_gate_proj_weight_scale
ernie.layers.7.mlp.text_fused_moe.experts.down_proj_weight_scale
ernie.layers.7.mlp.text_fused_moe.experts.up_gate_proj_weight
ernie.layers.7.mlp.text_fused_moe.experts.down_proj_weight
ernie.layers.7.mlp.text_fused_moe.gate.weight
ernie.layers.7.mlp.image_fused_moe.experts.gate_correction_bias
ernie.layers.7.mlp.image_fused_moe.experts.up_gate_proj_weight_scale
ernie.layers.7.mlp.image_fused_moe.experts.down_proj_weight_scale
ernie.layers.7.mlp.image_fused_moe.experts.up_gate_proj_weight
@@ -569,13 +562,12 @@ ernie.layers.8.self_attn.qkv_proj.weight
ernie.layers.8.self_attn.qkv_proj.weight_scale
ernie.layers.8.self_attn.o_proj.weight
ernie.layers.8.self_attn.o_proj.weight_scale
ernie.layers.8.mlp.text_fused_moe.experts.gate_correction_bias
ernie.layers.8.mlp.gate_correction_bias
ernie.layers.8.mlp.text_fused_moe.experts.up_gate_proj_weight_scale
ernie.layers.8.mlp.text_fused_moe.experts.down_proj_weight_scale
ernie.layers.8.mlp.text_fused_moe.experts.up_gate_proj_weight
ernie.layers.8.mlp.text_fused_moe.experts.down_proj_weight
ernie.layers.8.mlp.text_fused_moe.gate.weight
ernie.layers.8.mlp.image_fused_moe.experts.gate_correction_bias
ernie.layers.8.mlp.image_fused_moe.experts.up_gate_proj_weight_scale
ernie.layers.8.mlp.image_fused_moe.experts.down_proj_weight_scale
ernie.layers.8.mlp.image_fused_moe.experts.up_gate_proj_weight
@@ -591,13 +583,12 @@ ernie.layers.9.self_attn.qkv_proj.weight
ernie.layers.9.self_attn.qkv_proj.weight_scale
ernie.layers.9.self_attn.o_proj.weight
ernie.layers.9.self_attn.o_proj.weight_scale
ernie.layers.9.mlp.text_fused_moe.experts.gate_correction_bias
ernie.layers.9.mlp.gate_correction_bias
ernie.layers.9.mlp.text_fused_moe.experts.up_gate_proj_weight_scale
ernie.layers.9.mlp.text_fused_moe.experts.down_proj_weight_scale
ernie.layers.9.mlp.text_fused_moe.experts.up_gate_proj_weight
ernie.layers.9.mlp.text_fused_moe.experts.down_proj_weight
ernie.layers.9.mlp.text_fused_moe.gate.weight
ernie.layers.9.mlp.image_fused_moe.experts.gate_correction_bias
ernie.layers.9.mlp.image_fused_moe.experts.up_gate_proj_weight_scale
ernie.layers.9.mlp.image_fused_moe.experts.down_proj_weight_scale
ernie.layers.9.mlp.image_fused_moe.experts.up_gate_proj_weight
@@ -613,13 +604,12 @@ ernie.layers.10.self_attn.qkv_proj.weight
ernie.layers.10.self_attn.qkv_proj.weight_scale
ernie.layers.10.self_attn.o_proj.weight
ernie.layers.10.self_attn.o_proj.weight_scale
ernie.layers.10.mlp.text_fused_moe.experts.gate_correction_bias
ernie.layers.10.mlp.gate_correction_bias
ernie.layers.10.mlp.text_fused_moe.experts.up_gate_proj_weight_scale
ernie.layers.10.mlp.text_fused_moe.experts.down_proj_weight_scale
ernie.layers.10.mlp.text_fused_moe.experts.up_gate_proj_weight
ernie.layers.10.mlp.text_fused_moe.experts.down_proj_weight
ernie.layers.10.mlp.text_fused_moe.gate.weight
ernie.layers.10.mlp.image_fused_moe.experts.gate_correction_bias
ernie.layers.10.mlp.image_fused_moe.experts.up_gate_proj_weight_scale
ernie.layers.10.mlp.image_fused_moe.experts.down_proj_weight_scale
ernie.layers.10.mlp.image_fused_moe.experts.up_gate_proj_weight
@@ -635,13 +625,12 @@ ernie.layers.11.self_attn.qkv_proj.weight
ernie.layers.11.self_attn.qkv_proj.weight_scale
ernie.layers.11.self_attn.o_proj.weight
ernie.layers.11.self_attn.o_proj.weight_scale
ernie.layers.11.mlp.text_fused_moe.experts.gate_correction_bias
ernie.layers.11.mlp.gate_correction_bias
ernie.layers.11.mlp.text_fused_moe.experts.up_gate_proj_weight_scale
ernie.layers.11.mlp.text_fused_moe.experts.down_proj_weight_scale
ernie.layers.11.mlp.text_fused_moe.experts.up_gate_proj_weight
ernie.layers.11.mlp.text_fused_moe.experts.down_proj_weight
ernie.layers.11.mlp.text_fused_moe.gate.weight
ernie.layers.11.mlp.image_fused_moe.experts.gate_correction_bias
ernie.layers.11.mlp.image_fused_moe.experts.up_gate_proj_weight_scale
ernie.layers.11.mlp.image_fused_moe.experts.down_proj_weight_scale
ernie.layers.11.mlp.image_fused_moe.experts.up_gate_proj_weight
@@ -657,13 +646,12 @@ ernie.layers.12.self_attn.qkv_proj.weight
ernie.layers.12.self_attn.qkv_proj.weight_scale
ernie.layers.12.self_attn.o_proj.weight
ernie.layers.12.self_attn.o_proj.weight_scale
ernie.layers.12.mlp.text_fused_moe.experts.gate_correction_bias
ernie.layers.12.mlp.gate_correction_bias
ernie.layers.12.mlp.text_fused_moe.experts.up_gate_proj_weight_scale
ernie.layers.12.mlp.text_fused_moe.experts.down_proj_weight_scale
ernie.layers.12.mlp.text_fused_moe.experts.up_gate_proj_weight
ernie.layers.12.mlp.text_fused_moe.experts.down_proj_weight
ernie.layers.12.mlp.text_fused_moe.gate.weight
ernie.layers.12.mlp.image_fused_moe.experts.gate_correction_bias
ernie.layers.12.mlp.image_fused_moe.experts.up_gate_proj_weight_scale
ernie.layers.12.mlp.image_fused_moe.experts.down_proj_weight_scale
ernie.layers.12.mlp.image_fused_moe.experts.up_gate_proj_weight
@@ -679,13 +667,12 @@ ernie.layers.13.self_attn.qkv_proj.weight
ernie.layers.13.self_attn.qkv_proj.weight_scale
ernie.layers.13.self_attn.o_proj.weight
ernie.layers.13.self_attn.o_proj.weight_scale
ernie.layers.13.mlp.text_fused_moe.experts.gate_correction_bias
ernie.layers.13.mlp.gate_correction_bias
ernie.layers.13.mlp.text_fused_moe.experts.up_gate_proj_weight_scale
ernie.layers.13.mlp.text_fused_moe.experts.down_proj_weight_scale
ernie.layers.13.mlp.text_fused_moe.experts.up_gate_proj_weight
ernie.layers.13.mlp.text_fused_moe.experts.down_proj_weight
ernie.layers.13.mlp.text_fused_moe.gate.weight
ernie.layers.13.mlp.image_fused_moe.experts.gate_correction_bias
ernie.layers.13.mlp.image_fused_moe.experts.up_gate_proj_weight_scale
ernie.layers.13.mlp.image_fused_moe.experts.down_proj_weight_scale
ernie.layers.13.mlp.image_fused_moe.experts.up_gate_proj_weight
@@ -701,13 +688,12 @@ ernie.layers.14.self_attn.qkv_proj.weight
ernie.layers.14.self_attn.qkv_proj.weight_scale
ernie.layers.14.self_attn.o_proj.weight
ernie.layers.14.self_attn.o_proj.weight_scale
ernie.layers.14.mlp.text_fused_moe.experts.gate_correction_bias
ernie.layers.14.mlp.gate_correction_bias
ernie.layers.14.mlp.text_fused_moe.experts.up_gate_proj_weight_scale
ernie.layers.14.mlp.text_fused_moe.experts.down_proj_weight_scale
ernie.layers.14.mlp.text_fused_moe.experts.up_gate_proj_weight
ernie.layers.14.mlp.text_fused_moe.experts.down_proj_weight
ernie.layers.14.mlp.text_fused_moe.gate.weight
ernie.layers.14.mlp.image_fused_moe.experts.gate_correction_bias
ernie.layers.14.mlp.image_fused_moe.experts.up_gate_proj_weight_scale
ernie.layers.14.mlp.image_fused_moe.experts.down_proj_weight_scale
ernie.layers.14.mlp.image_fused_moe.experts.up_gate_proj_weight
@@ -723,13 +709,12 @@ ernie.layers.15.self_attn.qkv_proj.weight
ernie.layers.15.self_attn.qkv_proj.weight_scale
ernie.layers.15.self_attn.o_proj.weight
ernie.layers.15.self_attn.o_proj.weight_scale
ernie.layers.15.mlp.text_fused_moe.experts.gate_correction_bias
ernie.layers.15.mlp.gate_correction_bias
ernie.layers.15.mlp.text_fused_moe.experts.up_gate_proj_weight_scale
ernie.layers.15.mlp.text_fused_moe.experts.down_proj_weight_scale
ernie.layers.15.mlp.text_fused_moe.experts.up_gate_proj_weight
ernie.layers.15.mlp.text_fused_moe.experts.down_proj_weight
ernie.layers.15.mlp.text_fused_moe.gate.weight
ernie.layers.15.mlp.image_fused_moe.experts.gate_correction_bias
ernie.layers.15.mlp.image_fused_moe.experts.up_gate_proj_weight_scale
ernie.layers.15.mlp.image_fused_moe.experts.down_proj_weight_scale
ernie.layers.15.mlp.image_fused_moe.experts.up_gate_proj_weight
@@ -745,13 +730,12 @@ ernie.layers.16.self_attn.qkv_proj.weight
ernie.layers.16.self_attn.qkv_proj.weight_scale
ernie.layers.16.self_attn.o_proj.weight
ernie.layers.16.self_attn.o_proj.weight_scale
ernie.layers.16.mlp.text_fused_moe.experts.gate_correction_bias
ernie.layers.16.mlp.gate_correction_bias
ernie.layers.16.mlp.text_fused_moe.experts.up_gate_proj_weight_scale
ernie.layers.16.mlp.text_fused_moe.experts.down_proj_weight_scale
ernie.layers.16.mlp.text_fused_moe.experts.up_gate_proj_weight
ernie.layers.16.mlp.text_fused_moe.experts.down_proj_weight
ernie.layers.16.mlp.text_fused_moe.gate.weight
ernie.layers.16.mlp.image_fused_moe.experts.gate_correction_bias
ernie.layers.16.mlp.image_fused_moe.experts.up_gate_proj_weight_scale
ernie.layers.16.mlp.image_fused_moe.experts.down_proj_weight_scale
ernie.layers.16.mlp.image_fused_moe.experts.up_gate_proj_weight
@@ -767,13 +751,12 @@ ernie.layers.17.self_attn.qkv_proj.weight
ernie.layers.17.self_attn.qkv_proj.weight_scale
ernie.layers.17.self_attn.o_proj.weight
ernie.layers.17.self_attn.o_proj.weight_scale
ernie.layers.17.mlp.text_fused_moe.experts.gate_correction_bias
ernie.layers.17.mlp.gate_correction_bias
ernie.layers.17.mlp.text_fused_moe.experts.up_gate_proj_weight_scale
ernie.layers.17.mlp.text_fused_moe.experts.down_proj_weight_scale
ernie.layers.17.mlp.text_fused_moe.experts.up_gate_proj_weight
ernie.layers.17.mlp.text_fused_moe.experts.down_proj_weight
ernie.layers.17.mlp.text_fused_moe.gate.weight
ernie.layers.17.mlp.image_fused_moe.experts.gate_correction_bias
ernie.layers.17.mlp.image_fused_moe.experts.up_gate_proj_weight_scale
ernie.layers.17.mlp.image_fused_moe.experts.down_proj_weight_scale
ernie.layers.17.mlp.image_fused_moe.experts.up_gate_proj_weight
@@ -789,13 +772,12 @@ ernie.layers.18.self_attn.qkv_proj.weight
ernie.layers.18.self_attn.qkv_proj.weight_scale
ernie.layers.18.self_attn.o_proj.weight
ernie.layers.18.self_attn.o_proj.weight_scale
ernie.layers.18.mlp.text_fused_moe.experts.gate_correction_bias
ernie.layers.18.mlp.gate_correction_bias
ernie.layers.18.mlp.text_fused_moe.experts.up_gate_proj_weight_scale
ernie.layers.18.mlp.text_fused_moe.experts.down_proj_weight_scale
ernie.layers.18.mlp.text_fused_moe.experts.up_gate_proj_weight
ernie.layers.18.mlp.text_fused_moe.experts.down_proj_weight
ernie.layers.18.mlp.text_fused_moe.gate.weight
ernie.layers.18.mlp.image_fused_moe.experts.gate_correction_bias
ernie.layers.18.mlp.image_fused_moe.experts.up_gate_proj_weight_scale
ernie.layers.18.mlp.image_fused_moe.experts.down_proj_weight_scale
ernie.layers.18.mlp.image_fused_moe.experts.up_gate_proj_weight
@@ -811,13 +793,12 @@ ernie.layers.19.self_attn.qkv_proj.weight
ernie.layers.19.self_attn.qkv_proj.weight_scale
ernie.layers.19.self_attn.o_proj.weight
ernie.layers.19.self_attn.o_proj.weight_scale
ernie.layers.19.mlp.text_fused_moe.experts.gate_correction_bias
ernie.layers.19.mlp.gate_correction_bias
ernie.layers.19.mlp.text_fused_moe.experts.up_gate_proj_weight_scale
ernie.layers.19.mlp.text_fused_moe.experts.down_proj_weight_scale
ernie.layers.19.mlp.text_fused_moe.experts.up_gate_proj_weight
ernie.layers.19.mlp.text_fused_moe.experts.down_proj_weight
ernie.layers.19.mlp.text_fused_moe.gate.weight
ernie.layers.19.mlp.image_fused_moe.experts.gate_correction_bias
ernie.layers.19.mlp.image_fused_moe.experts.up_gate_proj_weight_scale
ernie.layers.19.mlp.image_fused_moe.experts.down_proj_weight_scale
ernie.layers.19.mlp.image_fused_moe.experts.up_gate_proj_weight
@@ -833,13 +814,12 @@ ernie.layers.20.self_attn.qkv_proj.weight
ernie.layers.20.self_attn.qkv_proj.weight_scale
ernie.layers.20.self_attn.o_proj.weight
ernie.layers.20.self_attn.o_proj.weight_scale
ernie.layers.20.mlp.text_fused_moe.experts.gate_correction_bias
ernie.layers.20.mlp.gate_correction_bias
ernie.layers.20.mlp.text_fused_moe.experts.up_gate_proj_weight_scale
ernie.layers.20.mlp.text_fused_moe.experts.down_proj_weight_scale
ernie.layers.20.mlp.text_fused_moe.experts.up_gate_proj_weight
ernie.layers.20.mlp.text_fused_moe.experts.down_proj_weight
ernie.layers.20.mlp.text_fused_moe.gate.weight
ernie.layers.20.mlp.image_fused_moe.experts.gate_correction_bias
ernie.layers.20.mlp.image_fused_moe.experts.up_gate_proj_weight_scale
ernie.layers.20.mlp.image_fused_moe.experts.down_proj_weight_scale
ernie.layers.20.mlp.image_fused_moe.experts.up_gate_proj_weight
@@ -855,13 +835,12 @@ ernie.layers.21.self_attn.qkv_proj.weight
ernie.layers.21.self_attn.qkv_proj.weight_scale
ernie.layers.21.self_attn.o_proj.weight
ernie.layers.21.self_attn.o_proj.weight_scale
ernie.layers.21.mlp.text_fused_moe.experts.gate_correction_bias
ernie.layers.21.mlp.gate_correction_bias
ernie.layers.21.mlp.text_fused_moe.experts.up_gate_proj_weight_scale
ernie.layers.21.mlp.text_fused_moe.experts.down_proj_weight_scale
ernie.layers.21.mlp.text_fused_moe.experts.up_gate_proj_weight
ernie.layers.21.mlp.text_fused_moe.experts.down_proj_weight
ernie.layers.21.mlp.text_fused_moe.gate.weight
ernie.layers.21.mlp.image_fused_moe.experts.gate_correction_bias
ernie.layers.21.mlp.image_fused_moe.experts.up_gate_proj_weight_scale
ernie.layers.21.mlp.image_fused_moe.experts.down_proj_weight_scale
ernie.layers.21.mlp.image_fused_moe.experts.up_gate_proj_weight
@@ -877,13 +856,12 @@ ernie.layers.22.self_attn.qkv_proj.weight
ernie.layers.22.self_attn.qkv_proj.weight_scale
ernie.layers.22.self_attn.o_proj.weight
ernie.layers.22.self_attn.o_proj.weight_scale
ernie.layers.22.mlp.text_fused_moe.experts.gate_correction_bias
ernie.layers.22.mlp.gate_correction_bias
ernie.layers.22.mlp.text_fused_moe.experts.up_gate_proj_weight_scale
ernie.layers.22.mlp.text_fused_moe.experts.down_proj_weight_scale
ernie.layers.22.mlp.text_fused_moe.experts.up_gate_proj_weight
ernie.layers.22.mlp.text_fused_moe.experts.down_proj_weight
ernie.layers.22.mlp.text_fused_moe.gate.weight
ernie.layers.22.mlp.image_fused_moe.experts.gate_correction_bias
ernie.layers.22.mlp.image_fused_moe.experts.up_gate_proj_weight_scale
ernie.layers.22.mlp.image_fused_moe.experts.down_proj_weight_scale
ernie.layers.22.mlp.image_fused_moe.experts.up_gate_proj_weight
@@ -899,13 +877,12 @@ ernie.layers.23.self_attn.qkv_proj.weight
ernie.layers.23.self_attn.qkv_proj.weight_scale
ernie.layers.23.self_attn.o_proj.weight
ernie.layers.23.self_attn.o_proj.weight_scale
ernie.layers.23.mlp.text_fused_moe.experts.gate_correction_bias
ernie.layers.23.mlp.gate_correction_bias
ernie.layers.23.mlp.text_fused_moe.experts.up_gate_proj_weight_scale
ernie.layers.23.mlp.text_fused_moe.experts.down_proj_weight_scale
ernie.layers.23.mlp.text_fused_moe.experts.up_gate_proj_weight
ernie.layers.23.mlp.text_fused_moe.experts.down_proj_weight
ernie.layers.23.mlp.text_fused_moe.gate.weight
ernie.layers.23.mlp.image_fused_moe.experts.gate_correction_bias
ernie.layers.23.mlp.image_fused_moe.experts.up_gate_proj_weight_scale
ernie.layers.23.mlp.image_fused_moe.experts.down_proj_weight_scale
ernie.layers.23.mlp.image_fused_moe.experts.up_gate_proj_weight
@@ -921,13 +898,12 @@ ernie.layers.24.self_attn.qkv_proj.weight
ernie.layers.24.self_attn.qkv_proj.weight_scale
ernie.layers.24.self_attn.o_proj.weight
ernie.layers.24.self_attn.o_proj.weight_scale
ernie.layers.24.mlp.text_fused_moe.experts.gate_correction_bias
ernie.layers.24.mlp.gate_correction_bias
ernie.layers.24.mlp.text_fused_moe.experts.up_gate_proj_weight_scale
ernie.layers.24.mlp.text_fused_moe.experts.down_proj_weight_scale
ernie.layers.24.mlp.text_fused_moe.experts.up_gate_proj_weight
ernie.layers.24.mlp.text_fused_moe.experts.down_proj_weight
ernie.layers.24.mlp.text_fused_moe.gate.weight
ernie.layers.24.mlp.image_fused_moe.experts.gate_correction_bias
ernie.layers.24.mlp.image_fused_moe.experts.up_gate_proj_weight_scale
ernie.layers.24.mlp.image_fused_moe.experts.down_proj_weight_scale
ernie.layers.24.mlp.image_fused_moe.experts.up_gate_proj_weight
@@ -943,13 +919,12 @@ ernie.layers.25.self_attn.qkv_proj.weight
ernie.layers.25.self_attn.qkv_proj.weight_scale
ernie.layers.25.self_attn.o_proj.weight
ernie.layers.25.self_attn.o_proj.weight_scale
ernie.layers.25.mlp.text_fused_moe.experts.gate_correction_bias
ernie.layers.25.mlp.gate_correction_bias
ernie.layers.25.mlp.text_fused_moe.experts.up_gate_proj_weight_scale
ernie.layers.25.mlp.text_fused_moe.experts.down_proj_weight_scale
ernie.layers.25.mlp.text_fused_moe.experts.up_gate_proj_weight
ernie.layers.25.mlp.text_fused_moe.experts.down_proj_weight
ernie.layers.25.mlp.text_fused_moe.gate.weight
ernie.layers.25.mlp.image_fused_moe.experts.gate_correction_bias
ernie.layers.25.mlp.image_fused_moe.experts.up_gate_proj_weight_scale
ernie.layers.25.mlp.image_fused_moe.experts.down_proj_weight_scale
ernie.layers.25.mlp.image_fused_moe.experts.up_gate_proj_weight
@@ -965,13 +940,12 @@ ernie.layers.26.self_attn.qkv_proj.weight
ernie.layers.26.self_attn.qkv_proj.weight_scale
ernie.layers.26.self_attn.o_proj.weight
ernie.layers.26.self_attn.o_proj.weight_scale
ernie.layers.26.mlp.text_fused_moe.experts.gate_correction_bias
ernie.layers.26.mlp.gate_correction_bias
ernie.layers.26.mlp.text_fused_moe.experts.up_gate_proj_weight_scale
ernie.layers.26.mlp.text_fused_moe.experts.down_proj_weight_scale
ernie.layers.26.mlp.text_fused_moe.experts.up_gate_proj_weight
ernie.layers.26.mlp.text_fused_moe.experts.down_proj_weight
ernie.layers.26.mlp.text_fused_moe.gate.weight
ernie.layers.26.mlp.image_fused_moe.experts.gate_correction_bias
ernie.layers.26.mlp.image_fused_moe.experts.up_gate_proj_weight_scale
ernie.layers.26.mlp.image_fused_moe.experts.down_proj_weight_scale
ernie.layers.26.mlp.image_fused_moe.experts.up_gate_proj_weight
@@ -987,13 +961,12 @@ ernie.layers.27.self_attn.qkv_proj.weight
ernie.layers.27.self_attn.qkv_proj.weight_scale
ernie.layers.27.self_attn.o_proj.weight
ernie.layers.27.self_attn.o_proj.weight_scale
ernie.layers.27.mlp.text_fused_moe.experts.gate_correction_bias
ernie.layers.27.mlp.gate_correction_bias
ernie.layers.27.mlp.text_fused_moe.experts.up_gate_proj_weight_scale
ernie.layers.27.mlp.text_fused_moe.experts.down_proj_weight_scale
ernie.layers.27.mlp.text_fused_moe.experts.up_gate_proj_weight
ernie.layers.27.mlp.text_fused_moe.experts.down_proj_weight
ernie.layers.27.mlp.text_fused_moe.gate.weight
ernie.layers.27.mlp.image_fused_moe.experts.gate_correction_bias
ernie.layers.27.mlp.image_fused_moe.experts.up_gate_proj_weight_scale
ernie.layers.27.mlp.image_fused_moe.experts.down_proj_weight_scale
ernie.layers.27.mlp.image_fused_moe.experts.up_gate_proj_weight
@@ -1010,223 +983,196 @@ lm_head.linear.weight
ernie.embed_tokens.embeddings.weight:ernie.embed_tokens.weight
lm_head.linear.weight:lm_head.weight
ernie.layers.1.mlp.text_fused_moe.gate.weight:ernie.layers.1.mlp.gate.weight
ernie.layers.1.mlp.text_fused_moe.experts.gate_correction_bias:ernie.layers.1.mlp.moe_statics.e_score_correction_bias
ernie.layers.1.mlp.gate_correction_bias:ernie.layers.1.mlp.moe_statics.e_score_correction_bias
ernie.layers.1.mlp.text_fused_moe.experts.up_gate_proj_weight:['ernie.layers.1.mlp.experts.0.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.1.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.2.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.3.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.4.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.5.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.6.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.7.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.8.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.9.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.10.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.11.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.12.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.13.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.14.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.15.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.16.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.17.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.18.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.19.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.20.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.21.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.22.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.23.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.24.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.25.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.26.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.27.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.28.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.29.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.30.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.31.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.64.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.65.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.66.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.67.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.68.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.69.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.70.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.71.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.72.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.73.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.74.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.75.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.76.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.77.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.78.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.79.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.80.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.81.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.82.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.83.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.84.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.85.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.86.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.87.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.88.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.89.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.90.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.91.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.92.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.93.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.94.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.95.up_gate_proj.weight']
ernie.layers.1.mlp.text_fused_moe.experts.down_proj_weight:['ernie.layers.1.mlp.experts.0.down_proj.weight', 'ernie.layers.1.mlp.experts.1.down_proj.weight', 'ernie.layers.1.mlp.experts.2.down_proj.weight', 'ernie.layers.1.mlp.experts.3.down_proj.weight', 'ernie.layers.1.mlp.experts.4.down_proj.weight', 'ernie.layers.1.mlp.experts.5.down_proj.weight', 'ernie.layers.1.mlp.experts.6.down_proj.weight', 'ernie.layers.1.mlp.experts.7.down_proj.weight', 'ernie.layers.1.mlp.experts.8.down_proj.weight', 'ernie.layers.1.mlp.experts.9.down_proj.weight', 'ernie.layers.1.mlp.experts.10.down_proj.weight', 'ernie.layers.1.mlp.experts.11.down_proj.weight', 'ernie.layers.1.mlp.experts.12.down_proj.weight', 'ernie.layers.1.mlp.experts.13.down_proj.weight', 'ernie.layers.1.mlp.experts.14.down_proj.weight', 'ernie.layers.1.mlp.experts.15.down_proj.weight', 'ernie.layers.1.mlp.experts.16.down_proj.weight', 'ernie.layers.1.mlp.experts.17.down_proj.weight', 'ernie.layers.1.mlp.experts.18.down_proj.weight', 'ernie.layers.1.mlp.experts.19.down_proj.weight', 'ernie.layers.1.mlp.experts.20.down_proj.weight', 'ernie.layers.1.mlp.experts.21.down_proj.weight', 'ernie.layers.1.mlp.experts.22.down_proj.weight', 'ernie.layers.1.mlp.experts.23.down_proj.weight', 'ernie.layers.1.mlp.experts.24.down_proj.weight', 'ernie.layers.1.mlp.experts.25.down_proj.weight', 'ernie.layers.1.mlp.experts.26.down_proj.weight', 'ernie.layers.1.mlp.experts.27.down_proj.weight', 'ernie.layers.1.mlp.experts.28.down_proj.weight', 'ernie.layers.1.mlp.experts.29.down_proj.weight', 'ernie.layers.1.mlp.experts.30.down_proj.weight', 'ernie.layers.1.mlp.experts.31.down_proj.weight', 'ernie.layers.1.mlp.experts.64.down_proj.weight', 'ernie.layers.1.mlp.experts.65.down_proj.weight', 'ernie.layers.1.mlp.experts.66.down_proj.weight', 'ernie.layers.1.mlp.experts.67.down_proj.weight', 'ernie.layers.1.mlp.experts.68.down_proj.weight', 'ernie.layers.1.mlp.experts.69.down_proj.weight', 'ernie.layers.1.mlp.experts.70.down_proj.weight', 'ernie.layers.1.mlp.experts.71.down_proj.weight', 'ernie.layers.1.mlp.experts.72.down_proj.weight', 'ernie.layers.1.mlp.experts.73.down_proj.weight', 'ernie.layers.1.mlp.experts.74.down_proj.weight', 'ernie.layers.1.mlp.experts.75.down_proj.weight', 'ernie.layers.1.mlp.experts.76.down_proj.weight', 'ernie.layers.1.mlp.experts.77.down_proj.weight', 'ernie.layers.1.mlp.experts.78.down_proj.weight', 'ernie.layers.1.mlp.experts.79.down_proj.weight', 'ernie.layers.1.mlp.experts.80.down_proj.weight', 'ernie.layers.1.mlp.experts.81.down_proj.weight', 'ernie.layers.1.mlp.experts.82.down_proj.weight', 'ernie.layers.1.mlp.experts.83.down_proj.weight', 'ernie.layers.1.mlp.experts.84.down_proj.weight', 'ernie.layers.1.mlp.experts.85.down_proj.weight', 'ernie.layers.1.mlp.experts.86.down_proj.weight', 'ernie.layers.1.mlp.experts.87.down_proj.weight', 'ernie.layers.1.mlp.experts.88.down_proj.weight', 'ernie.layers.1.mlp.experts.89.down_proj.weight', 'ernie.layers.1.mlp.experts.90.down_proj.weight', 'ernie.layers.1.mlp.experts.91.down_proj.weight', 'ernie.layers.1.mlp.experts.92.down_proj.weight', 'ernie.layers.1.mlp.experts.93.down_proj.weight', 'ernie.layers.1.mlp.experts.94.down_proj.weight', 'ernie.layers.1.mlp.experts.95.down_proj.weight']
ernie.layers.2.mlp.text_fused_moe.gate.weight:ernie.layers.2.mlp.gate.weight
ernie.layers.2.mlp.text_fused_moe.experts.gate_correction_bias:ernie.layers.2.mlp.moe_statics.e_score_correction_bias
ernie.layers.2.mlp.gate_correction_bias:ernie.layers.2.mlp.moe_statics.e_score_correction_bias
ernie.layers.2.mlp.text_fused_moe.experts.up_gate_proj_weight:['ernie.layers.2.mlp.experts.0.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.1.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.2.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.3.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.4.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.5.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.6.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.7.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.8.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.9.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.10.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.11.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.12.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.13.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.14.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.15.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.16.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.17.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.18.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.19.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.20.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.21.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.22.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.23.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.24.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.25.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.26.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.27.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.28.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.29.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.30.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.31.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.64.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.65.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.66.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.67.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.68.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.69.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.70.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.71.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.72.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.73.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.74.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.75.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.76.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.77.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.78.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.79.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.80.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.81.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.82.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.83.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.84.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.85.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.86.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.87.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.88.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.89.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.90.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.91.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.92.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.93.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.94.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.95.up_gate_proj.weight']
ernie.layers.2.mlp.text_fused_moe.experts.down_proj_weight:['ernie.layers.2.mlp.experts.0.down_proj.weight', 'ernie.layers.2.mlp.experts.1.down_proj.weight', 'ernie.layers.2.mlp.experts.2.down_proj.weight', 'ernie.layers.2.mlp.experts.3.down_proj.weight', 'ernie.layers.2.mlp.experts.4.down_proj.weight', 'ernie.layers.2.mlp.experts.5.down_proj.weight', 'ernie.layers.2.mlp.experts.6.down_proj.weight', 'ernie.layers.2.mlp.experts.7.down_proj.weight', 'ernie.layers.2.mlp.experts.8.down_proj.weight', 'ernie.layers.2.mlp.experts.9.down_proj.weight', 'ernie.layers.2.mlp.experts.10.down_proj.weight', 'ernie.layers.2.mlp.experts.11.down_proj.weight', 'ernie.layers.2.mlp.experts.12.down_proj.weight', 'ernie.layers.2.mlp.experts.13.down_proj.weight', 'ernie.layers.2.mlp.experts.14.down_proj.weight', 'ernie.layers.2.mlp.experts.15.down_proj.weight', 'ernie.layers.2.mlp.experts.16.down_proj.weight', 'ernie.layers.2.mlp.experts.17.down_proj.weight', 'ernie.layers.2.mlp.experts.18.down_proj.weight', 'ernie.layers.2.mlp.experts.19.down_proj.weight', 'ernie.layers.2.mlp.experts.20.down_proj.weight', 'ernie.layers.2.mlp.experts.21.down_proj.weight', 'ernie.layers.2.mlp.experts.22.down_proj.weight', 'ernie.layers.2.mlp.experts.23.down_proj.weight', 'ernie.layers.2.mlp.experts.24.down_proj.weight', 'ernie.layers.2.mlp.experts.25.down_proj.weight', 'ernie.layers.2.mlp.experts.26.down_proj.weight', 'ernie.layers.2.mlp.experts.27.down_proj.weight', 'ernie.layers.2.mlp.experts.28.down_proj.weight', 'ernie.layers.2.mlp.experts.29.down_proj.weight', 'ernie.layers.2.mlp.experts.30.down_proj.weight', 'ernie.layers.2.mlp.experts.31.down_proj.weight', 'ernie.layers.2.mlp.experts.64.down_proj.weight', 'ernie.layers.2.mlp.experts.65.down_proj.weight', 'ernie.layers.2.mlp.experts.66.down_proj.weight', 'ernie.layers.2.mlp.experts.67.down_proj.weight', 'ernie.layers.2.mlp.experts.68.down_proj.weight', 'ernie.layers.2.mlp.experts.69.down_proj.weight', 'ernie.layers.2.mlp.experts.70.down_proj.weight', 'ernie.layers.2.mlp.experts.71.down_proj.weight', 'ernie.layers.2.mlp.experts.72.down_proj.weight', 'ernie.layers.2.mlp.experts.73.down_proj.weight', 'ernie.layers.2.mlp.experts.74.down_proj.weight', 'ernie.layers.2.mlp.experts.75.down_proj.weight', 'ernie.layers.2.mlp.experts.76.down_proj.weight', 'ernie.layers.2.mlp.experts.77.down_proj.weight', 'ernie.layers.2.mlp.experts.78.down_proj.weight', 'ernie.layers.2.mlp.experts.79.down_proj.weight', 'ernie.layers.2.mlp.experts.80.down_proj.weight', 'ernie.layers.2.mlp.experts.81.down_proj.weight', 'ernie.layers.2.mlp.experts.82.down_proj.weight', 'ernie.layers.2.mlp.experts.83.down_proj.weight', 'ernie.layers.2.mlp.experts.84.down_proj.weight', 'ernie.layers.2.mlp.experts.85.down_proj.weight', 'ernie.layers.2.mlp.experts.86.down_proj.weight', 'ernie.layers.2.mlp.experts.87.down_proj.weight', 'ernie.layers.2.mlp.experts.88.down_proj.weight', 'ernie.layers.2.mlp.experts.89.down_proj.weight', 'ernie.layers.2.mlp.experts.90.down_proj.weight', 'ernie.layers.2.mlp.experts.91.down_proj.weight', 'ernie.layers.2.mlp.experts.92.down_proj.weight', 'ernie.layers.2.mlp.experts.93.down_proj.weight', 'ernie.layers.2.mlp.experts.94.down_proj.weight', 'ernie.layers.2.mlp.experts.95.down_proj.weight']
ernie.layers.3.mlp.text_fused_moe.gate.weight:ernie.layers.3.mlp.gate.weight
ernie.layers.3.mlp.text_fused_moe.experts.gate_correction_bias:ernie.layers.3.mlp.moe_statics.e_score_correction_bias
ernie.layers.3.mlp.gate_correction_bias:ernie.layers.3.mlp.moe_statics.e_score_correction_bias
ernie.layers.3.mlp.text_fused_moe.experts.up_gate_proj_weight:['ernie.layers.3.mlp.experts.0.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.1.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.2.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.3.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.4.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.5.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.6.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.7.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.8.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.9.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.10.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.11.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.12.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.13.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.14.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.15.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.16.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.17.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.18.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.19.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.20.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.21.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.22.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.23.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.24.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.25.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.26.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.27.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.28.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.29.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.30.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.31.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.64.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.65.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.66.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.67.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.68.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.69.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.70.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.71.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.72.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.73.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.74.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.75.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.76.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.77.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.78.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.79.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.80.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.81.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.82.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.83.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.84.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.85.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.86.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.87.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.88.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.89.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.90.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.91.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.92.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.93.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.94.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.95.up_gate_proj.weight']
ernie.layers.3.mlp.text_fused_moe.experts.down_proj_weight:['ernie.layers.3.mlp.experts.0.down_proj.weight', 'ernie.layers.3.mlp.experts.1.down_proj.weight', 'ernie.layers.3.mlp.experts.2.down_proj.weight', 'ernie.layers.3.mlp.experts.3.down_proj.weight', 'ernie.layers.3.mlp.experts.4.down_proj.weight', 'ernie.layers.3.mlp.experts.5.down_proj.weight', 'ernie.layers.3.mlp.experts.6.down_proj.weight', 'ernie.layers.3.mlp.experts.7.down_proj.weight', 'ernie.layers.3.mlp.experts.8.down_proj.weight', 'ernie.layers.3.mlp.experts.9.down_proj.weight', 'ernie.layers.3.mlp.experts.10.down_proj.weight', 'ernie.layers.3.mlp.experts.11.down_proj.weight', 'ernie.layers.3.mlp.experts.12.down_proj.weight', 'ernie.layers.3.mlp.experts.13.down_proj.weight', 'ernie.layers.3.mlp.experts.14.down_proj.weight', 'ernie.layers.3.mlp.experts.15.down_proj.weight', 'ernie.layers.3.mlp.experts.16.down_proj.weight', 'ernie.layers.3.mlp.experts.17.down_proj.weight', 'ernie.layers.3.mlp.experts.18.down_proj.weight', 'ernie.layers.3.mlp.experts.19.down_proj.weight', 'ernie.layers.3.mlp.experts.20.down_proj.weight', 'ernie.layers.3.mlp.experts.21.down_proj.weight', 'ernie.layers.3.mlp.experts.22.down_proj.weight', 'ernie.layers.3.mlp.experts.23.down_proj.weight', 'ernie.layers.3.mlp.experts.24.down_proj.weight', 'ernie.layers.3.mlp.experts.25.down_proj.weight', 'ernie.layers.3.mlp.experts.26.down_proj.weight', 'ernie.layers.3.mlp.experts.27.down_proj.weight', 'ernie.layers.3.mlp.experts.28.down_proj.weight', 'ernie.layers.3.mlp.experts.29.down_proj.weight', 'ernie.layers.3.mlp.experts.30.down_proj.weight', 'ernie.layers.3.mlp.experts.31.down_proj.weight', 'ernie.layers.3.mlp.experts.64.down_proj.weight', 'ernie.layers.3.mlp.experts.65.down_proj.weight', 'ernie.layers.3.mlp.experts.66.down_proj.weight', 'ernie.layers.3.mlp.experts.67.down_proj.weight', 'ernie.layers.3.mlp.experts.68.down_proj.weight', 'ernie.layers.3.mlp.experts.69.down_proj.weight', 'ernie.layers.3.mlp.experts.70.down_proj.weight', 'ernie.layers.3.mlp.experts.71.down_proj.weight', 'ernie.layers.3.mlp.experts.72.down_proj.weight', 'ernie.layers.3.mlp.experts.73.down_proj.weight', 'ernie.layers.3.mlp.experts.74.down_proj.weight', 'ernie.layers.3.mlp.experts.75.down_proj.weight', 'ernie.layers.3.mlp.experts.76.down_proj.weight', 'ernie.layers.3.mlp.experts.77.down_proj.weight', 'ernie.layers.3.mlp.experts.78.down_proj.weight', 'ernie.layers.3.mlp.experts.79.down_proj.weight', 'ernie.layers.3.mlp.experts.80.down_proj.weight', 'ernie.layers.3.mlp.experts.81.down_proj.weight', 'ernie.layers.3.mlp.experts.82.down_proj.weight', 'ernie.layers.3.mlp.experts.83.down_proj.weight', 'ernie.layers.3.mlp.experts.84.down_proj.weight', 'ernie.layers.3.mlp.experts.85.down_proj.weight', 'ernie.layers.3.mlp.experts.86.down_proj.weight', 'ernie.layers.3.mlp.experts.87.down_proj.weight', 'ernie.layers.3.mlp.experts.88.down_proj.weight', 'ernie.layers.3.mlp.experts.89.down_proj.weight', 'ernie.layers.3.mlp.experts.90.down_proj.weight', 'ernie.layers.3.mlp.experts.91.down_proj.weight', 'ernie.layers.3.mlp.experts.92.down_proj.weight', 'ernie.layers.3.mlp.experts.93.down_proj.weight', 'ernie.layers.3.mlp.experts.94.down_proj.weight', 'ernie.layers.3.mlp.experts.95.down_proj.weight']
ernie.layers.4.mlp.text_fused_moe.gate.weight:ernie.layers.4.mlp.gate.weight
ernie.layers.4.mlp.text_fused_moe.experts.gate_correction_bias:ernie.layers.4.mlp.moe_statics.e_score_correction_bias
ernie.layers.4.mlp.gate_correction_bias:ernie.layers.4.mlp.moe_statics.e_score_correction_bias
ernie.layers.4.mlp.text_fused_moe.experts.up_gate_proj_weight:['ernie.layers.4.mlp.experts.0.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.1.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.2.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.3.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.4.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.5.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.6.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.7.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.8.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.9.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.10.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.11.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.12.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.13.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.14.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.15.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.16.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.17.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.18.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.19.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.20.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.21.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.22.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.23.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.24.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.25.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.26.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.27.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.28.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.29.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.30.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.31.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.64.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.65.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.66.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.67.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.68.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.69.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.70.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.71.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.72.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.73.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.74.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.75.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.76.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.77.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.78.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.79.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.80.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.81.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.82.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.83.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.84.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.85.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.86.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.87.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.88.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.89.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.90.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.91.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.92.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.93.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.94.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.95.up_gate_proj.weight']
ernie.layers.4.mlp.text_fused_moe.experts.down_proj_weight:['ernie.layers.4.mlp.experts.0.down_proj.weight', 'ernie.layers.4.mlp.experts.1.down_proj.weight', 'ernie.layers.4.mlp.experts.2.down_proj.weight', 'ernie.layers.4.mlp.experts.3.down_proj.weight', 'ernie.layers.4.mlp.experts.4.down_proj.weight', 'ernie.layers.4.mlp.experts.5.down_proj.weight', 'ernie.layers.4.mlp.experts.6.down_proj.weight', 'ernie.layers.4.mlp.experts.7.down_proj.weight', 'ernie.layers.4.mlp.experts.8.down_proj.weight', 'ernie.layers.4.mlp.experts.9.down_proj.weight', 'ernie.layers.4.mlp.experts.10.down_proj.weight', 'ernie.layers.4.mlp.experts.11.down_proj.weight', 'ernie.layers.4.mlp.experts.12.down_proj.weight', 'ernie.layers.4.mlp.experts.13.down_proj.weight', 'ernie.layers.4.mlp.experts.14.down_proj.weight', 'ernie.layers.4.mlp.experts.15.down_proj.weight', 'ernie.layers.4.mlp.experts.16.down_proj.weight', 'ernie.layers.4.mlp.experts.17.down_proj.weight', 'ernie.layers.4.mlp.experts.18.down_proj.weight', 'ernie.layers.4.mlp.experts.19.down_proj.weight', 'ernie.layers.4.mlp.experts.20.down_proj.weight', 'ernie.layers.4.mlp.experts.21.down_proj.weight', 'ernie.layers.4.mlp.experts.22.down_proj.weight', 'ernie.layers.4.mlp.experts.23.down_proj.weight', 'ernie.layers.4.mlp.experts.24.down_proj.weight', 'ernie.layers.4.mlp.experts.25.down_proj.weight', 'ernie.layers.4.mlp.experts.26.down_proj.weight', 'ernie.layers.4.mlp.experts.27.down_proj.weight', 'ernie.layers.4.mlp.experts.28.down_proj.weight', 'ernie.layers.4.mlp.experts.29.down_proj.weight', 'ernie.layers.4.mlp.experts.30.down_proj.weight', 'ernie.layers.4.mlp.experts.31.down_proj.weight', 'ernie.layers.4.mlp.experts.64.down_proj.weight', 'ernie.layers.4.mlp.experts.65.down_proj.weight', 'ernie.layers.4.mlp.experts.66.down_proj.weight', 'ernie.layers.4.mlp.experts.67.down_proj.weight', 'ernie.layers.4.mlp.experts.68.down_proj.weight', 'ernie.layers.4.mlp.experts.69.down_proj.weight', 'ernie.layers.4.mlp.experts.70.down_proj.weight', 'ernie.layers.4.mlp.experts.71.down_proj.weight', 'ernie.layers.4.mlp.experts.72.down_proj.weight', 'ernie.layers.4.mlp.experts.73.down_proj.weight', 'ernie.layers.4.mlp.experts.74.down_proj.weight', 'ernie.layers.4.mlp.experts.75.down_proj.weight', 'ernie.layers.4.mlp.experts.76.down_proj.weight', 'ernie.layers.4.mlp.experts.77.down_proj.weight', 'ernie.layers.4.mlp.experts.78.down_proj.weight', 'ernie.layers.4.mlp.experts.79.down_proj.weight', 'ernie.layers.4.mlp.experts.80.down_proj.weight', 'ernie.layers.4.mlp.experts.81.down_proj.weight', 'ernie.layers.4.mlp.experts.82.down_proj.weight', 'ernie.layers.4.mlp.experts.83.down_proj.weight', 'ernie.layers.4.mlp.experts.84.down_proj.weight', 'ernie.layers.4.mlp.experts.85.down_proj.weight', 'ernie.layers.4.mlp.experts.86.down_proj.weight', 'ernie.layers.4.mlp.experts.87.down_proj.weight', 'ernie.layers.4.mlp.experts.88.down_proj.weight', 'ernie.layers.4.mlp.experts.89.down_proj.weight', 'ernie.layers.4.mlp.experts.90.down_proj.weight', 'ernie.layers.4.mlp.experts.91.down_proj.weight', 'ernie.layers.4.mlp.experts.92.down_proj.weight', 'ernie.layers.4.mlp.experts.93.down_proj.weight', 'ernie.layers.4.mlp.experts.94.down_proj.weight', 'ernie.layers.4.mlp.experts.95.down_proj.weight']
ernie.layers.5.mlp.text_fused_moe.gate.weight:ernie.layers.5.mlp.gate.weight
ernie.layers.5.mlp.text_fused_moe.experts.gate_correction_bias:ernie.layers.5.mlp.moe_statics.e_score_correction_bias
ernie.layers.5.mlp.gate_correction_bias:ernie.layers.5.mlp.moe_statics.e_score_correction_bias
ernie.layers.5.mlp.text_fused_moe.experts.up_gate_proj_weight:['ernie.layers.5.mlp.experts.0.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.1.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.2.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.3.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.4.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.5.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.6.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.7.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.8.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.9.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.10.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.11.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.12.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.13.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.14.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.15.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.16.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.17.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.18.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.19.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.20.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.21.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.22.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.23.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.24.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.25.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.26.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.27.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.28.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.29.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.30.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.31.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.64.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.65.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.66.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.67.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.68.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.69.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.70.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.71.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.72.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.73.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.74.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.75.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.76.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.77.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.78.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.79.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.80.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.81.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.82.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.83.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.84.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.85.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.86.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.87.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.88.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.89.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.90.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.91.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.92.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.93.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.94.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.95.up_gate_proj.weight']
ernie.layers.5.mlp.text_fused_moe.experts.down_proj_weight:['ernie.layers.5.mlp.experts.0.down_proj.weight', 'ernie.layers.5.mlp.experts.1.down_proj.weight', 'ernie.layers.5.mlp.experts.2.down_proj.weight', 'ernie.layers.5.mlp.experts.3.down_proj.weight', 'ernie.layers.5.mlp.experts.4.down_proj.weight', 'ernie.layers.5.mlp.experts.5.down_proj.weight', 'ernie.layers.5.mlp.experts.6.down_proj.weight', 'ernie.layers.5.mlp.experts.7.down_proj.weight', 'ernie.layers.5.mlp.experts.8.down_proj.weight', 'ernie.layers.5.mlp.experts.9.down_proj.weight', 'ernie.layers.5.mlp.experts.10.down_proj.weight', 'ernie.layers.5.mlp.experts.11.down_proj.weight', 'ernie.layers.5.mlp.experts.12.down_proj.weight', 'ernie.layers.5.mlp.experts.13.down_proj.weight', 'ernie.layers.5.mlp.experts.14.down_proj.weight', 'ernie.layers.5.mlp.experts.15.down_proj.weight', 'ernie.layers.5.mlp.experts.16.down_proj.weight', 'ernie.layers.5.mlp.experts.17.down_proj.weight', 'ernie.layers.5.mlp.experts.18.down_proj.weight', 'ernie.layers.5.mlp.experts.19.down_proj.weight', 'ernie.layers.5.mlp.experts.20.down_proj.weight', 'ernie.layers.5.mlp.experts.21.down_proj.weight', 'ernie.layers.5.mlp.experts.22.down_proj.weight', 'ernie.layers.5.mlp.experts.23.down_proj.weight', 'ernie.layers.5.mlp.experts.24.down_proj.weight', 'ernie.layers.5.mlp.experts.25.down_proj.weight', 'ernie.layers.5.mlp.experts.26.down_proj.weight', 'ernie.layers.5.mlp.experts.27.down_proj.weight', 'ernie.layers.5.mlp.experts.28.down_proj.weight', 'ernie.layers.5.mlp.experts.29.down_proj.weight', 'ernie.layers.5.mlp.experts.30.down_proj.weight', 'ernie.layers.5.mlp.experts.31.down_proj.weight', 'ernie.layers.5.mlp.experts.64.down_proj.weight', 'ernie.layers.5.mlp.experts.65.down_proj.weight', 'ernie.layers.5.mlp.experts.66.down_proj.weight', 'ernie.layers.5.mlp.experts.67.down_proj.weight', 'ernie.layers.5.mlp.experts.68.down_proj.weight', 'ernie.layers.5.mlp.experts.69.down_proj.weight', 'ernie.layers.5.mlp.experts.70.down_proj.weight', 'ernie.layers.5.mlp.experts.71.down_proj.weight', 'ernie.layers.5.mlp.experts.72.down_proj.weight', 'ernie.layers.5.mlp.experts.73.down_proj.weight', 'ernie.layers.5.mlp.experts.74.down_proj.weight', 'ernie.layers.5.mlp.experts.75.down_proj.weight', 'ernie.layers.5.mlp.experts.76.down_proj.weight', 'ernie.layers.5.mlp.experts.77.down_proj.weight', 'ernie.layers.5.mlp.experts.78.down_proj.weight', 'ernie.layers.5.mlp.experts.79.down_proj.weight', 'ernie.layers.5.mlp.experts.80.down_proj.weight', 'ernie.layers.5.mlp.experts.81.down_proj.weight', 'ernie.layers.5.mlp.experts.82.down_proj.weight', 'ernie.layers.5.mlp.experts.83.down_proj.weight', 'ernie.layers.5.mlp.experts.84.down_proj.weight', 'ernie.layers.5.mlp.experts.85.down_proj.weight', 'ernie.layers.5.mlp.experts.86.down_proj.weight', 'ernie.layers.5.mlp.experts.87.down_proj.weight', 'ernie.layers.5.mlp.experts.88.down_proj.weight', 'ernie.layers.5.mlp.experts.89.down_proj.weight', 'ernie.layers.5.mlp.experts.90.down_proj.weight', 'ernie.layers.5.mlp.experts.91.down_proj.weight', 'ernie.layers.5.mlp.experts.92.down_proj.weight', 'ernie.layers.5.mlp.experts.93.down_proj.weight', 'ernie.layers.5.mlp.experts.94.down_proj.weight', 'ernie.layers.5.mlp.experts.95.down_proj.weight']
ernie.layers.6.mlp.text_fused_moe.gate.weight:ernie.layers.6.mlp.gate.weight
ernie.layers.6.mlp.text_fused_moe.experts.gate_correction_bias:ernie.layers.6.mlp.moe_statics.e_score_correction_bias
ernie.layers.6.mlp.gate_correction_bias:ernie.layers.6.mlp.moe_statics.e_score_correction_bias
ernie.layers.6.mlp.text_fused_moe.experts.up_gate_proj_weight:['ernie.layers.6.mlp.experts.0.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.1.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.2.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.3.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.4.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.5.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.6.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.7.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.8.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.9.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.10.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.11.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.12.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.13.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.14.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.15.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.16.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.17.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.18.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.19.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.20.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.21.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.22.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.23.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.24.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.25.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.26.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.27.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.28.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.29.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.30.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.31.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.64.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.65.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.66.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.67.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.68.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.69.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.70.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.71.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.72.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.73.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.74.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.75.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.76.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.77.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.78.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.79.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.80.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.81.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.82.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.83.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.84.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.85.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.86.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.87.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.88.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.89.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.90.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.91.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.92.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.93.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.94.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.95.up_gate_proj.weight']
ernie.layers.6.mlp.text_fused_moe.experts.down_proj_weight:['ernie.layers.6.mlp.experts.0.down_proj.weight', 'ernie.layers.6.mlp.experts.1.down_proj.weight', 'ernie.layers.6.mlp.experts.2.down_proj.weight', 'ernie.layers.6.mlp.experts.3.down_proj.weight', 'ernie.layers.6.mlp.experts.4.down_proj.weight', 'ernie.layers.6.mlp.experts.5.down_proj.weight', 'ernie.layers.6.mlp.experts.6.down_proj.weight', 'ernie.layers.6.mlp.experts.7.down_proj.weight', 'ernie.layers.6.mlp.experts.8.down_proj.weight', 'ernie.layers.6.mlp.experts.9.down_proj.weight', 'ernie.layers.6.mlp.experts.10.down_proj.weight', 'ernie.layers.6.mlp.experts.11.down_proj.weight', 'ernie.layers.6.mlp.experts.12.down_proj.weight', 'ernie.layers.6.mlp.experts.13.down_proj.weight', 'ernie.layers.6.mlp.experts.14.down_proj.weight', 'ernie.layers.6.mlp.experts.15.down_proj.weight', 'ernie.layers.6.mlp.experts.16.down_proj.weight', 'ernie.layers.6.mlp.experts.17.down_proj.weight', 'ernie.layers.6.mlp.experts.18.down_proj.weight', 'ernie.layers.6.mlp.experts.19.down_proj.weight', 'ernie.layers.6.mlp.experts.20.down_proj.weight', 'ernie.layers.6.mlp.experts.21.down_proj.weight', 'ernie.layers.6.mlp.experts.22.down_proj.weight', 'ernie.layers.6.mlp.experts.23.down_proj.weight', 'ernie.layers.6.mlp.experts.24.down_proj.weight', 'ernie.layers.6.mlp.experts.25.down_proj.weight', 'ernie.layers.6.mlp.experts.26.down_proj.weight', 'ernie.layers.6.mlp.experts.27.down_proj.weight', 'ernie.layers.6.mlp.experts.28.down_proj.weight', 'ernie.layers.6.mlp.experts.29.down_proj.weight', 'ernie.layers.6.mlp.experts.30.down_proj.weight', 'ernie.layers.6.mlp.experts.31.down_proj.weight', 'ernie.layers.6.mlp.experts.64.down_proj.weight', 'ernie.layers.6.mlp.experts.65.down_proj.weight', 'ernie.layers.6.mlp.experts.66.down_proj.weight', 'ernie.layers.6.mlp.experts.67.down_proj.weight', 'ernie.layers.6.mlp.experts.68.down_proj.weight', 'ernie.layers.6.mlp.experts.69.down_proj.weight', 'ernie.layers.6.mlp.experts.70.down_proj.weight', 'ernie.layers.6.mlp.experts.71.down_proj.weight', 'ernie.layers.6.mlp.experts.72.down_proj.weight', 'ernie.layers.6.mlp.experts.73.down_proj.weight', 'ernie.layers.6.mlp.experts.74.down_proj.weight', 'ernie.layers.6.mlp.experts.75.down_proj.weight', 'ernie.layers.6.mlp.experts.76.down_proj.weight', 'ernie.layers.6.mlp.experts.77.down_proj.weight', 'ernie.layers.6.mlp.experts.78.down_proj.weight', 'ernie.layers.6.mlp.experts.79.down_proj.weight', 'ernie.layers.6.mlp.experts.80.down_proj.weight', 'ernie.layers.6.mlp.experts.81.down_proj.weight', 'ernie.layers.6.mlp.experts.82.down_proj.weight', 'ernie.layers.6.mlp.experts.83.down_proj.weight', 'ernie.layers.6.mlp.experts.84.down_proj.weight', 'ernie.layers.6.mlp.experts.85.down_proj.weight', 'ernie.layers.6.mlp.experts.86.down_proj.weight', 'ernie.layers.6.mlp.experts.87.down_proj.weight', 'ernie.layers.6.mlp.experts.88.down_proj.weight', 'ernie.layers.6.mlp.experts.89.down_proj.weight', 'ernie.layers.6.mlp.experts.90.down_proj.weight', 'ernie.layers.6.mlp.experts.91.down_proj.weight', 'ernie.layers.6.mlp.experts.92.down_proj.weight', 'ernie.layers.6.mlp.experts.93.down_proj.weight', 'ernie.layers.6.mlp.experts.94.down_proj.weight', 'ernie.layers.6.mlp.experts.95.down_proj.weight']
ernie.layers.7.mlp.text_fused_moe.gate.weight:ernie.layers.7.mlp.gate.weight
ernie.layers.7.mlp.text_fused_moe.experts.gate_correction_bias:ernie.layers.7.mlp.moe_statics.e_score_correction_bias
ernie.layers.7.mlp.gate_correction_bias:ernie.layers.7.mlp.moe_statics.e_score_correction_bias
ernie.layers.7.mlp.text_fused_moe.experts.up_gate_proj_weight:['ernie.layers.7.mlp.experts.0.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.1.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.2.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.3.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.4.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.5.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.6.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.7.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.8.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.9.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.10.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.11.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.12.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.13.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.14.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.15.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.16.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.17.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.18.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.19.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.20.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.21.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.22.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.23.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.24.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.25.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.26.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.27.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.28.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.29.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.30.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.31.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.64.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.65.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.66.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.67.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.68.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.69.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.70.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.71.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.72.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.73.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.74.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.75.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.76.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.77.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.78.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.79.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.80.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.81.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.82.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.83.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.84.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.85.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.86.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.87.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.88.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.89.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.90.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.91.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.92.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.93.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.94.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.95.up_gate_proj.weight']
ernie.layers.7.mlp.text_fused_moe.experts.down_proj_weight:['ernie.layers.7.mlp.experts.0.down_proj.weight', 'ernie.layers.7.mlp.experts.1.down_proj.weight', 'ernie.layers.7.mlp.experts.2.down_proj.weight', 'ernie.layers.7.mlp.experts.3.down_proj.weight', 'ernie.layers.7.mlp.experts.4.down_proj.weight', 'ernie.layers.7.mlp.experts.5.down_proj.weight', 'ernie.layers.7.mlp.experts.6.down_proj.weight', 'ernie.layers.7.mlp.experts.7.down_proj.weight', 'ernie.layers.7.mlp.experts.8.down_proj.weight', 'ernie.layers.7.mlp.experts.9.down_proj.weight', 'ernie.layers.7.mlp.experts.10.down_proj.weight', 'ernie.layers.7.mlp.experts.11.down_proj.weight', 'ernie.layers.7.mlp.experts.12.down_proj.weight', 'ernie.layers.7.mlp.experts.13.down_proj.weight', 'ernie.layers.7.mlp.experts.14.down_proj.weight', 'ernie.layers.7.mlp.experts.15.down_proj.weight', 'ernie.layers.7.mlp.experts.16.down_proj.weight', 'ernie.layers.7.mlp.experts.17.down_proj.weight', 'ernie.layers.7.mlp.experts.18.down_proj.weight', 'ernie.layers.7.mlp.experts.19.down_proj.weight', 'ernie.layers.7.mlp.experts.20.down_proj.weight', 'ernie.layers.7.mlp.experts.21.down_proj.weight', 'ernie.layers.7.mlp.experts.22.down_proj.weight', 'ernie.layers.7.mlp.experts.23.down_proj.weight', 'ernie.layers.7.mlp.experts.24.down_proj.weight', 'ernie.layers.7.mlp.experts.25.down_proj.weight', 'ernie.layers.7.mlp.experts.26.down_proj.weight', 'ernie.layers.7.mlp.experts.27.down_proj.weight', 'ernie.layers.7.mlp.experts.28.down_proj.weight', 'ernie.layers.7.mlp.experts.29.down_proj.weight', 'ernie.layers.7.mlp.experts.30.down_proj.weight', 'ernie.layers.7.mlp.experts.31.down_proj.weight', 'ernie.layers.7.mlp.experts.64.down_proj.weight', 'ernie.layers.7.mlp.experts.65.down_proj.weight', 'ernie.layers.7.mlp.experts.66.down_proj.weight', 'ernie.layers.7.mlp.experts.67.down_proj.weight', 'ernie.layers.7.mlp.experts.68.down_proj.weight', 'ernie.layers.7.mlp.experts.69.down_proj.weight', 'ernie.layers.7.mlp.experts.70.down_proj.weight', 'ernie.layers.7.mlp.experts.71.down_proj.weight', 'ernie.layers.7.mlp.experts.72.down_proj.weight', 'ernie.layers.7.mlp.experts.73.down_proj.weight', 'ernie.layers.7.mlp.experts.74.down_proj.weight', 'ernie.layers.7.mlp.experts.75.down_proj.weight', 'ernie.layers.7.mlp.experts.76.down_proj.weight', 'ernie.layers.7.mlp.experts.77.down_proj.weight', 'ernie.layers.7.mlp.experts.78.down_proj.weight', 'ernie.layers.7.mlp.experts.79.down_proj.weight', 'ernie.layers.7.mlp.experts.80.down_proj.weight', 'ernie.layers.7.mlp.experts.81.down_proj.weight', 'ernie.layers.7.mlp.experts.82.down_proj.weight', 'ernie.layers.7.mlp.experts.83.down_proj.weight', 'ernie.layers.7.mlp.experts.84.down_proj.weight', 'ernie.layers.7.mlp.experts.85.down_proj.weight', 'ernie.layers.7.mlp.experts.86.down_proj.weight', 'ernie.layers.7.mlp.experts.87.down_proj.weight', 'ernie.layers.7.mlp.experts.88.down_proj.weight', 'ernie.layers.7.mlp.experts.89.down_proj.weight', 'ernie.layers.7.mlp.experts.90.down_proj.weight', 'ernie.layers.7.mlp.experts.91.down_proj.weight', 'ernie.layers.7.mlp.experts.92.down_proj.weight', 'ernie.layers.7.mlp.experts.93.down_proj.weight', 'ernie.layers.7.mlp.experts.94.down_proj.weight', 'ernie.layers.7.mlp.experts.95.down_proj.weight']
ernie.layers.8.mlp.text_fused_moe.gate.weight:ernie.layers.8.mlp.gate.weight
ernie.layers.8.mlp.text_fused_moe.experts.gate_correction_bias:ernie.layers.8.mlp.moe_statics.e_score_correction_bias
ernie.layers.8.mlp.gate_correction_bias:ernie.layers.8.mlp.moe_statics.e_score_correction_bias
ernie.layers.8.mlp.text_fused_moe.experts.up_gate_proj_weight:['ernie.layers.8.mlp.experts.0.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.1.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.2.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.3.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.4.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.5.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.6.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.7.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.8.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.9.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.10.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.11.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.12.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.13.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.14.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.15.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.16.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.17.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.18.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.19.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.20.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.21.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.22.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.23.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.24.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.25.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.26.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.27.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.28.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.29.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.30.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.31.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.64.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.65.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.66.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.67.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.68.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.69.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.70.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.71.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.72.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.73.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.74.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.75.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.76.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.77.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.78.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.79.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.80.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.81.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.82.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.83.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.84.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.85.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.86.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.87.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.88.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.89.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.90.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.91.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.92.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.93.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.94.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.95.up_gate_proj.weight']
ernie.layers.8.mlp.text_fused_moe.experts.down_proj_weight:['ernie.layers.8.mlp.experts.0.down_proj.weight', 'ernie.layers.8.mlp.experts.1.down_proj.weight', 'ernie.layers.8.mlp.experts.2.down_proj.weight', 'ernie.layers.8.mlp.experts.3.down_proj.weight', 'ernie.layers.8.mlp.experts.4.down_proj.weight', 'ernie.layers.8.mlp.experts.5.down_proj.weight', 'ernie.layers.8.mlp.experts.6.down_proj.weight', 'ernie.layers.8.mlp.experts.7.down_proj.weight', 'ernie.layers.8.mlp.experts.8.down_proj.weight', 'ernie.layers.8.mlp.experts.9.down_proj.weight', 'ernie.layers.8.mlp.experts.10.down_proj.weight', 'ernie.layers.8.mlp.experts.11.down_proj.weight', 'ernie.layers.8.mlp.experts.12.down_proj.weight', 'ernie.layers.8.mlp.experts.13.down_proj.weight', 'ernie.layers.8.mlp.experts.14.down_proj.weight', 'ernie.layers.8.mlp.experts.15.down_proj.weight', 'ernie.layers.8.mlp.experts.16.down_proj.weight', 'ernie.layers.8.mlp.experts.17.down_proj.weight', 'ernie.layers.8.mlp.experts.18.down_proj.weight', 'ernie.layers.8.mlp.experts.19.down_proj.weight', 'ernie.layers.8.mlp.experts.20.down_proj.weight', 'ernie.layers.8.mlp.experts.21.down_proj.weight', 'ernie.layers.8.mlp.experts.22.down_proj.weight', 'ernie.layers.8.mlp.experts.23.down_proj.weight', 'ernie.layers.8.mlp.experts.24.down_proj.weight', 'ernie.layers.8.mlp.experts.25.down_proj.weight', 'ernie.layers.8.mlp.experts.26.down_proj.weight', 'ernie.layers.8.mlp.experts.27.down_proj.weight', 'ernie.layers.8.mlp.experts.28.down_proj.weight', 'ernie.layers.8.mlp.experts.29.down_proj.weight', 'ernie.layers.8.mlp.experts.30.down_proj.weight', 'ernie.layers.8.mlp.experts.31.down_proj.weight', 'ernie.layers.8.mlp.experts.64.down_proj.weight', 'ernie.layers.8.mlp.experts.65.down_proj.weight', 'ernie.layers.8.mlp.experts.66.down_proj.weight', 'ernie.layers.8.mlp.experts.67.down_proj.weight', 'ernie.layers.8.mlp.experts.68.down_proj.weight', 'ernie.layers.8.mlp.experts.69.down_proj.weight', 'ernie.layers.8.mlp.experts.70.down_proj.weight', 'ernie.layers.8.mlp.experts.71.down_proj.weight', 'ernie.layers.8.mlp.experts.72.down_proj.weight', 'ernie.layers.8.mlp.experts.73.down_proj.weight', 'ernie.layers.8.mlp.experts.74.down_proj.weight', 'ernie.layers.8.mlp.experts.75.down_proj.weight', 'ernie.layers.8.mlp.experts.76.down_proj.weight', 'ernie.layers.8.mlp.experts.77.down_proj.weight', 'ernie.layers.8.mlp.experts.78.down_proj.weight', 'ernie.layers.8.mlp.experts.79.down_proj.weight', 'ernie.layers.8.mlp.experts.80.down_proj.weight', 'ernie.layers.8.mlp.experts.81.down_proj.weight', 'ernie.layers.8.mlp.experts.82.down_proj.weight', 'ernie.layers.8.mlp.experts.83.down_proj.weight', 'ernie.layers.8.mlp.experts.84.down_proj.weight', 'ernie.layers.8.mlp.experts.85.down_proj.weight', 'ernie.layers.8.mlp.experts.86.down_proj.weight', 'ernie.layers.8.mlp.experts.87.down_proj.weight', 'ernie.layers.8.mlp.experts.88.down_proj.weight', 'ernie.layers.8.mlp.experts.89.down_proj.weight', 'ernie.layers.8.mlp.experts.90.down_proj.weight', 'ernie.layers.8.mlp.experts.91.down_proj.weight', 'ernie.layers.8.mlp.experts.92.down_proj.weight', 'ernie.layers.8.mlp.experts.93.down_proj.weight', 'ernie.layers.8.mlp.experts.94.down_proj.weight', 'ernie.layers.8.mlp.experts.95.down_proj.weight']
ernie.layers.9.mlp.text_fused_moe.gate.weight:ernie.layers.9.mlp.gate.weight
ernie.layers.9.mlp.text_fused_moe.experts.gate_correction_bias:ernie.layers.9.mlp.moe_statics.e_score_correction_bias
ernie.layers.9.mlp.gate_correction_bias:ernie.layers.9.mlp.moe_statics.e_score_correction_bias
ernie.layers.9.mlp.text_fused_moe.experts.up_gate_proj_weight:['ernie.layers.9.mlp.experts.0.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.1.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.2.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.3.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.4.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.5.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.6.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.7.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.8.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.9.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.10.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.11.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.12.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.13.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.14.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.15.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.16.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.17.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.18.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.19.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.20.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.21.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.22.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.23.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.24.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.25.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.26.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.27.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.28.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.29.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.30.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.31.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.64.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.65.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.66.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.67.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.68.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.69.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.70.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.71.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.72.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.73.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.74.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.75.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.76.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.77.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.78.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.79.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.80.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.81.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.82.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.83.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.84.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.85.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.86.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.87.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.88.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.89.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.90.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.91.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.92.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.93.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.94.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.95.up_gate_proj.weight']
ernie.layers.9.mlp.text_fused_moe.experts.down_proj_weight:['ernie.layers.9.mlp.experts.0.down_proj.weight', 'ernie.layers.9.mlp.experts.1.down_proj.weight', 'ernie.layers.9.mlp.experts.2.down_proj.weight', 'ernie.layers.9.mlp.experts.3.down_proj.weight', 'ernie.layers.9.mlp.experts.4.down_proj.weight', 'ernie.layers.9.mlp.experts.5.down_proj.weight', 'ernie.layers.9.mlp.experts.6.down_proj.weight', 'ernie.layers.9.mlp.experts.7.down_proj.weight', 'ernie.layers.9.mlp.experts.8.down_proj.weight', 'ernie.layers.9.mlp.experts.9.down_proj.weight', 'ernie.layers.9.mlp.experts.10.down_proj.weight', 'ernie.layers.9.mlp.experts.11.down_proj.weight', 'ernie.layers.9.mlp.experts.12.down_proj.weight', 'ernie.layers.9.mlp.experts.13.down_proj.weight', 'ernie.layers.9.mlp.experts.14.down_proj.weight', 'ernie.layers.9.mlp.experts.15.down_proj.weight', 'ernie.layers.9.mlp.experts.16.down_proj.weight', 'ernie.layers.9.mlp.experts.17.down_proj.weight', 'ernie.layers.9.mlp.experts.18.down_proj.weight', 'ernie.layers.9.mlp.experts.19.down_proj.weight', 'ernie.layers.9.mlp.experts.20.down_proj.weight', 'ernie.layers.9.mlp.experts.21.down_proj.weight', 'ernie.layers.9.mlp.experts.22.down_proj.weight', 'ernie.layers.9.mlp.experts.23.down_proj.weight', 'ernie.layers.9.mlp.experts.24.down_proj.weight', 'ernie.layers.9.mlp.experts.25.down_proj.weight', 'ernie.layers.9.mlp.experts.26.down_proj.weight', 'ernie.layers.9.mlp.experts.27.down_proj.weight', 'ernie.layers.9.mlp.experts.28.down_proj.weight', 'ernie.layers.9.mlp.experts.29.down_proj.weight', 'ernie.layers.9.mlp.experts.30.down_proj.weight', 'ernie.layers.9.mlp.experts.31.down_proj.weight', 'ernie.layers.9.mlp.experts.64.down_proj.weight', 'ernie.layers.9.mlp.experts.65.down_proj.weight', 'ernie.layers.9.mlp.experts.66.down_proj.weight', 'ernie.layers.9.mlp.experts.67.down_proj.weight', 'ernie.layers.9.mlp.experts.68.down_proj.weight', 'ernie.layers.9.mlp.experts.69.down_proj.weight', 'ernie.layers.9.mlp.experts.70.down_proj.weight', 'ernie.layers.9.mlp.experts.71.down_proj.weight', 'ernie.layers.9.mlp.experts.72.down_proj.weight', 'ernie.layers.9.mlp.experts.73.down_proj.weight', 'ernie.layers.9.mlp.experts.74.down_proj.weight', 'ernie.layers.9.mlp.experts.75.down_proj.weight', 'ernie.layers.9.mlp.experts.76.down_proj.weight', 'ernie.layers.9.mlp.experts.77.down_proj.weight', 'ernie.layers.9.mlp.experts.78.down_proj.weight', 'ernie.layers.9.mlp.experts.79.down_proj.weight', 'ernie.layers.9.mlp.experts.80.down_proj.weight', 'ernie.layers.9.mlp.experts.81.down_proj.weight', 'ernie.layers.9.mlp.experts.82.down_proj.weight', 'ernie.layers.9.mlp.experts.83.down_proj.weight', 'ernie.layers.9.mlp.experts.84.down_proj.weight', 'ernie.layers.9.mlp.experts.85.down_proj.weight', 'ernie.layers.9.mlp.experts.86.down_proj.weight', 'ernie.layers.9.mlp.experts.87.down_proj.weight', 'ernie.layers.9.mlp.experts.88.down_proj.weight', 'ernie.layers.9.mlp.experts.89.down_proj.weight', 'ernie.layers.9.mlp.experts.90.down_proj.weight', 'ernie.layers.9.mlp.experts.91.down_proj.weight', 'ernie.layers.9.mlp.experts.92.down_proj.weight', 'ernie.layers.9.mlp.experts.93.down_proj.weight', 'ernie.layers.9.mlp.experts.94.down_proj.weight', 'ernie.layers.9.mlp.experts.95.down_proj.weight']
ernie.layers.10.mlp.text_fused_moe.gate.weight:ernie.layers.10.mlp.gate.weight
ernie.layers.10.mlp.text_fused_moe.experts.gate_correction_bias:ernie.layers.10.mlp.moe_statics.e_score_correction_bias
ernie.layers.10.mlp.gate_correction_bias:ernie.layers.10.mlp.moe_statics.e_score_correction_bias
ernie.layers.10.mlp.text_fused_moe.experts.up_gate_proj_weight:['ernie.layers.10.mlp.experts.0.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.1.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.2.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.3.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.4.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.5.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.6.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.7.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.8.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.9.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.10.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.11.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.12.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.13.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.14.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.15.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.16.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.17.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.18.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.19.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.20.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.21.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.22.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.23.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.24.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.25.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.26.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.27.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.28.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.29.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.30.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.31.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.64.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.65.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.66.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.67.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.68.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.69.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.70.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.71.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.72.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.73.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.74.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.75.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.76.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.77.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.78.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.79.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.80.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.81.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.82.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.83.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.84.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.85.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.86.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.87.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.88.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.89.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.90.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.91.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.92.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.93.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.94.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.95.up_gate_proj.weight']
ernie.layers.10.mlp.text_fused_moe.experts.down_proj_weight:['ernie.layers.10.mlp.experts.0.down_proj.weight', 'ernie.layers.10.mlp.experts.1.down_proj.weight', 'ernie.layers.10.mlp.experts.2.down_proj.weight', 'ernie.layers.10.mlp.experts.3.down_proj.weight', 'ernie.layers.10.mlp.experts.4.down_proj.weight', 'ernie.layers.10.mlp.experts.5.down_proj.weight', 'ernie.layers.10.mlp.experts.6.down_proj.weight', 'ernie.layers.10.mlp.experts.7.down_proj.weight', 'ernie.layers.10.mlp.experts.8.down_proj.weight', 'ernie.layers.10.mlp.experts.9.down_proj.weight', 'ernie.layers.10.mlp.experts.10.down_proj.weight', 'ernie.layers.10.mlp.experts.11.down_proj.weight', 'ernie.layers.10.mlp.experts.12.down_proj.weight', 'ernie.layers.10.mlp.experts.13.down_proj.weight', 'ernie.layers.10.mlp.experts.14.down_proj.weight', 'ernie.layers.10.mlp.experts.15.down_proj.weight', 'ernie.layers.10.mlp.experts.16.down_proj.weight', 'ernie.layers.10.mlp.experts.17.down_proj.weight', 'ernie.layers.10.mlp.experts.18.down_proj.weight', 'ernie.layers.10.mlp.experts.19.down_proj.weight', 'ernie.layers.10.mlp.experts.20.down_proj.weight', 'ernie.layers.10.mlp.experts.21.down_proj.weight', 'ernie.layers.10.mlp.experts.22.down_proj.weight', 'ernie.layers.10.mlp.experts.23.down_proj.weight', 'ernie.layers.10.mlp.experts.24.down_proj.weight', 'ernie.layers.10.mlp.experts.25.down_proj.weight', 'ernie.layers.10.mlp.experts.26.down_proj.weight', 'ernie.layers.10.mlp.experts.27.down_proj.weight', 'ernie.layers.10.mlp.experts.28.down_proj.weight', 'ernie.layers.10.mlp.experts.29.down_proj.weight', 'ernie.layers.10.mlp.experts.30.down_proj.weight', 'ernie.layers.10.mlp.experts.31.down_proj.weight', 'ernie.layers.10.mlp.experts.64.down_proj.weight', 'ernie.layers.10.mlp.experts.65.down_proj.weight', 'ernie.layers.10.mlp.experts.66.down_proj.weight', 'ernie.layers.10.mlp.experts.67.down_proj.weight', 'ernie.layers.10.mlp.experts.68.down_proj.weight', 'ernie.layers.10.mlp.experts.69.down_proj.weight', 'ernie.layers.10.mlp.experts.70.down_proj.weight', 'ernie.layers.10.mlp.experts.71.down_proj.weight', 'ernie.layers.10.mlp.experts.72.down_proj.weight', 'ernie.layers.10.mlp.experts.73.down_proj.weight', 'ernie.layers.10.mlp.experts.74.down_proj.weight', 'ernie.layers.10.mlp.experts.75.down_proj.weight', 'ernie.layers.10.mlp.experts.76.down_proj.weight', 'ernie.layers.10.mlp.experts.77.down_proj.weight', 'ernie.layers.10.mlp.experts.78.down_proj.weight', 'ernie.layers.10.mlp.experts.79.down_proj.weight', 'ernie.layers.10.mlp.experts.80.down_proj.weight', 'ernie.layers.10.mlp.experts.81.down_proj.weight', 'ernie.layers.10.mlp.experts.82.down_proj.weight', 'ernie.layers.10.mlp.experts.83.down_proj.weight', 'ernie.layers.10.mlp.experts.84.down_proj.weight', 'ernie.layers.10.mlp.experts.85.down_proj.weight', 'ernie.layers.10.mlp.experts.86.down_proj.weight', 'ernie.layers.10.mlp.experts.87.down_proj.weight', 'ernie.layers.10.mlp.experts.88.down_proj.weight', 'ernie.layers.10.mlp.experts.89.down_proj.weight', 'ernie.layers.10.mlp.experts.90.down_proj.weight', 'ernie.layers.10.mlp.experts.91.down_proj.weight', 'ernie.layers.10.mlp.experts.92.down_proj.weight', 'ernie.layers.10.mlp.experts.93.down_proj.weight', 'ernie.layers.10.mlp.experts.94.down_proj.weight', 'ernie.layers.10.mlp.experts.95.down_proj.weight']
ernie.layers.11.mlp.text_fused_moe.gate.weight:ernie.layers.11.mlp.gate.weight
ernie.layers.11.mlp.text_fused_moe.experts.gate_correction_bias:ernie.layers.11.mlp.moe_statics.e_score_correction_bias
ernie.layers.11.mlp.gate_correction_bias:ernie.layers.11.mlp.moe_statics.e_score_correction_bias
ernie.layers.11.mlp.text_fused_moe.experts.up_gate_proj_weight:['ernie.layers.11.mlp.experts.0.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.1.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.2.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.3.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.4.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.5.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.6.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.7.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.8.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.9.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.10.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.11.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.12.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.13.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.14.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.15.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.16.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.17.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.18.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.19.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.20.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.21.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.22.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.23.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.24.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.25.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.26.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.27.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.28.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.29.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.30.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.31.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.64.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.65.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.66.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.67.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.68.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.69.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.70.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.71.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.72.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.73.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.74.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.75.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.76.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.77.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.78.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.79.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.80.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.81.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.82.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.83.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.84.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.85.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.86.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.87.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.88.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.89.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.90.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.91.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.92.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.93.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.94.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.95.up_gate_proj.weight']
ernie.layers.11.mlp.text_fused_moe.experts.down_proj_weight:['ernie.layers.11.mlp.experts.0.down_proj.weight', 'ernie.layers.11.mlp.experts.1.down_proj.weight', 'ernie.layers.11.mlp.experts.2.down_proj.weight', 'ernie.layers.11.mlp.experts.3.down_proj.weight', 'ernie.layers.11.mlp.experts.4.down_proj.weight', 'ernie.layers.11.mlp.experts.5.down_proj.weight', 'ernie.layers.11.mlp.experts.6.down_proj.weight', 'ernie.layers.11.mlp.experts.7.down_proj.weight', 'ernie.layers.11.mlp.experts.8.down_proj.weight', 'ernie.layers.11.mlp.experts.9.down_proj.weight', 'ernie.layers.11.mlp.experts.10.down_proj.weight', 'ernie.layers.11.mlp.experts.11.down_proj.weight', 'ernie.layers.11.mlp.experts.12.down_proj.weight', 'ernie.layers.11.mlp.experts.13.down_proj.weight', 'ernie.layers.11.mlp.experts.14.down_proj.weight', 'ernie.layers.11.mlp.experts.15.down_proj.weight', 'ernie.layers.11.mlp.experts.16.down_proj.weight', 'ernie.layers.11.mlp.experts.17.down_proj.weight', 'ernie.layers.11.mlp.experts.18.down_proj.weight', 'ernie.layers.11.mlp.experts.19.down_proj.weight', 'ernie.layers.11.mlp.experts.20.down_proj.weight', 'ernie.layers.11.mlp.experts.21.down_proj.weight', 'ernie.layers.11.mlp.experts.22.down_proj.weight', 'ernie.layers.11.mlp.experts.23.down_proj.weight', 'ernie.layers.11.mlp.experts.24.down_proj.weight', 'ernie.layers.11.mlp.experts.25.down_proj.weight', 'ernie.layers.11.mlp.experts.26.down_proj.weight', 'ernie.layers.11.mlp.experts.27.down_proj.weight', 'ernie.layers.11.mlp.experts.28.down_proj.weight', 'ernie.layers.11.mlp.experts.29.down_proj.weight', 'ernie.layers.11.mlp.experts.30.down_proj.weight', 'ernie.layers.11.mlp.experts.31.down_proj.weight', 'ernie.layers.11.mlp.experts.64.down_proj.weight', 'ernie.layers.11.mlp.experts.65.down_proj.weight', 'ernie.layers.11.mlp.experts.66.down_proj.weight', 'ernie.layers.11.mlp.experts.67.down_proj.weight', 'ernie.layers.11.mlp.experts.68.down_proj.weight', 'ernie.layers.11.mlp.experts.69.down_proj.weight', 'ernie.layers.11.mlp.experts.70.down_proj.weight', 'ernie.layers.11.mlp.experts.71.down_proj.weight', 'ernie.layers.11.mlp.experts.72.down_proj.weight', 'ernie.layers.11.mlp.experts.73.down_proj.weight', 'ernie.layers.11.mlp.experts.74.down_proj.weight', 'ernie.layers.11.mlp.experts.75.down_proj.weight', 'ernie.layers.11.mlp.experts.76.down_proj.weight', 'ernie.layers.11.mlp.experts.77.down_proj.weight', 'ernie.layers.11.mlp.experts.78.down_proj.weight', 'ernie.layers.11.mlp.experts.79.down_proj.weight', 'ernie.layers.11.mlp.experts.80.down_proj.weight', 'ernie.layers.11.mlp.experts.81.down_proj.weight', 'ernie.layers.11.mlp.experts.82.down_proj.weight', 'ernie.layers.11.mlp.experts.83.down_proj.weight', 'ernie.layers.11.mlp.experts.84.down_proj.weight', 'ernie.layers.11.mlp.experts.85.down_proj.weight', 'ernie.layers.11.mlp.experts.86.down_proj.weight', 'ernie.layers.11.mlp.experts.87.down_proj.weight', 'ernie.layers.11.mlp.experts.88.down_proj.weight', 'ernie.layers.11.mlp.experts.89.down_proj.weight', 'ernie.layers.11.mlp.experts.90.down_proj.weight', 'ernie.layers.11.mlp.experts.91.down_proj.weight', 'ernie.layers.11.mlp.experts.92.down_proj.weight', 'ernie.layers.11.mlp.experts.93.down_proj.weight', 'ernie.layers.11.mlp.experts.94.down_proj.weight', 'ernie.layers.11.mlp.experts.95.down_proj.weight']
ernie.layers.12.mlp.text_fused_moe.gate.weight:ernie.layers.12.mlp.gate.weight
ernie.layers.12.mlp.text_fused_moe.experts.gate_correction_bias:ernie.layers.12.mlp.moe_statics.e_score_correction_bias
ernie.layers.12.mlp.gate_correction_bias:ernie.layers.12.mlp.moe_statics.e_score_correction_bias
ernie.layers.12.mlp.text_fused_moe.experts.up_gate_proj_weight:['ernie.layers.12.mlp.experts.0.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.1.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.2.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.3.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.4.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.5.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.6.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.7.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.8.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.9.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.10.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.11.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.12.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.13.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.14.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.15.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.16.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.17.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.18.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.19.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.20.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.21.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.22.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.23.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.24.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.25.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.26.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.27.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.28.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.29.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.30.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.31.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.64.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.65.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.66.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.67.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.68.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.69.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.70.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.71.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.72.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.73.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.74.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.75.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.76.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.77.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.78.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.79.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.80.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.81.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.82.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.83.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.84.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.85.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.86.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.87.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.88.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.89.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.90.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.91.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.92.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.93.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.94.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.95.up_gate_proj.weight']
ernie.layers.12.mlp.text_fused_moe.experts.down_proj_weight:['ernie.layers.12.mlp.experts.0.down_proj.weight', 'ernie.layers.12.mlp.experts.1.down_proj.weight', 'ernie.layers.12.mlp.experts.2.down_proj.weight', 'ernie.layers.12.mlp.experts.3.down_proj.weight', 'ernie.layers.12.mlp.experts.4.down_proj.weight', 'ernie.layers.12.mlp.experts.5.down_proj.weight', 'ernie.layers.12.mlp.experts.6.down_proj.weight', 'ernie.layers.12.mlp.experts.7.down_proj.weight', 'ernie.layers.12.mlp.experts.8.down_proj.weight', 'ernie.layers.12.mlp.experts.9.down_proj.weight', 'ernie.layers.12.mlp.experts.10.down_proj.weight', 'ernie.layers.12.mlp.experts.11.down_proj.weight', 'ernie.layers.12.mlp.experts.12.down_proj.weight', 'ernie.layers.12.mlp.experts.13.down_proj.weight', 'ernie.layers.12.mlp.experts.14.down_proj.weight', 'ernie.layers.12.mlp.experts.15.down_proj.weight', 'ernie.layers.12.mlp.experts.16.down_proj.weight', 'ernie.layers.12.mlp.experts.17.down_proj.weight', 'ernie.layers.12.mlp.experts.18.down_proj.weight', 'ernie.layers.12.mlp.experts.19.down_proj.weight', 'ernie.layers.12.mlp.experts.20.down_proj.weight', 'ernie.layers.12.mlp.experts.21.down_proj.weight', 'ernie.layers.12.mlp.experts.22.down_proj.weight', 'ernie.layers.12.mlp.experts.23.down_proj.weight', 'ernie.layers.12.mlp.experts.24.down_proj.weight', 'ernie.layers.12.mlp.experts.25.down_proj.weight', 'ernie.layers.12.mlp.experts.26.down_proj.weight', 'ernie.layers.12.mlp.experts.27.down_proj.weight', 'ernie.layers.12.mlp.experts.28.down_proj.weight', 'ernie.layers.12.mlp.experts.29.down_proj.weight', 'ernie.layers.12.mlp.experts.30.down_proj.weight', 'ernie.layers.12.mlp.experts.31.down_proj.weight', 'ernie.layers.12.mlp.experts.64.down_proj.weight', 'ernie.layers.12.mlp.experts.65.down_proj.weight', 'ernie.layers.12.mlp.experts.66.down_proj.weight', 'ernie.layers.12.mlp.experts.67.down_proj.weight', 'ernie.layers.12.mlp.experts.68.down_proj.weight', 'ernie.layers.12.mlp.experts.69.down_proj.weight', 'ernie.layers.12.mlp.experts.70.down_proj.weight', 'ernie.layers.12.mlp.experts.71.down_proj.weight', 'ernie.layers.12.mlp.experts.72.down_proj.weight', 'ernie.layers.12.mlp.experts.73.down_proj.weight', 'ernie.layers.12.mlp.experts.74.down_proj.weight', 'ernie.layers.12.mlp.experts.75.down_proj.weight', 'ernie.layers.12.mlp.experts.76.down_proj.weight', 'ernie.layers.12.mlp.experts.77.down_proj.weight', 'ernie.layers.12.mlp.experts.78.down_proj.weight', 'ernie.layers.12.mlp.experts.79.down_proj.weight', 'ernie.layers.12.mlp.experts.80.down_proj.weight', 'ernie.layers.12.mlp.experts.81.down_proj.weight', 'ernie.layers.12.mlp.experts.82.down_proj.weight', 'ernie.layers.12.mlp.experts.83.down_proj.weight', 'ernie.layers.12.mlp.experts.84.down_proj.weight', 'ernie.layers.12.mlp.experts.85.down_proj.weight', 'ernie.layers.12.mlp.experts.86.down_proj.weight', 'ernie.layers.12.mlp.experts.87.down_proj.weight', 'ernie.layers.12.mlp.experts.88.down_proj.weight', 'ernie.layers.12.mlp.experts.89.down_proj.weight', 'ernie.layers.12.mlp.experts.90.down_proj.weight', 'ernie.layers.12.mlp.experts.91.down_proj.weight', 'ernie.layers.12.mlp.experts.92.down_proj.weight', 'ernie.layers.12.mlp.experts.93.down_proj.weight', 'ernie.layers.12.mlp.experts.94.down_proj.weight', 'ernie.layers.12.mlp.experts.95.down_proj.weight']
ernie.layers.13.mlp.text_fused_moe.gate.weight:ernie.layers.13.mlp.gate.weight
ernie.layers.13.mlp.text_fused_moe.experts.gate_correction_bias:ernie.layers.13.mlp.moe_statics.e_score_correction_bias
ernie.layers.13.mlp.gate_correction_bias:ernie.layers.13.mlp.moe_statics.e_score_correction_bias
ernie.layers.13.mlp.text_fused_moe.experts.up_gate_proj_weight:['ernie.layers.13.mlp.experts.0.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.1.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.2.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.3.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.4.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.5.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.6.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.7.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.8.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.9.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.10.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.11.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.12.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.13.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.14.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.15.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.16.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.17.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.18.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.19.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.20.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.21.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.22.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.23.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.24.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.25.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.26.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.27.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.28.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.29.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.30.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.31.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.64.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.65.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.66.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.67.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.68.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.69.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.70.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.71.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.72.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.73.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.74.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.75.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.76.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.77.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.78.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.79.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.80.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.81.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.82.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.83.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.84.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.85.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.86.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.87.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.88.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.89.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.90.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.91.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.92.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.93.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.94.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.95.up_gate_proj.weight']
ernie.layers.13.mlp.text_fused_moe.experts.down_proj_weight:['ernie.layers.13.mlp.experts.0.down_proj.weight', 'ernie.layers.13.mlp.experts.1.down_proj.weight', 'ernie.layers.13.mlp.experts.2.down_proj.weight', 'ernie.layers.13.mlp.experts.3.down_proj.weight', 'ernie.layers.13.mlp.experts.4.down_proj.weight', 'ernie.layers.13.mlp.experts.5.down_proj.weight', 'ernie.layers.13.mlp.experts.6.down_proj.weight', 'ernie.layers.13.mlp.experts.7.down_proj.weight', 'ernie.layers.13.mlp.experts.8.down_proj.weight', 'ernie.layers.13.mlp.experts.9.down_proj.weight', 'ernie.layers.13.mlp.experts.10.down_proj.weight', 'ernie.layers.13.mlp.experts.11.down_proj.weight', 'ernie.layers.13.mlp.experts.12.down_proj.weight', 'ernie.layers.13.mlp.experts.13.down_proj.weight', 'ernie.layers.13.mlp.experts.14.down_proj.weight', 'ernie.layers.13.mlp.experts.15.down_proj.weight', 'ernie.layers.13.mlp.experts.16.down_proj.weight', 'ernie.layers.13.mlp.experts.17.down_proj.weight', 'ernie.layers.13.mlp.experts.18.down_proj.weight', 'ernie.layers.13.mlp.experts.19.down_proj.weight', 'ernie.layers.13.mlp.experts.20.down_proj.weight', 'ernie.layers.13.mlp.experts.21.down_proj.weight', 'ernie.layers.13.mlp.experts.22.down_proj.weight', 'ernie.layers.13.mlp.experts.23.down_proj.weight', 'ernie.layers.13.mlp.experts.24.down_proj.weight', 'ernie.layers.13.mlp.experts.25.down_proj.weight', 'ernie.layers.13.mlp.experts.26.down_proj.weight', 'ernie.layers.13.mlp.experts.27.down_proj.weight', 'ernie.layers.13.mlp.experts.28.down_proj.weight', 'ernie.layers.13.mlp.experts.29.down_proj.weight', 'ernie.layers.13.mlp.experts.30.down_proj.weight', 'ernie.layers.13.mlp.experts.31.down_proj.weight', 'ernie.layers.13.mlp.experts.64.down_proj.weight', 'ernie.layers.13.mlp.experts.65.down_proj.weight', 'ernie.layers.13.mlp.experts.66.down_proj.weight', 'ernie.layers.13.mlp.experts.67.down_proj.weight', 'ernie.layers.13.mlp.experts.68.down_proj.weight', 'ernie.layers.13.mlp.experts.69.down_proj.weight', 'ernie.layers.13.mlp.experts.70.down_proj.weight', 'ernie.layers.13.mlp.experts.71.down_proj.weight', 'ernie.layers.13.mlp.experts.72.down_proj.weight', 'ernie.layers.13.mlp.experts.73.down_proj.weight', 'ernie.layers.13.mlp.experts.74.down_proj.weight', 'ernie.layers.13.mlp.experts.75.down_proj.weight', 'ernie.layers.13.mlp.experts.76.down_proj.weight', 'ernie.layers.13.mlp.experts.77.down_proj.weight', 'ernie.layers.13.mlp.experts.78.down_proj.weight', 'ernie.layers.13.mlp.experts.79.down_proj.weight', 'ernie.layers.13.mlp.experts.80.down_proj.weight', 'ernie.layers.13.mlp.experts.81.down_proj.weight', 'ernie.layers.13.mlp.experts.82.down_proj.weight', 'ernie.layers.13.mlp.experts.83.down_proj.weight', 'ernie.layers.13.mlp.experts.84.down_proj.weight', 'ernie.layers.13.mlp.experts.85.down_proj.weight', 'ernie.layers.13.mlp.experts.86.down_proj.weight', 'ernie.layers.13.mlp.experts.87.down_proj.weight', 'ernie.layers.13.mlp.experts.88.down_proj.weight', 'ernie.layers.13.mlp.experts.89.down_proj.weight', 'ernie.layers.13.mlp.experts.90.down_proj.weight', 'ernie.layers.13.mlp.experts.91.down_proj.weight', 'ernie.layers.13.mlp.experts.92.down_proj.weight', 'ernie.layers.13.mlp.experts.93.down_proj.weight', 'ernie.layers.13.mlp.experts.94.down_proj.weight', 'ernie.layers.13.mlp.experts.95.down_proj.weight']
ernie.layers.14.mlp.text_fused_moe.gate.weight:ernie.layers.14.mlp.gate.weight
ernie.layers.14.mlp.text_fused_moe.experts.gate_correction_bias:ernie.layers.14.mlp.moe_statics.e_score_correction_bias
ernie.layers.14.mlp.gate_correction_bias:ernie.layers.14.mlp.moe_statics.e_score_correction_bias
ernie.layers.14.mlp.text_fused_moe.experts.up_gate_proj_weight:['ernie.layers.14.mlp.experts.0.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.1.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.2.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.3.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.4.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.5.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.6.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.7.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.8.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.9.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.10.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.11.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.12.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.13.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.14.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.15.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.16.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.17.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.18.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.19.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.20.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.21.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.22.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.23.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.24.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.25.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.26.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.27.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.28.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.29.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.30.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.31.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.64.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.65.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.66.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.67.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.68.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.69.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.70.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.71.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.72.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.73.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.74.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.75.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.76.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.77.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.78.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.79.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.80.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.81.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.82.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.83.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.84.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.85.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.86.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.87.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.88.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.89.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.90.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.91.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.92.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.93.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.94.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.95.up_gate_proj.weight']
ernie.layers.14.mlp.text_fused_moe.experts.down_proj_weight:['ernie.layers.14.mlp.experts.0.down_proj.weight', 'ernie.layers.14.mlp.experts.1.down_proj.weight', 'ernie.layers.14.mlp.experts.2.down_proj.weight', 'ernie.layers.14.mlp.experts.3.down_proj.weight', 'ernie.layers.14.mlp.experts.4.down_proj.weight', 'ernie.layers.14.mlp.experts.5.down_proj.weight', 'ernie.layers.14.mlp.experts.6.down_proj.weight', 'ernie.layers.14.mlp.experts.7.down_proj.weight', 'ernie.layers.14.mlp.experts.8.down_proj.weight', 'ernie.layers.14.mlp.experts.9.down_proj.weight', 'ernie.layers.14.mlp.experts.10.down_proj.weight', 'ernie.layers.14.mlp.experts.11.down_proj.weight', 'ernie.layers.14.mlp.experts.12.down_proj.weight', 'ernie.layers.14.mlp.experts.13.down_proj.weight', 'ernie.layers.14.mlp.experts.14.down_proj.weight', 'ernie.layers.14.mlp.experts.15.down_proj.weight', 'ernie.layers.14.mlp.experts.16.down_proj.weight', 'ernie.layers.14.mlp.experts.17.down_proj.weight', 'ernie.layers.14.mlp.experts.18.down_proj.weight', 'ernie.layers.14.mlp.experts.19.down_proj.weight', 'ernie.layers.14.mlp.experts.20.down_proj.weight', 'ernie.layers.14.mlp.experts.21.down_proj.weight', 'ernie.layers.14.mlp.experts.22.down_proj.weight', 'ernie.layers.14.mlp.experts.23.down_proj.weight', 'ernie.layers.14.mlp.experts.24.down_proj.weight', 'ernie.layers.14.mlp.experts.25.down_proj.weight', 'ernie.layers.14.mlp.experts.26.down_proj.weight', 'ernie.layers.14.mlp.experts.27.down_proj.weight', 'ernie.layers.14.mlp.experts.28.down_proj.weight', 'ernie.layers.14.mlp.experts.29.down_proj.weight', 'ernie.layers.14.mlp.experts.30.down_proj.weight', 'ernie.layers.14.mlp.experts.31.down_proj.weight', 'ernie.layers.14.mlp.experts.64.down_proj.weight', 'ernie.layers.14.mlp.experts.65.down_proj.weight', 'ernie.layers.14.mlp.experts.66.down_proj.weight', 'ernie.layers.14.mlp.experts.67.down_proj.weight', 'ernie.layers.14.mlp.experts.68.down_proj.weight', 'ernie.layers.14.mlp.experts.69.down_proj.weight', 'ernie.layers.14.mlp.experts.70.down_proj.weight', 'ernie.layers.14.mlp.experts.71.down_proj.weight', 'ernie.layers.14.mlp.experts.72.down_proj.weight', 'ernie.layers.14.mlp.experts.73.down_proj.weight', 'ernie.layers.14.mlp.experts.74.down_proj.weight', 'ernie.layers.14.mlp.experts.75.down_proj.weight', 'ernie.layers.14.mlp.experts.76.down_proj.weight', 'ernie.layers.14.mlp.experts.77.down_proj.weight', 'ernie.layers.14.mlp.experts.78.down_proj.weight', 'ernie.layers.14.mlp.experts.79.down_proj.weight', 'ernie.layers.14.mlp.experts.80.down_proj.weight', 'ernie.layers.14.mlp.experts.81.down_proj.weight', 'ernie.layers.14.mlp.experts.82.down_proj.weight', 'ernie.layers.14.mlp.experts.83.down_proj.weight', 'ernie.layers.14.mlp.experts.84.down_proj.weight', 'ernie.layers.14.mlp.experts.85.down_proj.weight', 'ernie.layers.14.mlp.experts.86.down_proj.weight', 'ernie.layers.14.mlp.experts.87.down_proj.weight', 'ernie.layers.14.mlp.experts.88.down_proj.weight', 'ernie.layers.14.mlp.experts.89.down_proj.weight', 'ernie.layers.14.mlp.experts.90.down_proj.weight', 'ernie.layers.14.mlp.experts.91.down_proj.weight', 'ernie.layers.14.mlp.experts.92.down_proj.weight', 'ernie.layers.14.mlp.experts.93.down_proj.weight', 'ernie.layers.14.mlp.experts.94.down_proj.weight', 'ernie.layers.14.mlp.experts.95.down_proj.weight']
ernie.layers.15.mlp.text_fused_moe.gate.weight:ernie.layers.15.mlp.gate.weight
ernie.layers.15.mlp.text_fused_moe.experts.gate_correction_bias:ernie.layers.15.mlp.moe_statics.e_score_correction_bias
ernie.layers.15.mlp.gate_correction_bias:ernie.layers.15.mlp.moe_statics.e_score_correction_bias
ernie.layers.15.mlp.text_fused_moe.experts.up_gate_proj_weight:['ernie.layers.15.mlp.experts.0.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.1.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.2.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.3.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.4.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.5.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.6.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.7.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.8.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.9.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.10.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.11.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.12.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.13.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.14.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.15.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.16.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.17.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.18.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.19.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.20.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.21.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.22.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.23.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.24.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.25.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.26.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.27.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.28.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.29.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.30.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.31.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.64.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.65.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.66.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.67.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.68.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.69.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.70.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.71.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.72.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.73.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.74.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.75.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.76.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.77.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.78.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.79.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.80.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.81.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.82.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.83.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.84.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.85.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.86.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.87.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.88.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.89.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.90.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.91.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.92.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.93.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.94.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.95.up_gate_proj.weight']
ernie.layers.15.mlp.text_fused_moe.experts.down_proj_weight:['ernie.layers.15.mlp.experts.0.down_proj.weight', 'ernie.layers.15.mlp.experts.1.down_proj.weight', 'ernie.layers.15.mlp.experts.2.down_proj.weight', 'ernie.layers.15.mlp.experts.3.down_proj.weight', 'ernie.layers.15.mlp.experts.4.down_proj.weight', 'ernie.layers.15.mlp.experts.5.down_proj.weight', 'ernie.layers.15.mlp.experts.6.down_proj.weight', 'ernie.layers.15.mlp.experts.7.down_proj.weight', 'ernie.layers.15.mlp.experts.8.down_proj.weight', 'ernie.layers.15.mlp.experts.9.down_proj.weight', 'ernie.layers.15.mlp.experts.10.down_proj.weight', 'ernie.layers.15.mlp.experts.11.down_proj.weight', 'ernie.layers.15.mlp.experts.12.down_proj.weight', 'ernie.layers.15.mlp.experts.13.down_proj.weight', 'ernie.layers.15.mlp.experts.14.down_proj.weight', 'ernie.layers.15.mlp.experts.15.down_proj.weight', 'ernie.layers.15.mlp.experts.16.down_proj.weight', 'ernie.layers.15.mlp.experts.17.down_proj.weight', 'ernie.layers.15.mlp.experts.18.down_proj.weight', 'ernie.layers.15.mlp.experts.19.down_proj.weight', 'ernie.layers.15.mlp.experts.20.down_proj.weight', 'ernie.layers.15.mlp.experts.21.down_proj.weight', 'ernie.layers.15.mlp.experts.22.down_proj.weight', 'ernie.layers.15.mlp.experts.23.down_proj.weight', 'ernie.layers.15.mlp.experts.24.down_proj.weight', 'ernie.layers.15.mlp.experts.25.down_proj.weight', 'ernie.layers.15.mlp.experts.26.down_proj.weight', 'ernie.layers.15.mlp.experts.27.down_proj.weight', 'ernie.layers.15.mlp.experts.28.down_proj.weight', 'ernie.layers.15.mlp.experts.29.down_proj.weight', 'ernie.layers.15.mlp.experts.30.down_proj.weight', 'ernie.layers.15.mlp.experts.31.down_proj.weight', 'ernie.layers.15.mlp.experts.64.down_proj.weight', 'ernie.layers.15.mlp.experts.65.down_proj.weight', 'ernie.layers.15.mlp.experts.66.down_proj.weight', 'ernie.layers.15.mlp.experts.67.down_proj.weight', 'ernie.layers.15.mlp.experts.68.down_proj.weight', 'ernie.layers.15.mlp.experts.69.down_proj.weight', 'ernie.layers.15.mlp.experts.70.down_proj.weight', 'ernie.layers.15.mlp.experts.71.down_proj.weight', 'ernie.layers.15.mlp.experts.72.down_proj.weight', 'ernie.layers.15.mlp.experts.73.down_proj.weight', 'ernie.layers.15.mlp.experts.74.down_proj.weight', 'ernie.layers.15.mlp.experts.75.down_proj.weight', 'ernie.layers.15.mlp.experts.76.down_proj.weight', 'ernie.layers.15.mlp.experts.77.down_proj.weight', 'ernie.layers.15.mlp.experts.78.down_proj.weight', 'ernie.layers.15.mlp.experts.79.down_proj.weight', 'ernie.layers.15.mlp.experts.80.down_proj.weight', 'ernie.layers.15.mlp.experts.81.down_proj.weight', 'ernie.layers.15.mlp.experts.82.down_proj.weight', 'ernie.layers.15.mlp.experts.83.down_proj.weight', 'ernie.layers.15.mlp.experts.84.down_proj.weight', 'ernie.layers.15.mlp.experts.85.down_proj.weight', 'ernie.layers.15.mlp.experts.86.down_proj.weight', 'ernie.layers.15.mlp.experts.87.down_proj.weight', 'ernie.layers.15.mlp.experts.88.down_proj.weight', 'ernie.layers.15.mlp.experts.89.down_proj.weight', 'ernie.layers.15.mlp.experts.90.down_proj.weight', 'ernie.layers.15.mlp.experts.91.down_proj.weight', 'ernie.layers.15.mlp.experts.92.down_proj.weight', 'ernie.layers.15.mlp.experts.93.down_proj.weight', 'ernie.layers.15.mlp.experts.94.down_proj.weight', 'ernie.layers.15.mlp.experts.95.down_proj.weight']
ernie.layers.16.mlp.text_fused_moe.gate.weight:ernie.layers.16.mlp.gate.weight
ernie.layers.16.mlp.text_fused_moe.experts.gate_correction_bias:ernie.layers.16.mlp.moe_statics.e_score_correction_bias
ernie.layers.16.mlp.gate_correction_bias:ernie.layers.16.mlp.moe_statics.e_score_correction_bias
ernie.layers.16.mlp.text_fused_moe.experts.up_gate_proj_weight:['ernie.layers.16.mlp.experts.0.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.1.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.2.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.3.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.4.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.5.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.6.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.7.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.8.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.9.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.10.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.11.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.12.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.13.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.14.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.15.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.16.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.17.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.18.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.19.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.20.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.21.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.22.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.23.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.24.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.25.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.26.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.27.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.28.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.29.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.30.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.31.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.64.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.65.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.66.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.67.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.68.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.69.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.70.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.71.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.72.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.73.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.74.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.75.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.76.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.77.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.78.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.79.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.80.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.81.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.82.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.83.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.84.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.85.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.86.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.87.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.88.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.89.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.90.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.91.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.92.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.93.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.94.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.95.up_gate_proj.weight']
ernie.layers.16.mlp.text_fused_moe.experts.down_proj_weight:['ernie.layers.16.mlp.experts.0.down_proj.weight', 'ernie.layers.16.mlp.experts.1.down_proj.weight', 'ernie.layers.16.mlp.experts.2.down_proj.weight', 'ernie.layers.16.mlp.experts.3.down_proj.weight', 'ernie.layers.16.mlp.experts.4.down_proj.weight', 'ernie.layers.16.mlp.experts.5.down_proj.weight', 'ernie.layers.16.mlp.experts.6.down_proj.weight', 'ernie.layers.16.mlp.experts.7.down_proj.weight', 'ernie.layers.16.mlp.experts.8.down_proj.weight', 'ernie.layers.16.mlp.experts.9.down_proj.weight', 'ernie.layers.16.mlp.experts.10.down_proj.weight', 'ernie.layers.16.mlp.experts.11.down_proj.weight', 'ernie.layers.16.mlp.experts.12.down_proj.weight', 'ernie.layers.16.mlp.experts.13.down_proj.weight', 'ernie.layers.16.mlp.experts.14.down_proj.weight', 'ernie.layers.16.mlp.experts.15.down_proj.weight', 'ernie.layers.16.mlp.experts.16.down_proj.weight', 'ernie.layers.16.mlp.experts.17.down_proj.weight', 'ernie.layers.16.mlp.experts.18.down_proj.weight', 'ernie.layers.16.mlp.experts.19.down_proj.weight', 'ernie.layers.16.mlp.experts.20.down_proj.weight', 'ernie.layers.16.mlp.experts.21.down_proj.weight', 'ernie.layers.16.mlp.experts.22.down_proj.weight', 'ernie.layers.16.mlp.experts.23.down_proj.weight', 'ernie.layers.16.mlp.experts.24.down_proj.weight', 'ernie.layers.16.mlp.experts.25.down_proj.weight', 'ernie.layers.16.mlp.experts.26.down_proj.weight', 'ernie.layers.16.mlp.experts.27.down_proj.weight', 'ernie.layers.16.mlp.experts.28.down_proj.weight', 'ernie.layers.16.mlp.experts.29.down_proj.weight', 'ernie.layers.16.mlp.experts.30.down_proj.weight', 'ernie.layers.16.mlp.experts.31.down_proj.weight', 'ernie.layers.16.mlp.experts.64.down_proj.weight', 'ernie.layers.16.mlp.experts.65.down_proj.weight', 'ernie.layers.16.mlp.experts.66.down_proj.weight', 'ernie.layers.16.mlp.experts.67.down_proj.weight', 'ernie.layers.16.mlp.experts.68.down_proj.weight', 'ernie.layers.16.mlp.experts.69.down_proj.weight', 'ernie.layers.16.mlp.experts.70.down_proj.weight', 'ernie.layers.16.mlp.experts.71.down_proj.weight', 'ernie.layers.16.mlp.experts.72.down_proj.weight', 'ernie.layers.16.mlp.experts.73.down_proj.weight', 'ernie.layers.16.mlp.experts.74.down_proj.weight', 'ernie.layers.16.mlp.experts.75.down_proj.weight', 'ernie.layers.16.mlp.experts.76.down_proj.weight', 'ernie.layers.16.mlp.experts.77.down_proj.weight', 'ernie.layers.16.mlp.experts.78.down_proj.weight', 'ernie.layers.16.mlp.experts.79.down_proj.weight', 'ernie.layers.16.mlp.experts.80.down_proj.weight', 'ernie.layers.16.mlp.experts.81.down_proj.weight', 'ernie.layers.16.mlp.experts.82.down_proj.weight', 'ernie.layers.16.mlp.experts.83.down_proj.weight', 'ernie.layers.16.mlp.experts.84.down_proj.weight', 'ernie.layers.16.mlp.experts.85.down_proj.weight', 'ernie.layers.16.mlp.experts.86.down_proj.weight', 'ernie.layers.16.mlp.experts.87.down_proj.weight', 'ernie.layers.16.mlp.experts.88.down_proj.weight', 'ernie.layers.16.mlp.experts.89.down_proj.weight', 'ernie.layers.16.mlp.experts.90.down_proj.weight', 'ernie.layers.16.mlp.experts.91.down_proj.weight', 'ernie.layers.16.mlp.experts.92.down_proj.weight', 'ernie.layers.16.mlp.experts.93.down_proj.weight', 'ernie.layers.16.mlp.experts.94.down_proj.weight', 'ernie.layers.16.mlp.experts.95.down_proj.weight']
ernie.layers.17.mlp.text_fused_moe.gate.weight:ernie.layers.17.mlp.gate.weight
ernie.layers.17.mlp.text_fused_moe.experts.gate_correction_bias:ernie.layers.17.mlp.moe_statics.e_score_correction_bias
ernie.layers.17.mlp.gate_correction_bias:ernie.layers.17.mlp.moe_statics.e_score_correction_bias
ernie.layers.17.mlp.text_fused_moe.experts.up_gate_proj_weight:['ernie.layers.17.mlp.experts.0.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.1.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.2.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.3.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.4.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.5.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.6.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.7.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.8.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.9.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.10.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.11.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.12.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.13.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.14.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.15.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.16.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.17.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.18.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.19.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.20.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.21.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.22.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.23.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.24.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.25.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.26.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.27.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.28.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.29.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.30.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.31.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.64.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.65.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.66.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.67.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.68.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.69.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.70.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.71.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.72.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.73.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.74.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.75.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.76.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.77.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.78.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.79.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.80.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.81.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.82.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.83.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.84.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.85.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.86.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.87.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.88.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.89.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.90.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.91.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.92.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.93.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.94.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.95.up_gate_proj.weight']
ernie.layers.17.mlp.text_fused_moe.experts.down_proj_weight:['ernie.layers.17.mlp.experts.0.down_proj.weight', 'ernie.layers.17.mlp.experts.1.down_proj.weight', 'ernie.layers.17.mlp.experts.2.down_proj.weight', 'ernie.layers.17.mlp.experts.3.down_proj.weight', 'ernie.layers.17.mlp.experts.4.down_proj.weight', 'ernie.layers.17.mlp.experts.5.down_proj.weight', 'ernie.layers.17.mlp.experts.6.down_proj.weight', 'ernie.layers.17.mlp.experts.7.down_proj.weight', 'ernie.layers.17.mlp.experts.8.down_proj.weight', 'ernie.layers.17.mlp.experts.9.down_proj.weight', 'ernie.layers.17.mlp.experts.10.down_proj.weight', 'ernie.layers.17.mlp.experts.11.down_proj.weight', 'ernie.layers.17.mlp.experts.12.down_proj.weight', 'ernie.layers.17.mlp.experts.13.down_proj.weight', 'ernie.layers.17.mlp.experts.14.down_proj.weight', 'ernie.layers.17.mlp.experts.15.down_proj.weight', 'ernie.layers.17.mlp.experts.16.down_proj.weight', 'ernie.layers.17.mlp.experts.17.down_proj.weight', 'ernie.layers.17.mlp.experts.18.down_proj.weight', 'ernie.layers.17.mlp.experts.19.down_proj.weight', 'ernie.layers.17.mlp.experts.20.down_proj.weight', 'ernie.layers.17.mlp.experts.21.down_proj.weight', 'ernie.layers.17.mlp.experts.22.down_proj.weight', 'ernie.layers.17.mlp.experts.23.down_proj.weight', 'ernie.layers.17.mlp.experts.24.down_proj.weight', 'ernie.layers.17.mlp.experts.25.down_proj.weight', 'ernie.layers.17.mlp.experts.26.down_proj.weight', 'ernie.layers.17.mlp.experts.27.down_proj.weight', 'ernie.layers.17.mlp.experts.28.down_proj.weight', 'ernie.layers.17.mlp.experts.29.down_proj.weight', 'ernie.layers.17.mlp.experts.30.down_proj.weight', 'ernie.layers.17.mlp.experts.31.down_proj.weight', 'ernie.layers.17.mlp.experts.64.down_proj.weight', 'ernie.layers.17.mlp.experts.65.down_proj.weight', 'ernie.layers.17.mlp.experts.66.down_proj.weight', 'ernie.layers.17.mlp.experts.67.down_proj.weight', 'ernie.layers.17.mlp.experts.68.down_proj.weight', 'ernie.layers.17.mlp.experts.69.down_proj.weight', 'ernie.layers.17.mlp.experts.70.down_proj.weight', 'ernie.layers.17.mlp.experts.71.down_proj.weight', 'ernie.layers.17.mlp.experts.72.down_proj.weight', 'ernie.layers.17.mlp.experts.73.down_proj.weight', 'ernie.layers.17.mlp.experts.74.down_proj.weight', 'ernie.layers.17.mlp.experts.75.down_proj.weight', 'ernie.layers.17.mlp.experts.76.down_proj.weight', 'ernie.layers.17.mlp.experts.77.down_proj.weight', 'ernie.layers.17.mlp.experts.78.down_proj.weight', 'ernie.layers.17.mlp.experts.79.down_proj.weight', 'ernie.layers.17.mlp.experts.80.down_proj.weight', 'ernie.layers.17.mlp.experts.81.down_proj.weight', 'ernie.layers.17.mlp.experts.82.down_proj.weight', 'ernie.layers.17.mlp.experts.83.down_proj.weight', 'ernie.layers.17.mlp.experts.84.down_proj.weight', 'ernie.layers.17.mlp.experts.85.down_proj.weight', 'ernie.layers.17.mlp.experts.86.down_proj.weight', 'ernie.layers.17.mlp.experts.87.down_proj.weight', 'ernie.layers.17.mlp.experts.88.down_proj.weight', 'ernie.layers.17.mlp.experts.89.down_proj.weight', 'ernie.layers.17.mlp.experts.90.down_proj.weight', 'ernie.layers.17.mlp.experts.91.down_proj.weight', 'ernie.layers.17.mlp.experts.92.down_proj.weight', 'ernie.layers.17.mlp.experts.93.down_proj.weight', 'ernie.layers.17.mlp.experts.94.down_proj.weight', 'ernie.layers.17.mlp.experts.95.down_proj.weight']
ernie.layers.18.mlp.text_fused_moe.gate.weight:ernie.layers.18.mlp.gate.weight
ernie.layers.18.mlp.text_fused_moe.experts.gate_correction_bias:ernie.layers.18.mlp.moe_statics.e_score_correction_bias
ernie.layers.18.mlp.gate_correction_bias:ernie.layers.18.mlp.moe_statics.e_score_correction_bias
ernie.layers.18.mlp.text_fused_moe.experts.up_gate_proj_weight:['ernie.layers.18.mlp.experts.0.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.1.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.2.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.3.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.4.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.5.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.6.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.7.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.8.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.9.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.10.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.11.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.12.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.13.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.14.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.15.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.16.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.17.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.18.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.19.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.20.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.21.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.22.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.23.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.24.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.25.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.26.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.27.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.28.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.29.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.30.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.31.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.64.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.65.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.66.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.67.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.68.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.69.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.70.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.71.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.72.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.73.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.74.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.75.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.76.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.77.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.78.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.79.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.80.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.81.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.82.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.83.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.84.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.85.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.86.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.87.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.88.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.89.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.90.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.91.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.92.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.93.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.94.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.95.up_gate_proj.weight']
ernie.layers.18.mlp.text_fused_moe.experts.down_proj_weight:['ernie.layers.18.mlp.experts.0.down_proj.weight', 'ernie.layers.18.mlp.experts.1.down_proj.weight', 'ernie.layers.18.mlp.experts.2.down_proj.weight', 'ernie.layers.18.mlp.experts.3.down_proj.weight', 'ernie.layers.18.mlp.experts.4.down_proj.weight', 'ernie.layers.18.mlp.experts.5.down_proj.weight', 'ernie.layers.18.mlp.experts.6.down_proj.weight', 'ernie.layers.18.mlp.experts.7.down_proj.weight', 'ernie.layers.18.mlp.experts.8.down_proj.weight', 'ernie.layers.18.mlp.experts.9.down_proj.weight', 'ernie.layers.18.mlp.experts.10.down_proj.weight', 'ernie.layers.18.mlp.experts.11.down_proj.weight', 'ernie.layers.18.mlp.experts.12.down_proj.weight', 'ernie.layers.18.mlp.experts.13.down_proj.weight', 'ernie.layers.18.mlp.experts.14.down_proj.weight', 'ernie.layers.18.mlp.experts.15.down_proj.weight', 'ernie.layers.18.mlp.experts.16.down_proj.weight', 'ernie.layers.18.mlp.experts.17.down_proj.weight', 'ernie.layers.18.mlp.experts.18.down_proj.weight', 'ernie.layers.18.mlp.experts.19.down_proj.weight', 'ernie.layers.18.mlp.experts.20.down_proj.weight', 'ernie.layers.18.mlp.experts.21.down_proj.weight', 'ernie.layers.18.mlp.experts.22.down_proj.weight', 'ernie.layers.18.mlp.experts.23.down_proj.weight', 'ernie.layers.18.mlp.experts.24.down_proj.weight', 'ernie.layers.18.mlp.experts.25.down_proj.weight', 'ernie.layers.18.mlp.experts.26.down_proj.weight', 'ernie.layers.18.mlp.experts.27.down_proj.weight', 'ernie.layers.18.mlp.experts.28.down_proj.weight', 'ernie.layers.18.mlp.experts.29.down_proj.weight', 'ernie.layers.18.mlp.experts.30.down_proj.weight', 'ernie.layers.18.mlp.experts.31.down_proj.weight', 'ernie.layers.18.mlp.experts.64.down_proj.weight', 'ernie.layers.18.mlp.experts.65.down_proj.weight', 'ernie.layers.18.mlp.experts.66.down_proj.weight', 'ernie.layers.18.mlp.experts.67.down_proj.weight', 'ernie.layers.18.mlp.experts.68.down_proj.weight', 'ernie.layers.18.mlp.experts.69.down_proj.weight', 'ernie.layers.18.mlp.experts.70.down_proj.weight', 'ernie.layers.18.mlp.experts.71.down_proj.weight', 'ernie.layers.18.mlp.experts.72.down_proj.weight', 'ernie.layers.18.mlp.experts.73.down_proj.weight', 'ernie.layers.18.mlp.experts.74.down_proj.weight', 'ernie.layers.18.mlp.experts.75.down_proj.weight', 'ernie.layers.18.mlp.experts.76.down_proj.weight', 'ernie.layers.18.mlp.experts.77.down_proj.weight', 'ernie.layers.18.mlp.experts.78.down_proj.weight', 'ernie.layers.18.mlp.experts.79.down_proj.weight', 'ernie.layers.18.mlp.experts.80.down_proj.weight', 'ernie.layers.18.mlp.experts.81.down_proj.weight', 'ernie.layers.18.mlp.experts.82.down_proj.weight', 'ernie.layers.18.mlp.experts.83.down_proj.weight', 'ernie.layers.18.mlp.experts.84.down_proj.weight', 'ernie.layers.18.mlp.experts.85.down_proj.weight', 'ernie.layers.18.mlp.experts.86.down_proj.weight', 'ernie.layers.18.mlp.experts.87.down_proj.weight', 'ernie.layers.18.mlp.experts.88.down_proj.weight', 'ernie.layers.18.mlp.experts.89.down_proj.weight', 'ernie.layers.18.mlp.experts.90.down_proj.weight', 'ernie.layers.18.mlp.experts.91.down_proj.weight', 'ernie.layers.18.mlp.experts.92.down_proj.weight', 'ernie.layers.18.mlp.experts.93.down_proj.weight', 'ernie.layers.18.mlp.experts.94.down_proj.weight', 'ernie.layers.18.mlp.experts.95.down_proj.weight']
ernie.layers.19.mlp.text_fused_moe.gate.weight:ernie.layers.19.mlp.gate.weight
ernie.layers.19.mlp.text_fused_moe.experts.gate_correction_bias:ernie.layers.19.mlp.moe_statics.e_score_correction_bias
ernie.layers.19.mlp.gate_correction_bias:ernie.layers.19.mlp.moe_statics.e_score_correction_bias
ernie.layers.19.mlp.text_fused_moe.experts.up_gate_proj_weight:['ernie.layers.19.mlp.experts.0.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.1.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.2.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.3.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.4.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.5.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.6.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.7.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.8.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.9.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.10.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.11.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.12.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.13.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.14.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.15.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.16.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.17.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.18.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.19.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.20.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.21.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.22.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.23.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.24.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.25.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.26.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.27.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.28.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.29.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.30.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.31.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.64.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.65.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.66.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.67.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.68.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.69.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.70.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.71.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.72.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.73.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.74.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.75.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.76.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.77.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.78.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.79.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.80.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.81.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.82.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.83.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.84.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.85.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.86.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.87.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.88.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.89.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.90.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.91.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.92.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.93.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.94.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.95.up_gate_proj.weight']
ernie.layers.19.mlp.text_fused_moe.experts.down_proj_weight:['ernie.layers.19.mlp.experts.0.down_proj.weight', 'ernie.layers.19.mlp.experts.1.down_proj.weight', 'ernie.layers.19.mlp.experts.2.down_proj.weight', 'ernie.layers.19.mlp.experts.3.down_proj.weight', 'ernie.layers.19.mlp.experts.4.down_proj.weight', 'ernie.layers.19.mlp.experts.5.down_proj.weight', 'ernie.layers.19.mlp.experts.6.down_proj.weight', 'ernie.layers.19.mlp.experts.7.down_proj.weight', 'ernie.layers.19.mlp.experts.8.down_proj.weight', 'ernie.layers.19.mlp.experts.9.down_proj.weight', 'ernie.layers.19.mlp.experts.10.down_proj.weight', 'ernie.layers.19.mlp.experts.11.down_proj.weight', 'ernie.layers.19.mlp.experts.12.down_proj.weight', 'ernie.layers.19.mlp.experts.13.down_proj.weight', 'ernie.layers.19.mlp.experts.14.down_proj.weight', 'ernie.layers.19.mlp.experts.15.down_proj.weight', 'ernie.layers.19.mlp.experts.16.down_proj.weight', 'ernie.layers.19.mlp.experts.17.down_proj.weight', 'ernie.layers.19.mlp.experts.18.down_proj.weight', 'ernie.layers.19.mlp.experts.19.down_proj.weight', 'ernie.layers.19.mlp.experts.20.down_proj.weight', 'ernie.layers.19.mlp.experts.21.down_proj.weight', 'ernie.layers.19.mlp.experts.22.down_proj.weight', 'ernie.layers.19.mlp.experts.23.down_proj.weight', 'ernie.layers.19.mlp.experts.24.down_proj.weight', 'ernie.layers.19.mlp.experts.25.down_proj.weight', 'ernie.layers.19.mlp.experts.26.down_proj.weight', 'ernie.layers.19.mlp.experts.27.down_proj.weight', 'ernie.layers.19.mlp.experts.28.down_proj.weight', 'ernie.layers.19.mlp.experts.29.down_proj.weight', 'ernie.layers.19.mlp.experts.30.down_proj.weight', 'ernie.layers.19.mlp.experts.31.down_proj.weight', 'ernie.layers.19.mlp.experts.64.down_proj.weight', 'ernie.layers.19.mlp.experts.65.down_proj.weight', 'ernie.layers.19.mlp.experts.66.down_proj.weight', 'ernie.layers.19.mlp.experts.67.down_proj.weight', 'ernie.layers.19.mlp.experts.68.down_proj.weight', 'ernie.layers.19.mlp.experts.69.down_proj.weight', 'ernie.layers.19.mlp.experts.70.down_proj.weight', 'ernie.layers.19.mlp.experts.71.down_proj.weight', 'ernie.layers.19.mlp.experts.72.down_proj.weight', 'ernie.layers.19.mlp.experts.73.down_proj.weight', 'ernie.layers.19.mlp.experts.74.down_proj.weight', 'ernie.layers.19.mlp.experts.75.down_proj.weight', 'ernie.layers.19.mlp.experts.76.down_proj.weight', 'ernie.layers.19.mlp.experts.77.down_proj.weight', 'ernie.layers.19.mlp.experts.78.down_proj.weight', 'ernie.layers.19.mlp.experts.79.down_proj.weight', 'ernie.layers.19.mlp.experts.80.down_proj.weight', 'ernie.layers.19.mlp.experts.81.down_proj.weight', 'ernie.layers.19.mlp.experts.82.down_proj.weight', 'ernie.layers.19.mlp.experts.83.down_proj.weight', 'ernie.layers.19.mlp.experts.84.down_proj.weight', 'ernie.layers.19.mlp.experts.85.down_proj.weight', 'ernie.layers.19.mlp.experts.86.down_proj.weight', 'ernie.layers.19.mlp.experts.87.down_proj.weight', 'ernie.layers.19.mlp.experts.88.down_proj.weight', 'ernie.layers.19.mlp.experts.89.down_proj.weight', 'ernie.layers.19.mlp.experts.90.down_proj.weight', 'ernie.layers.19.mlp.experts.91.down_proj.weight', 'ernie.layers.19.mlp.experts.92.down_proj.weight', 'ernie.layers.19.mlp.experts.93.down_proj.weight', 'ernie.layers.19.mlp.experts.94.down_proj.weight', 'ernie.layers.19.mlp.experts.95.down_proj.weight']
ernie.layers.20.mlp.text_fused_moe.gate.weight:ernie.layers.20.mlp.gate.weight
ernie.layers.20.mlp.text_fused_moe.experts.gate_correction_bias:ernie.layers.20.mlp.moe_statics.e_score_correction_bias
ernie.layers.20.mlp.gate_correction_bias:ernie.layers.20.mlp.moe_statics.e_score_correction_bias
ernie.layers.20.mlp.text_fused_moe.experts.up_gate_proj_weight:['ernie.layers.20.mlp.experts.0.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.1.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.2.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.3.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.4.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.5.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.6.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.7.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.8.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.9.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.10.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.11.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.12.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.13.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.14.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.15.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.16.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.17.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.18.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.19.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.20.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.21.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.22.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.23.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.24.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.25.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.26.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.27.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.28.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.29.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.30.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.31.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.64.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.65.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.66.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.67.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.68.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.69.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.70.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.71.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.72.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.73.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.74.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.75.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.76.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.77.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.78.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.79.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.80.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.81.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.82.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.83.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.84.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.85.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.86.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.87.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.88.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.89.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.90.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.91.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.92.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.93.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.94.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.95.up_gate_proj.weight']
ernie.layers.20.mlp.text_fused_moe.experts.down_proj_weight:['ernie.layers.20.mlp.experts.0.down_proj.weight', 'ernie.layers.20.mlp.experts.1.down_proj.weight', 'ernie.layers.20.mlp.experts.2.down_proj.weight', 'ernie.layers.20.mlp.experts.3.down_proj.weight', 'ernie.layers.20.mlp.experts.4.down_proj.weight', 'ernie.layers.20.mlp.experts.5.down_proj.weight', 'ernie.layers.20.mlp.experts.6.down_proj.weight', 'ernie.layers.20.mlp.experts.7.down_proj.weight', 'ernie.layers.20.mlp.experts.8.down_proj.weight', 'ernie.layers.20.mlp.experts.9.down_proj.weight', 'ernie.layers.20.mlp.experts.10.down_proj.weight', 'ernie.layers.20.mlp.experts.11.down_proj.weight', 'ernie.layers.20.mlp.experts.12.down_proj.weight', 'ernie.layers.20.mlp.experts.13.down_proj.weight', 'ernie.layers.20.mlp.experts.14.down_proj.weight', 'ernie.layers.20.mlp.experts.15.down_proj.weight', 'ernie.layers.20.mlp.experts.16.down_proj.weight', 'ernie.layers.20.mlp.experts.17.down_proj.weight', 'ernie.layers.20.mlp.experts.18.down_proj.weight', 'ernie.layers.20.mlp.experts.19.down_proj.weight', 'ernie.layers.20.mlp.experts.20.down_proj.weight', 'ernie.layers.20.mlp.experts.21.down_proj.weight', 'ernie.layers.20.mlp.experts.22.down_proj.weight', 'ernie.layers.20.mlp.experts.23.down_proj.weight', 'ernie.layers.20.mlp.experts.24.down_proj.weight', 'ernie.layers.20.mlp.experts.25.down_proj.weight', 'ernie.layers.20.mlp.experts.26.down_proj.weight', 'ernie.layers.20.mlp.experts.27.down_proj.weight', 'ernie.layers.20.mlp.experts.28.down_proj.weight', 'ernie.layers.20.mlp.experts.29.down_proj.weight', 'ernie.layers.20.mlp.experts.30.down_proj.weight', 'ernie.layers.20.mlp.experts.31.down_proj.weight', 'ernie.layers.20.mlp.experts.64.down_proj.weight', 'ernie.layers.20.mlp.experts.65.down_proj.weight', 'ernie.layers.20.mlp.experts.66.down_proj.weight', 'ernie.layers.20.mlp.experts.67.down_proj.weight', 'ernie.layers.20.mlp.experts.68.down_proj.weight', 'ernie.layers.20.mlp.experts.69.down_proj.weight', 'ernie.layers.20.mlp.experts.70.down_proj.weight', 'ernie.layers.20.mlp.experts.71.down_proj.weight', 'ernie.layers.20.mlp.experts.72.down_proj.weight', 'ernie.layers.20.mlp.experts.73.down_proj.weight', 'ernie.layers.20.mlp.experts.74.down_proj.weight', 'ernie.layers.20.mlp.experts.75.down_proj.weight', 'ernie.layers.20.mlp.experts.76.down_proj.weight', 'ernie.layers.20.mlp.experts.77.down_proj.weight', 'ernie.layers.20.mlp.experts.78.down_proj.weight', 'ernie.layers.20.mlp.experts.79.down_proj.weight', 'ernie.layers.20.mlp.experts.80.down_proj.weight', 'ernie.layers.20.mlp.experts.81.down_proj.weight', 'ernie.layers.20.mlp.experts.82.down_proj.weight', 'ernie.layers.20.mlp.experts.83.down_proj.weight', 'ernie.layers.20.mlp.experts.84.down_proj.weight', 'ernie.layers.20.mlp.experts.85.down_proj.weight', 'ernie.layers.20.mlp.experts.86.down_proj.weight', 'ernie.layers.20.mlp.experts.87.down_proj.weight', 'ernie.layers.20.mlp.experts.88.down_proj.weight', 'ernie.layers.20.mlp.experts.89.down_proj.weight', 'ernie.layers.20.mlp.experts.90.down_proj.weight', 'ernie.layers.20.mlp.experts.91.down_proj.weight', 'ernie.layers.20.mlp.experts.92.down_proj.weight', 'ernie.layers.20.mlp.experts.93.down_proj.weight', 'ernie.layers.20.mlp.experts.94.down_proj.weight', 'ernie.layers.20.mlp.experts.95.down_proj.weight']
ernie.layers.21.mlp.text_fused_moe.gate.weight:ernie.layers.21.mlp.gate.weight
ernie.layers.21.mlp.text_fused_moe.experts.gate_correction_bias:ernie.layers.21.mlp.moe_statics.e_score_correction_bias
ernie.layers.21.mlp.gate_correction_bias:ernie.layers.21.mlp.moe_statics.e_score_correction_bias
ernie.layers.21.mlp.text_fused_moe.experts.up_gate_proj_weight:['ernie.layers.21.mlp.experts.0.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.1.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.2.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.3.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.4.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.5.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.6.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.7.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.8.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.9.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.10.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.11.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.12.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.13.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.14.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.15.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.16.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.17.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.18.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.19.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.20.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.21.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.22.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.23.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.24.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.25.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.26.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.27.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.28.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.29.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.30.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.31.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.64.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.65.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.66.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.67.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.68.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.69.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.70.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.71.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.72.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.73.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.74.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.75.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.76.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.77.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.78.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.79.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.80.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.81.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.82.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.83.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.84.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.85.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.86.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.87.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.88.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.89.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.90.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.91.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.92.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.93.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.94.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.95.up_gate_proj.weight']
ernie.layers.21.mlp.text_fused_moe.experts.down_proj_weight:['ernie.layers.21.mlp.experts.0.down_proj.weight', 'ernie.layers.21.mlp.experts.1.down_proj.weight', 'ernie.layers.21.mlp.experts.2.down_proj.weight', 'ernie.layers.21.mlp.experts.3.down_proj.weight', 'ernie.layers.21.mlp.experts.4.down_proj.weight', 'ernie.layers.21.mlp.experts.5.down_proj.weight', 'ernie.layers.21.mlp.experts.6.down_proj.weight', 'ernie.layers.21.mlp.experts.7.down_proj.weight', 'ernie.layers.21.mlp.experts.8.down_proj.weight', 'ernie.layers.21.mlp.experts.9.down_proj.weight', 'ernie.layers.21.mlp.experts.10.down_proj.weight', 'ernie.layers.21.mlp.experts.11.down_proj.weight', 'ernie.layers.21.mlp.experts.12.down_proj.weight', 'ernie.layers.21.mlp.experts.13.down_proj.weight', 'ernie.layers.21.mlp.experts.14.down_proj.weight', 'ernie.layers.21.mlp.experts.15.down_proj.weight', 'ernie.layers.21.mlp.experts.16.down_proj.weight', 'ernie.layers.21.mlp.experts.17.down_proj.weight', 'ernie.layers.21.mlp.experts.18.down_proj.weight', 'ernie.layers.21.mlp.experts.19.down_proj.weight', 'ernie.layers.21.mlp.experts.20.down_proj.weight', 'ernie.layers.21.mlp.experts.21.down_proj.weight', 'ernie.layers.21.mlp.experts.22.down_proj.weight', 'ernie.layers.21.mlp.experts.23.down_proj.weight', 'ernie.layers.21.mlp.experts.24.down_proj.weight', 'ernie.layers.21.mlp.experts.25.down_proj.weight', 'ernie.layers.21.mlp.experts.26.down_proj.weight', 'ernie.layers.21.mlp.experts.27.down_proj.weight', 'ernie.layers.21.mlp.experts.28.down_proj.weight', 'ernie.layers.21.mlp.experts.29.down_proj.weight', 'ernie.layers.21.mlp.experts.30.down_proj.weight', 'ernie.layers.21.mlp.experts.31.down_proj.weight', 'ernie.layers.21.mlp.experts.64.down_proj.weight', 'ernie.layers.21.mlp.experts.65.down_proj.weight', 'ernie.layers.21.mlp.experts.66.down_proj.weight', 'ernie.layers.21.mlp.experts.67.down_proj.weight', 'ernie.layers.21.mlp.experts.68.down_proj.weight', 'ernie.layers.21.mlp.experts.69.down_proj.weight', 'ernie.layers.21.mlp.experts.70.down_proj.weight', 'ernie.layers.21.mlp.experts.71.down_proj.weight', 'ernie.layers.21.mlp.experts.72.down_proj.weight', 'ernie.layers.21.mlp.experts.73.down_proj.weight', 'ernie.layers.21.mlp.experts.74.down_proj.weight', 'ernie.layers.21.mlp.experts.75.down_proj.weight', 'ernie.layers.21.mlp.experts.76.down_proj.weight', 'ernie.layers.21.mlp.experts.77.down_proj.weight', 'ernie.layers.21.mlp.experts.78.down_proj.weight', 'ernie.layers.21.mlp.experts.79.down_proj.weight', 'ernie.layers.21.mlp.experts.80.down_proj.weight', 'ernie.layers.21.mlp.experts.81.down_proj.weight', 'ernie.layers.21.mlp.experts.82.down_proj.weight', 'ernie.layers.21.mlp.experts.83.down_proj.weight', 'ernie.layers.21.mlp.experts.84.down_proj.weight', 'ernie.layers.21.mlp.experts.85.down_proj.weight', 'ernie.layers.21.mlp.experts.86.down_proj.weight', 'ernie.layers.21.mlp.experts.87.down_proj.weight', 'ernie.layers.21.mlp.experts.88.down_proj.weight', 'ernie.layers.21.mlp.experts.89.down_proj.weight', 'ernie.layers.21.mlp.experts.90.down_proj.weight', 'ernie.layers.21.mlp.experts.91.down_proj.weight', 'ernie.layers.21.mlp.experts.92.down_proj.weight', 'ernie.layers.21.mlp.experts.93.down_proj.weight', 'ernie.layers.21.mlp.experts.94.down_proj.weight', 'ernie.layers.21.mlp.experts.95.down_proj.weight']
ernie.layers.22.mlp.text_fused_moe.gate.weight:ernie.layers.22.mlp.gate.weight
ernie.layers.22.mlp.text_fused_moe.experts.gate_correction_bias:ernie.layers.22.mlp.moe_statics.e_score_correction_bias
ernie.layers.22.mlp.gate_correction_bias:ernie.layers.22.mlp.moe_statics.e_score_correction_bias
ernie.layers.22.mlp.text_fused_moe.experts.up_gate_proj_weight:['ernie.layers.22.mlp.experts.0.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.1.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.2.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.3.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.4.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.5.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.6.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.7.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.8.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.9.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.10.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.11.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.12.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.13.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.14.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.15.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.16.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.17.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.18.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.19.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.20.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.21.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.22.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.23.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.24.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.25.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.26.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.27.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.28.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.29.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.30.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.31.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.64.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.65.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.66.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.67.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.68.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.69.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.70.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.71.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.72.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.73.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.74.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.75.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.76.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.77.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.78.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.79.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.80.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.81.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.82.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.83.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.84.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.85.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.86.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.87.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.88.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.89.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.90.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.91.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.92.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.93.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.94.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.95.up_gate_proj.weight']
ernie.layers.22.mlp.text_fused_moe.experts.down_proj_weight:['ernie.layers.22.mlp.experts.0.down_proj.weight', 'ernie.layers.22.mlp.experts.1.down_proj.weight', 'ernie.layers.22.mlp.experts.2.down_proj.weight', 'ernie.layers.22.mlp.experts.3.down_proj.weight', 'ernie.layers.22.mlp.experts.4.down_proj.weight', 'ernie.layers.22.mlp.experts.5.down_proj.weight', 'ernie.layers.22.mlp.experts.6.down_proj.weight', 'ernie.layers.22.mlp.experts.7.down_proj.weight', 'ernie.layers.22.mlp.experts.8.down_proj.weight', 'ernie.layers.22.mlp.experts.9.down_proj.weight', 'ernie.layers.22.mlp.experts.10.down_proj.weight', 'ernie.layers.22.mlp.experts.11.down_proj.weight', 'ernie.layers.22.mlp.experts.12.down_proj.weight', 'ernie.layers.22.mlp.experts.13.down_proj.weight', 'ernie.layers.22.mlp.experts.14.down_proj.weight', 'ernie.layers.22.mlp.experts.15.down_proj.weight', 'ernie.layers.22.mlp.experts.16.down_proj.weight', 'ernie.layers.22.mlp.experts.17.down_proj.weight', 'ernie.layers.22.mlp.experts.18.down_proj.weight', 'ernie.layers.22.mlp.experts.19.down_proj.weight', 'ernie.layers.22.mlp.experts.20.down_proj.weight', 'ernie.layers.22.mlp.experts.21.down_proj.weight', 'ernie.layers.22.mlp.experts.22.down_proj.weight', 'ernie.layers.22.mlp.experts.23.down_proj.weight', 'ernie.layers.22.mlp.experts.24.down_proj.weight', 'ernie.layers.22.mlp.experts.25.down_proj.weight', 'ernie.layers.22.mlp.experts.26.down_proj.weight', 'ernie.layers.22.mlp.experts.27.down_proj.weight', 'ernie.layers.22.mlp.experts.28.down_proj.weight', 'ernie.layers.22.mlp.experts.29.down_proj.weight', 'ernie.layers.22.mlp.experts.30.down_proj.weight', 'ernie.layers.22.mlp.experts.31.down_proj.weight', 'ernie.layers.22.mlp.experts.64.down_proj.weight', 'ernie.layers.22.mlp.experts.65.down_proj.weight', 'ernie.layers.22.mlp.experts.66.down_proj.weight', 'ernie.layers.22.mlp.experts.67.down_proj.weight', 'ernie.layers.22.mlp.experts.68.down_proj.weight', 'ernie.layers.22.mlp.experts.69.down_proj.weight', 'ernie.layers.22.mlp.experts.70.down_proj.weight', 'ernie.layers.22.mlp.experts.71.down_proj.weight', 'ernie.layers.22.mlp.experts.72.down_proj.weight', 'ernie.layers.22.mlp.experts.73.down_proj.weight', 'ernie.layers.22.mlp.experts.74.down_proj.weight', 'ernie.layers.22.mlp.experts.75.down_proj.weight', 'ernie.layers.22.mlp.experts.76.down_proj.weight', 'ernie.layers.22.mlp.experts.77.down_proj.weight', 'ernie.layers.22.mlp.experts.78.down_proj.weight', 'ernie.layers.22.mlp.experts.79.down_proj.weight', 'ernie.layers.22.mlp.experts.80.down_proj.weight', 'ernie.layers.22.mlp.experts.81.down_proj.weight', 'ernie.layers.22.mlp.experts.82.down_proj.weight', 'ernie.layers.22.mlp.experts.83.down_proj.weight', 'ernie.layers.22.mlp.experts.84.down_proj.weight', 'ernie.layers.22.mlp.experts.85.down_proj.weight', 'ernie.layers.22.mlp.experts.86.down_proj.weight', 'ernie.layers.22.mlp.experts.87.down_proj.weight', 'ernie.layers.22.mlp.experts.88.down_proj.weight', 'ernie.layers.22.mlp.experts.89.down_proj.weight', 'ernie.layers.22.mlp.experts.90.down_proj.weight', 'ernie.layers.22.mlp.experts.91.down_proj.weight', 'ernie.layers.22.mlp.experts.92.down_proj.weight', 'ernie.layers.22.mlp.experts.93.down_proj.weight', 'ernie.layers.22.mlp.experts.94.down_proj.weight', 'ernie.layers.22.mlp.experts.95.down_proj.weight']
ernie.layers.23.mlp.text_fused_moe.gate.weight:ernie.layers.23.mlp.gate.weight
ernie.layers.23.mlp.text_fused_moe.experts.gate_correction_bias:ernie.layers.23.mlp.moe_statics.e_score_correction_bias
ernie.layers.23.mlp.gate_correction_bias:ernie.layers.23.mlp.moe_statics.e_score_correction_bias
ernie.layers.23.mlp.text_fused_moe.experts.up_gate_proj_weight:['ernie.layers.23.mlp.experts.0.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.1.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.2.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.3.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.4.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.5.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.6.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.7.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.8.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.9.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.10.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.11.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.12.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.13.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.14.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.15.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.16.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.17.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.18.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.19.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.20.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.21.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.22.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.23.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.24.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.25.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.26.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.27.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.28.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.29.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.30.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.31.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.64.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.65.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.66.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.67.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.68.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.69.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.70.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.71.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.72.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.73.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.74.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.75.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.76.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.77.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.78.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.79.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.80.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.81.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.82.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.83.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.84.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.85.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.86.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.87.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.88.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.89.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.90.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.91.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.92.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.93.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.94.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.95.up_gate_proj.weight']
ernie.layers.23.mlp.text_fused_moe.experts.down_proj_weight:['ernie.layers.23.mlp.experts.0.down_proj.weight', 'ernie.layers.23.mlp.experts.1.down_proj.weight', 'ernie.layers.23.mlp.experts.2.down_proj.weight', 'ernie.layers.23.mlp.experts.3.down_proj.weight', 'ernie.layers.23.mlp.experts.4.down_proj.weight', 'ernie.layers.23.mlp.experts.5.down_proj.weight', 'ernie.layers.23.mlp.experts.6.down_proj.weight', 'ernie.layers.23.mlp.experts.7.down_proj.weight', 'ernie.layers.23.mlp.experts.8.down_proj.weight', 'ernie.layers.23.mlp.experts.9.down_proj.weight', 'ernie.layers.23.mlp.experts.10.down_proj.weight', 'ernie.layers.23.mlp.experts.11.down_proj.weight', 'ernie.layers.23.mlp.experts.12.down_proj.weight', 'ernie.layers.23.mlp.experts.13.down_proj.weight', 'ernie.layers.23.mlp.experts.14.down_proj.weight', 'ernie.layers.23.mlp.experts.15.down_proj.weight', 'ernie.layers.23.mlp.experts.16.down_proj.weight', 'ernie.layers.23.mlp.experts.17.down_proj.weight', 'ernie.layers.23.mlp.experts.18.down_proj.weight', 'ernie.layers.23.mlp.experts.19.down_proj.weight', 'ernie.layers.23.mlp.experts.20.down_proj.weight', 'ernie.layers.23.mlp.experts.21.down_proj.weight', 'ernie.layers.23.mlp.experts.22.down_proj.weight', 'ernie.layers.23.mlp.experts.23.down_proj.weight', 'ernie.layers.23.mlp.experts.24.down_proj.weight', 'ernie.layers.23.mlp.experts.25.down_proj.weight', 'ernie.layers.23.mlp.experts.26.down_proj.weight', 'ernie.layers.23.mlp.experts.27.down_proj.weight', 'ernie.layers.23.mlp.experts.28.down_proj.weight', 'ernie.layers.23.mlp.experts.29.down_proj.weight', 'ernie.layers.23.mlp.experts.30.down_proj.weight', 'ernie.layers.23.mlp.experts.31.down_proj.weight', 'ernie.layers.23.mlp.experts.64.down_proj.weight', 'ernie.layers.23.mlp.experts.65.down_proj.weight', 'ernie.layers.23.mlp.experts.66.down_proj.weight', 'ernie.layers.23.mlp.experts.67.down_proj.weight', 'ernie.layers.23.mlp.experts.68.down_proj.weight', 'ernie.layers.23.mlp.experts.69.down_proj.weight', 'ernie.layers.23.mlp.experts.70.down_proj.weight', 'ernie.layers.23.mlp.experts.71.down_proj.weight', 'ernie.layers.23.mlp.experts.72.down_proj.weight', 'ernie.layers.23.mlp.experts.73.down_proj.weight', 'ernie.layers.23.mlp.experts.74.down_proj.weight', 'ernie.layers.23.mlp.experts.75.down_proj.weight', 'ernie.layers.23.mlp.experts.76.down_proj.weight', 'ernie.layers.23.mlp.experts.77.down_proj.weight', 'ernie.layers.23.mlp.experts.78.down_proj.weight', 'ernie.layers.23.mlp.experts.79.down_proj.weight', 'ernie.layers.23.mlp.experts.80.down_proj.weight', 'ernie.layers.23.mlp.experts.81.down_proj.weight', 'ernie.layers.23.mlp.experts.82.down_proj.weight', 'ernie.layers.23.mlp.experts.83.down_proj.weight', 'ernie.layers.23.mlp.experts.84.down_proj.weight', 'ernie.layers.23.mlp.experts.85.down_proj.weight', 'ernie.layers.23.mlp.experts.86.down_proj.weight', 'ernie.layers.23.mlp.experts.87.down_proj.weight', 'ernie.layers.23.mlp.experts.88.down_proj.weight', 'ernie.layers.23.mlp.experts.89.down_proj.weight', 'ernie.layers.23.mlp.experts.90.down_proj.weight', 'ernie.layers.23.mlp.experts.91.down_proj.weight', 'ernie.layers.23.mlp.experts.92.down_proj.weight', 'ernie.layers.23.mlp.experts.93.down_proj.weight', 'ernie.layers.23.mlp.experts.94.down_proj.weight', 'ernie.layers.23.mlp.experts.95.down_proj.weight']
ernie.layers.24.mlp.text_fused_moe.gate.weight:ernie.layers.24.mlp.gate.weight
ernie.layers.24.mlp.text_fused_moe.experts.gate_correction_bias:ernie.layers.24.mlp.moe_statics.e_score_correction_bias
ernie.layers.24.mlp.gate_correction_bias:ernie.layers.24.mlp.moe_statics.e_score_correction_bias
ernie.layers.24.mlp.text_fused_moe.experts.up_gate_proj_weight:['ernie.layers.24.mlp.experts.0.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.1.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.2.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.3.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.4.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.5.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.6.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.7.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.8.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.9.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.10.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.11.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.12.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.13.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.14.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.15.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.16.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.17.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.18.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.19.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.20.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.21.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.22.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.23.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.24.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.25.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.26.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.27.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.28.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.29.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.30.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.31.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.64.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.65.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.66.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.67.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.68.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.69.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.70.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.71.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.72.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.73.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.74.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.75.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.76.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.77.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.78.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.79.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.80.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.81.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.82.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.83.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.84.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.85.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.86.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.87.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.88.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.89.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.90.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.91.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.92.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.93.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.94.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.95.up_gate_proj.weight']
ernie.layers.24.mlp.text_fused_moe.experts.down_proj_weight:['ernie.layers.24.mlp.experts.0.down_proj.weight', 'ernie.layers.24.mlp.experts.1.down_proj.weight', 'ernie.layers.24.mlp.experts.2.down_proj.weight', 'ernie.layers.24.mlp.experts.3.down_proj.weight', 'ernie.layers.24.mlp.experts.4.down_proj.weight', 'ernie.layers.24.mlp.experts.5.down_proj.weight', 'ernie.layers.24.mlp.experts.6.down_proj.weight', 'ernie.layers.24.mlp.experts.7.down_proj.weight', 'ernie.layers.24.mlp.experts.8.down_proj.weight', 'ernie.layers.24.mlp.experts.9.down_proj.weight', 'ernie.layers.24.mlp.experts.10.down_proj.weight', 'ernie.layers.24.mlp.experts.11.down_proj.weight', 'ernie.layers.24.mlp.experts.12.down_proj.weight', 'ernie.layers.24.mlp.experts.13.down_proj.weight', 'ernie.layers.24.mlp.experts.14.down_proj.weight', 'ernie.layers.24.mlp.experts.15.down_proj.weight', 'ernie.layers.24.mlp.experts.16.down_proj.weight', 'ernie.layers.24.mlp.experts.17.down_proj.weight', 'ernie.layers.24.mlp.experts.18.down_proj.weight', 'ernie.layers.24.mlp.experts.19.down_proj.weight', 'ernie.layers.24.mlp.experts.20.down_proj.weight', 'ernie.layers.24.mlp.experts.21.down_proj.weight', 'ernie.layers.24.mlp.experts.22.down_proj.weight', 'ernie.layers.24.mlp.experts.23.down_proj.weight', 'ernie.layers.24.mlp.experts.24.down_proj.weight', 'ernie.layers.24.mlp.experts.25.down_proj.weight', 'ernie.layers.24.mlp.experts.26.down_proj.weight', 'ernie.layers.24.mlp.experts.27.down_proj.weight', 'ernie.layers.24.mlp.experts.28.down_proj.weight', 'ernie.layers.24.mlp.experts.29.down_proj.weight', 'ernie.layers.24.mlp.experts.30.down_proj.weight', 'ernie.layers.24.mlp.experts.31.down_proj.weight', 'ernie.layers.24.mlp.experts.64.down_proj.weight', 'ernie.layers.24.mlp.experts.65.down_proj.weight', 'ernie.layers.24.mlp.experts.66.down_proj.weight', 'ernie.layers.24.mlp.experts.67.down_proj.weight', 'ernie.layers.24.mlp.experts.68.down_proj.weight', 'ernie.layers.24.mlp.experts.69.down_proj.weight', 'ernie.layers.24.mlp.experts.70.down_proj.weight', 'ernie.layers.24.mlp.experts.71.down_proj.weight', 'ernie.layers.24.mlp.experts.72.down_proj.weight', 'ernie.layers.24.mlp.experts.73.down_proj.weight', 'ernie.layers.24.mlp.experts.74.down_proj.weight', 'ernie.layers.24.mlp.experts.75.down_proj.weight', 'ernie.layers.24.mlp.experts.76.down_proj.weight', 'ernie.layers.24.mlp.experts.77.down_proj.weight', 'ernie.layers.24.mlp.experts.78.down_proj.weight', 'ernie.layers.24.mlp.experts.79.down_proj.weight', 'ernie.layers.24.mlp.experts.80.down_proj.weight', 'ernie.layers.24.mlp.experts.81.down_proj.weight', 'ernie.layers.24.mlp.experts.82.down_proj.weight', 'ernie.layers.24.mlp.experts.83.down_proj.weight', 'ernie.layers.24.mlp.experts.84.down_proj.weight', 'ernie.layers.24.mlp.experts.85.down_proj.weight', 'ernie.layers.24.mlp.experts.86.down_proj.weight', 'ernie.layers.24.mlp.experts.87.down_proj.weight', 'ernie.layers.24.mlp.experts.88.down_proj.weight', 'ernie.layers.24.mlp.experts.89.down_proj.weight', 'ernie.layers.24.mlp.experts.90.down_proj.weight', 'ernie.layers.24.mlp.experts.91.down_proj.weight', 'ernie.layers.24.mlp.experts.92.down_proj.weight', 'ernie.layers.24.mlp.experts.93.down_proj.weight', 'ernie.layers.24.mlp.experts.94.down_proj.weight', 'ernie.layers.24.mlp.experts.95.down_proj.weight']
ernie.layers.25.mlp.text_fused_moe.gate.weight:ernie.layers.25.mlp.gate.weight
ernie.layers.25.mlp.text_fused_moe.experts.gate_correction_bias:ernie.layers.25.mlp.moe_statics.e_score_correction_bias
ernie.layers.25.mlp.gate_correction_bias:ernie.layers.25.mlp.moe_statics.e_score_correction_bias
ernie.layers.25.mlp.text_fused_moe.experts.up_gate_proj_weight:['ernie.layers.25.mlp.experts.0.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.1.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.2.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.3.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.4.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.5.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.6.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.7.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.8.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.9.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.10.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.11.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.12.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.13.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.14.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.15.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.16.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.17.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.18.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.19.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.20.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.21.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.22.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.23.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.24.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.25.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.26.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.27.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.28.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.29.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.30.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.31.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.64.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.65.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.66.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.67.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.68.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.69.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.70.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.71.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.72.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.73.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.74.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.75.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.76.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.77.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.78.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.79.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.80.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.81.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.82.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.83.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.84.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.85.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.86.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.87.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.88.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.89.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.90.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.91.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.92.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.93.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.94.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.95.up_gate_proj.weight']
ernie.layers.25.mlp.text_fused_moe.experts.down_proj_weight:['ernie.layers.25.mlp.experts.0.down_proj.weight', 'ernie.layers.25.mlp.experts.1.down_proj.weight', 'ernie.layers.25.mlp.experts.2.down_proj.weight', 'ernie.layers.25.mlp.experts.3.down_proj.weight', 'ernie.layers.25.mlp.experts.4.down_proj.weight', 'ernie.layers.25.mlp.experts.5.down_proj.weight', 'ernie.layers.25.mlp.experts.6.down_proj.weight', 'ernie.layers.25.mlp.experts.7.down_proj.weight', 'ernie.layers.25.mlp.experts.8.down_proj.weight', 'ernie.layers.25.mlp.experts.9.down_proj.weight', 'ernie.layers.25.mlp.experts.10.down_proj.weight', 'ernie.layers.25.mlp.experts.11.down_proj.weight', 'ernie.layers.25.mlp.experts.12.down_proj.weight', 'ernie.layers.25.mlp.experts.13.down_proj.weight', 'ernie.layers.25.mlp.experts.14.down_proj.weight', 'ernie.layers.25.mlp.experts.15.down_proj.weight', 'ernie.layers.25.mlp.experts.16.down_proj.weight', 'ernie.layers.25.mlp.experts.17.down_proj.weight', 'ernie.layers.25.mlp.experts.18.down_proj.weight', 'ernie.layers.25.mlp.experts.19.down_proj.weight', 'ernie.layers.25.mlp.experts.20.down_proj.weight', 'ernie.layers.25.mlp.experts.21.down_proj.weight', 'ernie.layers.25.mlp.experts.22.down_proj.weight', 'ernie.layers.25.mlp.experts.23.down_proj.weight', 'ernie.layers.25.mlp.experts.24.down_proj.weight', 'ernie.layers.25.mlp.experts.25.down_proj.weight', 'ernie.layers.25.mlp.experts.26.down_proj.weight', 'ernie.layers.25.mlp.experts.27.down_proj.weight', 'ernie.layers.25.mlp.experts.28.down_proj.weight', 'ernie.layers.25.mlp.experts.29.down_proj.weight', 'ernie.layers.25.mlp.experts.30.down_proj.weight', 'ernie.layers.25.mlp.experts.31.down_proj.weight', 'ernie.layers.25.mlp.experts.64.down_proj.weight', 'ernie.layers.25.mlp.experts.65.down_proj.weight', 'ernie.layers.25.mlp.experts.66.down_proj.weight', 'ernie.layers.25.mlp.experts.67.down_proj.weight', 'ernie.layers.25.mlp.experts.68.down_proj.weight', 'ernie.layers.25.mlp.experts.69.down_proj.weight', 'ernie.layers.25.mlp.experts.70.down_proj.weight', 'ernie.layers.25.mlp.experts.71.down_proj.weight', 'ernie.layers.25.mlp.experts.72.down_proj.weight', 'ernie.layers.25.mlp.experts.73.down_proj.weight', 'ernie.layers.25.mlp.experts.74.down_proj.weight', 'ernie.layers.25.mlp.experts.75.down_proj.weight', 'ernie.layers.25.mlp.experts.76.down_proj.weight', 'ernie.layers.25.mlp.experts.77.down_proj.weight', 'ernie.layers.25.mlp.experts.78.down_proj.weight', 'ernie.layers.25.mlp.experts.79.down_proj.weight', 'ernie.layers.25.mlp.experts.80.down_proj.weight', 'ernie.layers.25.mlp.experts.81.down_proj.weight', 'ernie.layers.25.mlp.experts.82.down_proj.weight', 'ernie.layers.25.mlp.experts.83.down_proj.weight', 'ernie.layers.25.mlp.experts.84.down_proj.weight', 'ernie.layers.25.mlp.experts.85.down_proj.weight', 'ernie.layers.25.mlp.experts.86.down_proj.weight', 'ernie.layers.25.mlp.experts.87.down_proj.weight', 'ernie.layers.25.mlp.experts.88.down_proj.weight', 'ernie.layers.25.mlp.experts.89.down_proj.weight', 'ernie.layers.25.mlp.experts.90.down_proj.weight', 'ernie.layers.25.mlp.experts.91.down_proj.weight', 'ernie.layers.25.mlp.experts.92.down_proj.weight', 'ernie.layers.25.mlp.experts.93.down_proj.weight', 'ernie.layers.25.mlp.experts.94.down_proj.weight', 'ernie.layers.25.mlp.experts.95.down_proj.weight']
ernie.layers.26.mlp.text_fused_moe.gate.weight:ernie.layers.26.mlp.gate.weight
ernie.layers.26.mlp.text_fused_moe.experts.gate_correction_bias:ernie.layers.26.mlp.moe_statics.e_score_correction_bias
ernie.layers.26.mlp.gate_correction_bias:ernie.layers.26.mlp.moe_statics.e_score_correction_bias
ernie.layers.26.mlp.text_fused_moe.experts.up_gate_proj_weight:['ernie.layers.26.mlp.experts.0.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.1.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.2.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.3.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.4.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.5.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.6.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.7.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.8.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.9.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.10.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.11.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.12.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.13.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.14.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.15.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.16.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.17.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.18.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.19.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.20.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.21.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.22.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.23.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.24.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.25.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.26.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.27.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.28.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.29.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.30.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.31.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.64.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.65.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.66.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.67.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.68.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.69.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.70.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.71.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.72.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.73.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.74.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.75.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.76.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.77.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.78.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.79.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.80.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.81.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.82.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.83.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.84.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.85.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.86.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.87.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.88.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.89.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.90.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.91.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.92.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.93.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.94.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.95.up_gate_proj.weight']
ernie.layers.26.mlp.text_fused_moe.experts.down_proj_weight:['ernie.layers.26.mlp.experts.0.down_proj.weight', 'ernie.layers.26.mlp.experts.1.down_proj.weight', 'ernie.layers.26.mlp.experts.2.down_proj.weight', 'ernie.layers.26.mlp.experts.3.down_proj.weight', 'ernie.layers.26.mlp.experts.4.down_proj.weight', 'ernie.layers.26.mlp.experts.5.down_proj.weight', 'ernie.layers.26.mlp.experts.6.down_proj.weight', 'ernie.layers.26.mlp.experts.7.down_proj.weight', 'ernie.layers.26.mlp.experts.8.down_proj.weight', 'ernie.layers.26.mlp.experts.9.down_proj.weight', 'ernie.layers.26.mlp.experts.10.down_proj.weight', 'ernie.layers.26.mlp.experts.11.down_proj.weight', 'ernie.layers.26.mlp.experts.12.down_proj.weight', 'ernie.layers.26.mlp.experts.13.down_proj.weight', 'ernie.layers.26.mlp.experts.14.down_proj.weight', 'ernie.layers.26.mlp.experts.15.down_proj.weight', 'ernie.layers.26.mlp.experts.16.down_proj.weight', 'ernie.layers.26.mlp.experts.17.down_proj.weight', 'ernie.layers.26.mlp.experts.18.down_proj.weight', 'ernie.layers.26.mlp.experts.19.down_proj.weight', 'ernie.layers.26.mlp.experts.20.down_proj.weight', 'ernie.layers.26.mlp.experts.21.down_proj.weight', 'ernie.layers.26.mlp.experts.22.down_proj.weight', 'ernie.layers.26.mlp.experts.23.down_proj.weight', 'ernie.layers.26.mlp.experts.24.down_proj.weight', 'ernie.layers.26.mlp.experts.25.down_proj.weight', 'ernie.layers.26.mlp.experts.26.down_proj.weight', 'ernie.layers.26.mlp.experts.27.down_proj.weight', 'ernie.layers.26.mlp.experts.28.down_proj.weight', 'ernie.layers.26.mlp.experts.29.down_proj.weight', 'ernie.layers.26.mlp.experts.30.down_proj.weight', 'ernie.layers.26.mlp.experts.31.down_proj.weight', 'ernie.layers.26.mlp.experts.64.down_proj.weight', 'ernie.layers.26.mlp.experts.65.down_proj.weight', 'ernie.layers.26.mlp.experts.66.down_proj.weight', 'ernie.layers.26.mlp.experts.67.down_proj.weight', 'ernie.layers.26.mlp.experts.68.down_proj.weight', 'ernie.layers.26.mlp.experts.69.down_proj.weight', 'ernie.layers.26.mlp.experts.70.down_proj.weight', 'ernie.layers.26.mlp.experts.71.down_proj.weight', 'ernie.layers.26.mlp.experts.72.down_proj.weight', 'ernie.layers.26.mlp.experts.73.down_proj.weight', 'ernie.layers.26.mlp.experts.74.down_proj.weight', 'ernie.layers.26.mlp.experts.75.down_proj.weight', 'ernie.layers.26.mlp.experts.76.down_proj.weight', 'ernie.layers.26.mlp.experts.77.down_proj.weight', 'ernie.layers.26.mlp.experts.78.down_proj.weight', 'ernie.layers.26.mlp.experts.79.down_proj.weight', 'ernie.layers.26.mlp.experts.80.down_proj.weight', 'ernie.layers.26.mlp.experts.81.down_proj.weight', 'ernie.layers.26.mlp.experts.82.down_proj.weight', 'ernie.layers.26.mlp.experts.83.down_proj.weight', 'ernie.layers.26.mlp.experts.84.down_proj.weight', 'ernie.layers.26.mlp.experts.85.down_proj.weight', 'ernie.layers.26.mlp.experts.86.down_proj.weight', 'ernie.layers.26.mlp.experts.87.down_proj.weight', 'ernie.layers.26.mlp.experts.88.down_proj.weight', 'ernie.layers.26.mlp.experts.89.down_proj.weight', 'ernie.layers.26.mlp.experts.90.down_proj.weight', 'ernie.layers.26.mlp.experts.91.down_proj.weight', 'ernie.layers.26.mlp.experts.92.down_proj.weight', 'ernie.layers.26.mlp.experts.93.down_proj.weight', 'ernie.layers.26.mlp.experts.94.down_proj.weight', 'ernie.layers.26.mlp.experts.95.down_proj.weight']
ernie.layers.27.mlp.text_fused_moe.gate.weight:ernie.layers.27.mlp.gate.weight
ernie.layers.27.mlp.text_fused_moe.experts.gate_correction_bias:ernie.layers.27.mlp.moe_statics.e_score_correction_bias
ernie.layers.27.mlp.gate_correction_bias:ernie.layers.27.mlp.moe_statics.e_score_correction_bias
ernie.layers.27.mlp.text_fused_moe.experts.up_gate_proj_weight:['ernie.layers.27.mlp.experts.0.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.1.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.2.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.3.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.4.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.5.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.6.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.7.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.8.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.9.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.10.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.11.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.12.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.13.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.14.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.15.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.16.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.17.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.18.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.19.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.20.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.21.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.22.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.23.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.24.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.25.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.26.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.27.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.28.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.29.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.30.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.31.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.64.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.65.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.66.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.67.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.68.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.69.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.70.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.71.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.72.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.73.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.74.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.75.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.76.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.77.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.78.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.79.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.80.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.81.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.82.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.83.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.84.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.85.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.86.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.87.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.88.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.89.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.90.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.91.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.92.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.93.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.94.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.95.up_gate_proj.weight']
ernie.layers.27.mlp.text_fused_moe.experts.down_proj_weight:['ernie.layers.27.mlp.experts.0.down_proj.weight', 'ernie.layers.27.mlp.experts.1.down_proj.weight', 'ernie.layers.27.mlp.experts.2.down_proj.weight', 'ernie.layers.27.mlp.experts.3.down_proj.weight', 'ernie.layers.27.mlp.experts.4.down_proj.weight', 'ernie.layers.27.mlp.experts.5.down_proj.weight', 'ernie.layers.27.mlp.experts.6.down_proj.weight', 'ernie.layers.27.mlp.experts.7.down_proj.weight', 'ernie.layers.27.mlp.experts.8.down_proj.weight', 'ernie.layers.27.mlp.experts.9.down_proj.weight', 'ernie.layers.27.mlp.experts.10.down_proj.weight', 'ernie.layers.27.mlp.experts.11.down_proj.weight', 'ernie.layers.27.mlp.experts.12.down_proj.weight', 'ernie.layers.27.mlp.experts.13.down_proj.weight', 'ernie.layers.27.mlp.experts.14.down_proj.weight', 'ernie.layers.27.mlp.experts.15.down_proj.weight', 'ernie.layers.27.mlp.experts.16.down_proj.weight', 'ernie.layers.27.mlp.experts.17.down_proj.weight', 'ernie.layers.27.mlp.experts.18.down_proj.weight', 'ernie.layers.27.mlp.experts.19.down_proj.weight', 'ernie.layers.27.mlp.experts.20.down_proj.weight', 'ernie.layers.27.mlp.experts.21.down_proj.weight', 'ernie.layers.27.mlp.experts.22.down_proj.weight', 'ernie.layers.27.mlp.experts.23.down_proj.weight', 'ernie.layers.27.mlp.experts.24.down_proj.weight', 'ernie.layers.27.mlp.experts.25.down_proj.weight', 'ernie.layers.27.mlp.experts.26.down_proj.weight', 'ernie.layers.27.mlp.experts.27.down_proj.weight', 'ernie.layers.27.mlp.experts.28.down_proj.weight', 'ernie.layers.27.mlp.experts.29.down_proj.weight', 'ernie.layers.27.mlp.experts.30.down_proj.weight', 'ernie.layers.27.mlp.experts.31.down_proj.weight', 'ernie.layers.27.mlp.experts.64.down_proj.weight', 'ernie.layers.27.mlp.experts.65.down_proj.weight', 'ernie.layers.27.mlp.experts.66.down_proj.weight', 'ernie.layers.27.mlp.experts.67.down_proj.weight', 'ernie.layers.27.mlp.experts.68.down_proj.weight', 'ernie.layers.27.mlp.experts.69.down_proj.weight', 'ernie.layers.27.mlp.experts.70.down_proj.weight', 'ernie.layers.27.mlp.experts.71.down_proj.weight', 'ernie.layers.27.mlp.experts.72.down_proj.weight', 'ernie.layers.27.mlp.experts.73.down_proj.weight', 'ernie.layers.27.mlp.experts.74.down_proj.weight', 'ernie.layers.27.mlp.experts.75.down_proj.weight', 'ernie.layers.27.mlp.experts.76.down_proj.weight', 'ernie.layers.27.mlp.experts.77.down_proj.weight', 'ernie.layers.27.mlp.experts.78.down_proj.weight', 'ernie.layers.27.mlp.experts.79.down_proj.weight', 'ernie.layers.27.mlp.experts.80.down_proj.weight', 'ernie.layers.27.mlp.experts.81.down_proj.weight', 'ernie.layers.27.mlp.experts.82.down_proj.weight', 'ernie.layers.27.mlp.experts.83.down_proj.weight', 'ernie.layers.27.mlp.experts.84.down_proj.weight', 'ernie.layers.27.mlp.experts.85.down_proj.weight', 'ernie.layers.27.mlp.experts.86.down_proj.weight', 'ernie.layers.27.mlp.experts.87.down_proj.weight', 'ernie.layers.27.mlp.experts.88.down_proj.weight', 'ernie.layers.27.mlp.experts.89.down_proj.weight', 'ernie.layers.27.mlp.experts.90.down_proj.weight', 'ernie.layers.27.mlp.experts.91.down_proj.weight', 'ernie.layers.27.mlp.experts.92.down_proj.weight', 'ernie.layers.27.mlp.experts.93.down_proj.weight', 'ernie.layers.27.mlp.experts.94.down_proj.weight', 'ernie.layers.27.mlp.experts.95.down_proj.weight']
ernie.layers.28.mlp.text_fused_moe.gate.weight:ernie.layers.28.mlp.gate.weight
ernie.layers.28.mlp.text_fused_moe.experts.gate_correction_bias:ernie.layers.28.mlp.moe_statics.e_score_correction_bias
ernie.layers.28.mlp.gate_correction_bias:ernie.layers.28.mlp.moe_statics.e_score_correction_bias
ernie.layers.28.mlp.text_fused_moe.experts.up_gate_proj_weight:['ernie.layers.28.mlp.experts.0.up_gate_proj.weight', 'ernie.layers.28.mlp.experts.1.up_gate_proj.weight', 'ernie.layers.28.mlp.experts.2.up_gate_proj.weight', 'ernie.layers.28.mlp.experts.3.up_gate_proj.weight', 'ernie.layers.28.mlp.experts.4.up_gate_proj.weight', 'ernie.layers.28.mlp.experts.5.up_gate_proj.weight', 'ernie.layers.28.mlp.experts.6.up_gate_proj.weight', 'ernie.layers.28.mlp.experts.7.up_gate_proj.weight', 'ernie.layers.28.mlp.experts.8.up_gate_proj.weight', 'ernie.layers.28.mlp.experts.9.up_gate_proj.weight', 'ernie.layers.28.mlp.experts.10.up_gate_proj.weight', 'ernie.layers.28.mlp.experts.11.up_gate_proj.weight', 'ernie.layers.28.mlp.experts.12.up_gate_proj.weight', 'ernie.layers.28.mlp.experts.13.up_gate_proj.weight', 'ernie.layers.28.mlp.experts.14.up_gate_proj.weight', 'ernie.layers.28.mlp.experts.15.up_gate_proj.weight', 'ernie.layers.28.mlp.experts.16.up_gate_proj.weight', 'ernie.layers.28.mlp.experts.17.up_gate_proj.weight', 'ernie.layers.28.mlp.experts.18.up_gate_proj.weight', 'ernie.layers.28.mlp.experts.19.up_gate_proj.weight', 'ernie.layers.28.mlp.experts.20.up_gate_proj.weight', 'ernie.layers.28.mlp.experts.21.up_gate_proj.weight', 'ernie.layers.28.mlp.experts.22.up_gate_proj.weight', 'ernie.layers.28.mlp.experts.23.up_gate_proj.weight', 'ernie.layers.28.mlp.experts.24.up_gate_proj.weight', 'ernie.layers.28.mlp.experts.25.up_gate_proj.weight', 'ernie.layers.28.mlp.experts.26.up_gate_proj.weight', 'ernie.layers.28.mlp.experts.27.up_gate_proj.weight', 'ernie.layers.28.mlp.experts.28.up_gate_proj.weight', 'ernie.layers.28.mlp.experts.29.up_gate_proj.weight', 'ernie.layers.28.mlp.experts.30.up_gate_proj.weight', 'ernie.layers.28.mlp.experts.31.up_gate_proj.weight', 'ernie.layers.28.mlp.experts.64.up_gate_proj.weight', 'ernie.layers.28.mlp.experts.65.up_gate_proj.weight', 'ernie.layers.28.mlp.experts.66.up_gate_proj.weight', 'ernie.layers.28.mlp.experts.67.up_gate_proj.weight', 'ernie.layers.28.mlp.experts.68.up_gate_proj.weight', 'ernie.layers.28.mlp.experts.69.up_gate_proj.weight', 'ernie.layers.28.mlp.experts.70.up_gate_proj.weight', 'ernie.layers.28.mlp.experts.71.up_gate_proj.weight', 'ernie.layers.28.mlp.experts.72.up_gate_proj.weight', 'ernie.layers.28.mlp.experts.73.up_gate_proj.weight', 'ernie.layers.28.mlp.experts.74.up_gate_proj.weight', 'ernie.layers.28.mlp.experts.75.up_gate_proj.weight', 'ernie.layers.28.mlp.experts.76.up_gate_proj.weight', 'ernie.layers.28.mlp.experts.77.up_gate_proj.weight', 'ernie.layers.28.mlp.experts.78.up_gate_proj.weight', 'ernie.layers.28.mlp.experts.79.up_gate_proj.weight', 'ernie.layers.28.mlp.experts.80.up_gate_proj.weight', 'ernie.layers.28.mlp.experts.81.up_gate_proj.weight', 'ernie.layers.28.mlp.experts.82.up_gate_proj.weight', 'ernie.layers.28.mlp.experts.83.up_gate_proj.weight', 'ernie.layers.28.mlp.experts.84.up_gate_proj.weight', 'ernie.layers.28.mlp.experts.85.up_gate_proj.weight', 'ernie.layers.28.mlp.experts.86.up_gate_proj.weight', 'ernie.layers.28.mlp.experts.87.up_gate_proj.weight', 'ernie.layers.28.mlp.experts.88.up_gate_proj.weight', 'ernie.layers.28.mlp.experts.89.up_gate_proj.weight', 'ernie.layers.28.mlp.experts.90.up_gate_proj.weight', 'ernie.layers.28.mlp.experts.91.up_gate_proj.weight', 'ernie.layers.28.mlp.experts.92.up_gate_proj.weight', 'ernie.layers.28.mlp.experts.93.up_gate_proj.weight', 'ernie.layers.28.mlp.experts.94.up_gate_proj.weight', 'ernie.layers.28.mlp.experts.95.up_gate_proj.weight']
ernie.layers.28.mlp.text_fused_moe.experts.down_proj_weight:['ernie.layers.28.mlp.experts.0.down_proj.weight', 'ernie.layers.28.mlp.experts.1.down_proj.weight', 'ernie.layers.28.mlp.experts.2.down_proj.weight', 'ernie.layers.28.mlp.experts.3.down_proj.weight', 'ernie.layers.28.mlp.experts.4.down_proj.weight', 'ernie.layers.28.mlp.experts.5.down_proj.weight', 'ernie.layers.28.mlp.experts.6.down_proj.weight', 'ernie.layers.28.mlp.experts.7.down_proj.weight', 'ernie.layers.28.mlp.experts.8.down_proj.weight', 'ernie.layers.28.mlp.experts.9.down_proj.weight', 'ernie.layers.28.mlp.experts.10.down_proj.weight', 'ernie.layers.28.mlp.experts.11.down_proj.weight', 'ernie.layers.28.mlp.experts.12.down_proj.weight', 'ernie.layers.28.mlp.experts.13.down_proj.weight', 'ernie.layers.28.mlp.experts.14.down_proj.weight', 'ernie.layers.28.mlp.experts.15.down_proj.weight', 'ernie.layers.28.mlp.experts.16.down_proj.weight', 'ernie.layers.28.mlp.experts.17.down_proj.weight', 'ernie.layers.28.mlp.experts.18.down_proj.weight', 'ernie.layers.28.mlp.experts.19.down_proj.weight', 'ernie.layers.28.mlp.experts.20.down_proj.weight', 'ernie.layers.28.mlp.experts.21.down_proj.weight', 'ernie.layers.28.mlp.experts.22.down_proj.weight', 'ernie.layers.28.mlp.experts.23.down_proj.weight', 'ernie.layers.28.mlp.experts.24.down_proj.weight', 'ernie.layers.28.mlp.experts.25.down_proj.weight', 'ernie.layers.28.mlp.experts.26.down_proj.weight', 'ernie.layers.28.mlp.experts.27.down_proj.weight', 'ernie.layers.28.mlp.experts.28.down_proj.weight', 'ernie.layers.28.mlp.experts.29.down_proj.weight', 'ernie.layers.28.mlp.experts.30.down_proj.weight', 'ernie.layers.28.mlp.experts.31.down_proj.weight', 'ernie.layers.28.mlp.experts.64.down_proj.weight', 'ernie.layers.28.mlp.experts.65.down_proj.weight', 'ernie.layers.28.mlp.experts.66.down_proj.weight', 'ernie.layers.28.mlp.experts.67.down_proj.weight', 'ernie.layers.28.mlp.experts.68.down_proj.weight', 'ernie.layers.28.mlp.experts.69.down_proj.weight', 'ernie.layers.28.mlp.experts.70.down_proj.weight', 'ernie.layers.28.mlp.experts.71.down_proj.weight', 'ernie.layers.28.mlp.experts.72.down_proj.weight', 'ernie.layers.28.mlp.experts.73.down_proj.weight', 'ernie.layers.28.mlp.experts.74.down_proj.weight', 'ernie.layers.28.mlp.experts.75.down_proj.weight', 'ernie.layers.28.mlp.experts.76.down_proj.weight', 'ernie.layers.28.mlp.experts.77.down_proj.weight', 'ernie.layers.28.mlp.experts.78.down_proj.weight', 'ernie.layers.28.mlp.experts.79.down_proj.weight', 'ernie.layers.28.mlp.experts.80.down_proj.weight', 'ernie.layers.28.mlp.experts.81.down_proj.weight', 'ernie.layers.28.mlp.experts.82.down_proj.weight', 'ernie.layers.28.mlp.experts.83.down_proj.weight', 'ernie.layers.28.mlp.experts.84.down_proj.weight', 'ernie.layers.28.mlp.experts.85.down_proj.weight', 'ernie.layers.28.mlp.experts.86.down_proj.weight', 'ernie.layers.28.mlp.experts.87.down_proj.weight', 'ernie.layers.28.mlp.experts.88.down_proj.weight', 'ernie.layers.28.mlp.experts.89.down_proj.weight', 'ernie.layers.28.mlp.experts.90.down_proj.weight', 'ernie.layers.28.mlp.experts.91.down_proj.weight', 'ernie.layers.28.mlp.experts.92.down_proj.weight', 'ernie.layers.28.mlp.experts.93.down_proj.weight', 'ernie.layers.28.mlp.experts.94.down_proj.weight', 'ernie.layers.28.mlp.experts.95.down_proj.weight']
ernie.layers.1.mlp.image_fused_moe.gate.weight:ernie.layers.1.mlp.gate.weight_1
ernie.layers.1.mlp.image_fused_moe.experts.gate_correction_bias:ernie.layers.1.mlp.moe_statics.e_score_correction_bias
ernie.layers.1.mlp.image_fused_moe.experts.up_gate_proj_weight:['ernie.layers.1.mlp.experts.32.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.33.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.34.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.35.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.36.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.37.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.38.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.39.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.40.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.41.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.42.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.43.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.44.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.45.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.46.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.47.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.48.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.49.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.50.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.51.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.52.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.53.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.54.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.55.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.56.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.57.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.58.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.59.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.60.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.61.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.62.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.63.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.96.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.97.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.98.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.99.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.100.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.101.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.102.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.103.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.104.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.105.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.106.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.107.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.108.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.109.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.110.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.111.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.112.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.113.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.114.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.115.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.116.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.117.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.118.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.119.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.120.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.121.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.122.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.123.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.124.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.125.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.126.up_gate_proj.weight', 'ernie.layers.1.mlp.experts.127.up_gate_proj.weight']
ernie.layers.1.mlp.image_fused_moe.experts.down_proj_weight:['ernie.layers.1.mlp.experts.32.down_proj.weight', 'ernie.layers.1.mlp.experts.33.down_proj.weight', 'ernie.layers.1.mlp.experts.34.down_proj.weight', 'ernie.layers.1.mlp.experts.35.down_proj.weight', 'ernie.layers.1.mlp.experts.36.down_proj.weight', 'ernie.layers.1.mlp.experts.37.down_proj.weight', 'ernie.layers.1.mlp.experts.38.down_proj.weight', 'ernie.layers.1.mlp.experts.39.down_proj.weight', 'ernie.layers.1.mlp.experts.40.down_proj.weight', 'ernie.layers.1.mlp.experts.41.down_proj.weight', 'ernie.layers.1.mlp.experts.42.down_proj.weight', 'ernie.layers.1.mlp.experts.43.down_proj.weight', 'ernie.layers.1.mlp.experts.44.down_proj.weight', 'ernie.layers.1.mlp.experts.45.down_proj.weight', 'ernie.layers.1.mlp.experts.46.down_proj.weight', 'ernie.layers.1.mlp.experts.47.down_proj.weight', 'ernie.layers.1.mlp.experts.48.down_proj.weight', 'ernie.layers.1.mlp.experts.49.down_proj.weight', 'ernie.layers.1.mlp.experts.50.down_proj.weight', 'ernie.layers.1.mlp.experts.51.down_proj.weight', 'ernie.layers.1.mlp.experts.52.down_proj.weight', 'ernie.layers.1.mlp.experts.53.down_proj.weight', 'ernie.layers.1.mlp.experts.54.down_proj.weight', 'ernie.layers.1.mlp.experts.55.down_proj.weight', 'ernie.layers.1.mlp.experts.56.down_proj.weight', 'ernie.layers.1.mlp.experts.57.down_proj.weight', 'ernie.layers.1.mlp.experts.58.down_proj.weight', 'ernie.layers.1.mlp.experts.59.down_proj.weight', 'ernie.layers.1.mlp.experts.60.down_proj.weight', 'ernie.layers.1.mlp.experts.61.down_proj.weight', 'ernie.layers.1.mlp.experts.62.down_proj.weight', 'ernie.layers.1.mlp.experts.63.down_proj.weight', 'ernie.layers.1.mlp.experts.96.down_proj.weight', 'ernie.layers.1.mlp.experts.97.down_proj.weight', 'ernie.layers.1.mlp.experts.98.down_proj.weight', 'ernie.layers.1.mlp.experts.99.down_proj.weight', 'ernie.layers.1.mlp.experts.100.down_proj.weight', 'ernie.layers.1.mlp.experts.101.down_proj.weight', 'ernie.layers.1.mlp.experts.102.down_proj.weight', 'ernie.layers.1.mlp.experts.103.down_proj.weight', 'ernie.layers.1.mlp.experts.104.down_proj.weight', 'ernie.layers.1.mlp.experts.105.down_proj.weight', 'ernie.layers.1.mlp.experts.106.down_proj.weight', 'ernie.layers.1.mlp.experts.107.down_proj.weight', 'ernie.layers.1.mlp.experts.108.down_proj.weight', 'ernie.layers.1.mlp.experts.109.down_proj.weight', 'ernie.layers.1.mlp.experts.110.down_proj.weight', 'ernie.layers.1.mlp.experts.111.down_proj.weight', 'ernie.layers.1.mlp.experts.112.down_proj.weight', 'ernie.layers.1.mlp.experts.113.down_proj.weight', 'ernie.layers.1.mlp.experts.114.down_proj.weight', 'ernie.layers.1.mlp.experts.115.down_proj.weight', 'ernie.layers.1.mlp.experts.116.down_proj.weight', 'ernie.layers.1.mlp.experts.117.down_proj.weight', 'ernie.layers.1.mlp.experts.118.down_proj.weight', 'ernie.layers.1.mlp.experts.119.down_proj.weight', 'ernie.layers.1.mlp.experts.120.down_proj.weight', 'ernie.layers.1.mlp.experts.121.down_proj.weight', 'ernie.layers.1.mlp.experts.122.down_proj.weight', 'ernie.layers.1.mlp.experts.123.down_proj.weight', 'ernie.layers.1.mlp.experts.124.down_proj.weight', 'ernie.layers.1.mlp.experts.125.down_proj.weight', 'ernie.layers.1.mlp.experts.126.down_proj.weight', 'ernie.layers.1.mlp.experts.127.down_proj.weight']
ernie.layers.2.mlp.image_fused_moe.gate.weight:ernie.layers.2.mlp.gate.weight_1
ernie.layers.2.mlp.image_fused_moe.experts.gate_correction_bias:ernie.layers.2.mlp.moe_statics.e_score_correction_bias
ernie.layers.2.mlp.image_fused_moe.experts.up_gate_proj_weight:['ernie.layers.2.mlp.experts.32.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.33.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.34.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.35.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.36.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.37.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.38.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.39.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.40.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.41.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.42.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.43.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.44.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.45.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.46.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.47.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.48.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.49.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.50.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.51.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.52.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.53.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.54.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.55.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.56.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.57.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.58.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.59.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.60.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.61.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.62.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.63.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.96.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.97.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.98.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.99.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.100.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.101.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.102.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.103.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.104.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.105.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.106.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.107.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.108.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.109.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.110.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.111.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.112.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.113.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.114.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.115.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.116.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.117.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.118.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.119.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.120.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.121.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.122.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.123.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.124.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.125.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.126.up_gate_proj.weight', 'ernie.layers.2.mlp.experts.127.up_gate_proj.weight']
ernie.layers.2.mlp.image_fused_moe.experts.down_proj_weight:['ernie.layers.2.mlp.experts.32.down_proj.weight', 'ernie.layers.2.mlp.experts.33.down_proj.weight', 'ernie.layers.2.mlp.experts.34.down_proj.weight', 'ernie.layers.2.mlp.experts.35.down_proj.weight', 'ernie.layers.2.mlp.experts.36.down_proj.weight', 'ernie.layers.2.mlp.experts.37.down_proj.weight', 'ernie.layers.2.mlp.experts.38.down_proj.weight', 'ernie.layers.2.mlp.experts.39.down_proj.weight', 'ernie.layers.2.mlp.experts.40.down_proj.weight', 'ernie.layers.2.mlp.experts.41.down_proj.weight', 'ernie.layers.2.mlp.experts.42.down_proj.weight', 'ernie.layers.2.mlp.experts.43.down_proj.weight', 'ernie.layers.2.mlp.experts.44.down_proj.weight', 'ernie.layers.2.mlp.experts.45.down_proj.weight', 'ernie.layers.2.mlp.experts.46.down_proj.weight', 'ernie.layers.2.mlp.experts.47.down_proj.weight', 'ernie.layers.2.mlp.experts.48.down_proj.weight', 'ernie.layers.2.mlp.experts.49.down_proj.weight', 'ernie.layers.2.mlp.experts.50.down_proj.weight', 'ernie.layers.2.mlp.experts.51.down_proj.weight', 'ernie.layers.2.mlp.experts.52.down_proj.weight', 'ernie.layers.2.mlp.experts.53.down_proj.weight', 'ernie.layers.2.mlp.experts.54.down_proj.weight', 'ernie.layers.2.mlp.experts.55.down_proj.weight', 'ernie.layers.2.mlp.experts.56.down_proj.weight', 'ernie.layers.2.mlp.experts.57.down_proj.weight', 'ernie.layers.2.mlp.experts.58.down_proj.weight', 'ernie.layers.2.mlp.experts.59.down_proj.weight', 'ernie.layers.2.mlp.experts.60.down_proj.weight', 'ernie.layers.2.mlp.experts.61.down_proj.weight', 'ernie.layers.2.mlp.experts.62.down_proj.weight', 'ernie.layers.2.mlp.experts.63.down_proj.weight', 'ernie.layers.2.mlp.experts.96.down_proj.weight', 'ernie.layers.2.mlp.experts.97.down_proj.weight', 'ernie.layers.2.mlp.experts.98.down_proj.weight', 'ernie.layers.2.mlp.experts.99.down_proj.weight', 'ernie.layers.2.mlp.experts.100.down_proj.weight', 'ernie.layers.2.mlp.experts.101.down_proj.weight', 'ernie.layers.2.mlp.experts.102.down_proj.weight', 'ernie.layers.2.mlp.experts.103.down_proj.weight', 'ernie.layers.2.mlp.experts.104.down_proj.weight', 'ernie.layers.2.mlp.experts.105.down_proj.weight', 'ernie.layers.2.mlp.experts.106.down_proj.weight', 'ernie.layers.2.mlp.experts.107.down_proj.weight', 'ernie.layers.2.mlp.experts.108.down_proj.weight', 'ernie.layers.2.mlp.experts.109.down_proj.weight', 'ernie.layers.2.mlp.experts.110.down_proj.weight', 'ernie.layers.2.mlp.experts.111.down_proj.weight', 'ernie.layers.2.mlp.experts.112.down_proj.weight', 'ernie.layers.2.mlp.experts.113.down_proj.weight', 'ernie.layers.2.mlp.experts.114.down_proj.weight', 'ernie.layers.2.mlp.experts.115.down_proj.weight', 'ernie.layers.2.mlp.experts.116.down_proj.weight', 'ernie.layers.2.mlp.experts.117.down_proj.weight', 'ernie.layers.2.mlp.experts.118.down_proj.weight', 'ernie.layers.2.mlp.experts.119.down_proj.weight', 'ernie.layers.2.mlp.experts.120.down_proj.weight', 'ernie.layers.2.mlp.experts.121.down_proj.weight', 'ernie.layers.2.mlp.experts.122.down_proj.weight', 'ernie.layers.2.mlp.experts.123.down_proj.weight', 'ernie.layers.2.mlp.experts.124.down_proj.weight', 'ernie.layers.2.mlp.experts.125.down_proj.weight', 'ernie.layers.2.mlp.experts.126.down_proj.weight', 'ernie.layers.2.mlp.experts.127.down_proj.weight']
ernie.layers.3.mlp.image_fused_moe.gate.weight:ernie.layers.3.mlp.gate.weight_1
ernie.layers.3.mlp.image_fused_moe.experts.gate_correction_bias:ernie.layers.3.mlp.moe_statics.e_score_correction_bias
ernie.layers.3.mlp.image_fused_moe.experts.up_gate_proj_weight:['ernie.layers.3.mlp.experts.32.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.33.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.34.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.35.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.36.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.37.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.38.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.39.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.40.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.41.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.42.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.43.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.44.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.45.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.46.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.47.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.48.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.49.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.50.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.51.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.52.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.53.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.54.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.55.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.56.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.57.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.58.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.59.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.60.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.61.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.62.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.63.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.96.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.97.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.98.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.99.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.100.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.101.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.102.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.103.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.104.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.105.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.106.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.107.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.108.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.109.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.110.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.111.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.112.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.113.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.114.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.115.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.116.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.117.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.118.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.119.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.120.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.121.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.122.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.123.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.124.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.125.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.126.up_gate_proj.weight', 'ernie.layers.3.mlp.experts.127.up_gate_proj.weight']
ernie.layers.3.mlp.image_fused_moe.experts.down_proj_weight:['ernie.layers.3.mlp.experts.32.down_proj.weight', 'ernie.layers.3.mlp.experts.33.down_proj.weight', 'ernie.layers.3.mlp.experts.34.down_proj.weight', 'ernie.layers.3.mlp.experts.35.down_proj.weight', 'ernie.layers.3.mlp.experts.36.down_proj.weight', 'ernie.layers.3.mlp.experts.37.down_proj.weight', 'ernie.layers.3.mlp.experts.38.down_proj.weight', 'ernie.layers.3.mlp.experts.39.down_proj.weight', 'ernie.layers.3.mlp.experts.40.down_proj.weight', 'ernie.layers.3.mlp.experts.41.down_proj.weight', 'ernie.layers.3.mlp.experts.42.down_proj.weight', 'ernie.layers.3.mlp.experts.43.down_proj.weight', 'ernie.layers.3.mlp.experts.44.down_proj.weight', 'ernie.layers.3.mlp.experts.45.down_proj.weight', 'ernie.layers.3.mlp.experts.46.down_proj.weight', 'ernie.layers.3.mlp.experts.47.down_proj.weight', 'ernie.layers.3.mlp.experts.48.down_proj.weight', 'ernie.layers.3.mlp.experts.49.down_proj.weight', 'ernie.layers.3.mlp.experts.50.down_proj.weight', 'ernie.layers.3.mlp.experts.51.down_proj.weight', 'ernie.layers.3.mlp.experts.52.down_proj.weight', 'ernie.layers.3.mlp.experts.53.down_proj.weight', 'ernie.layers.3.mlp.experts.54.down_proj.weight', 'ernie.layers.3.mlp.experts.55.down_proj.weight', 'ernie.layers.3.mlp.experts.56.down_proj.weight', 'ernie.layers.3.mlp.experts.57.down_proj.weight', 'ernie.layers.3.mlp.experts.58.down_proj.weight', 'ernie.layers.3.mlp.experts.59.down_proj.weight', 'ernie.layers.3.mlp.experts.60.down_proj.weight', 'ernie.layers.3.mlp.experts.61.down_proj.weight', 'ernie.layers.3.mlp.experts.62.down_proj.weight', 'ernie.layers.3.mlp.experts.63.down_proj.weight', 'ernie.layers.3.mlp.experts.96.down_proj.weight', 'ernie.layers.3.mlp.experts.97.down_proj.weight', 'ernie.layers.3.mlp.experts.98.down_proj.weight', 'ernie.layers.3.mlp.experts.99.down_proj.weight', 'ernie.layers.3.mlp.experts.100.down_proj.weight', 'ernie.layers.3.mlp.experts.101.down_proj.weight', 'ernie.layers.3.mlp.experts.102.down_proj.weight', 'ernie.layers.3.mlp.experts.103.down_proj.weight', 'ernie.layers.3.mlp.experts.104.down_proj.weight', 'ernie.layers.3.mlp.experts.105.down_proj.weight', 'ernie.layers.3.mlp.experts.106.down_proj.weight', 'ernie.layers.3.mlp.experts.107.down_proj.weight', 'ernie.layers.3.mlp.experts.108.down_proj.weight', 'ernie.layers.3.mlp.experts.109.down_proj.weight', 'ernie.layers.3.mlp.experts.110.down_proj.weight', 'ernie.layers.3.mlp.experts.111.down_proj.weight', 'ernie.layers.3.mlp.experts.112.down_proj.weight', 'ernie.layers.3.mlp.experts.113.down_proj.weight', 'ernie.layers.3.mlp.experts.114.down_proj.weight', 'ernie.layers.3.mlp.experts.115.down_proj.weight', 'ernie.layers.3.mlp.experts.116.down_proj.weight', 'ernie.layers.3.mlp.experts.117.down_proj.weight', 'ernie.layers.3.mlp.experts.118.down_proj.weight', 'ernie.layers.3.mlp.experts.119.down_proj.weight', 'ernie.layers.3.mlp.experts.120.down_proj.weight', 'ernie.layers.3.mlp.experts.121.down_proj.weight', 'ernie.layers.3.mlp.experts.122.down_proj.weight', 'ernie.layers.3.mlp.experts.123.down_proj.weight', 'ernie.layers.3.mlp.experts.124.down_proj.weight', 'ernie.layers.3.mlp.experts.125.down_proj.weight', 'ernie.layers.3.mlp.experts.126.down_proj.weight', 'ernie.layers.3.mlp.experts.127.down_proj.weight']
ernie.layers.4.mlp.image_fused_moe.gate.weight:ernie.layers.4.mlp.gate.weight_1
ernie.layers.4.mlp.image_fused_moe.experts.gate_correction_bias:ernie.layers.4.mlp.moe_statics.e_score_correction_bias
ernie.layers.4.mlp.image_fused_moe.experts.up_gate_proj_weight:['ernie.layers.4.mlp.experts.32.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.33.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.34.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.35.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.36.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.37.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.38.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.39.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.40.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.41.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.42.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.43.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.44.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.45.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.46.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.47.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.48.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.49.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.50.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.51.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.52.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.53.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.54.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.55.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.56.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.57.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.58.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.59.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.60.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.61.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.62.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.63.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.96.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.97.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.98.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.99.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.100.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.101.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.102.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.103.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.104.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.105.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.106.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.107.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.108.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.109.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.110.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.111.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.112.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.113.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.114.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.115.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.116.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.117.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.118.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.119.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.120.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.121.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.122.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.123.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.124.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.125.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.126.up_gate_proj.weight', 'ernie.layers.4.mlp.experts.127.up_gate_proj.weight']
ernie.layers.4.mlp.image_fused_moe.experts.down_proj_weight:['ernie.layers.4.mlp.experts.32.down_proj.weight', 'ernie.layers.4.mlp.experts.33.down_proj.weight', 'ernie.layers.4.mlp.experts.34.down_proj.weight', 'ernie.layers.4.mlp.experts.35.down_proj.weight', 'ernie.layers.4.mlp.experts.36.down_proj.weight', 'ernie.layers.4.mlp.experts.37.down_proj.weight', 'ernie.layers.4.mlp.experts.38.down_proj.weight', 'ernie.layers.4.mlp.experts.39.down_proj.weight', 'ernie.layers.4.mlp.experts.40.down_proj.weight', 'ernie.layers.4.mlp.experts.41.down_proj.weight', 'ernie.layers.4.mlp.experts.42.down_proj.weight', 'ernie.layers.4.mlp.experts.43.down_proj.weight', 'ernie.layers.4.mlp.experts.44.down_proj.weight', 'ernie.layers.4.mlp.experts.45.down_proj.weight', 'ernie.layers.4.mlp.experts.46.down_proj.weight', 'ernie.layers.4.mlp.experts.47.down_proj.weight', 'ernie.layers.4.mlp.experts.48.down_proj.weight', 'ernie.layers.4.mlp.experts.49.down_proj.weight', 'ernie.layers.4.mlp.experts.50.down_proj.weight', 'ernie.layers.4.mlp.experts.51.down_proj.weight', 'ernie.layers.4.mlp.experts.52.down_proj.weight', 'ernie.layers.4.mlp.experts.53.down_proj.weight', 'ernie.layers.4.mlp.experts.54.down_proj.weight', 'ernie.layers.4.mlp.experts.55.down_proj.weight', 'ernie.layers.4.mlp.experts.56.down_proj.weight', 'ernie.layers.4.mlp.experts.57.down_proj.weight', 'ernie.layers.4.mlp.experts.58.down_proj.weight', 'ernie.layers.4.mlp.experts.59.down_proj.weight', 'ernie.layers.4.mlp.experts.60.down_proj.weight', 'ernie.layers.4.mlp.experts.61.down_proj.weight', 'ernie.layers.4.mlp.experts.62.down_proj.weight', 'ernie.layers.4.mlp.experts.63.down_proj.weight', 'ernie.layers.4.mlp.experts.96.down_proj.weight', 'ernie.layers.4.mlp.experts.97.down_proj.weight', 'ernie.layers.4.mlp.experts.98.down_proj.weight', 'ernie.layers.4.mlp.experts.99.down_proj.weight', 'ernie.layers.4.mlp.experts.100.down_proj.weight', 'ernie.layers.4.mlp.experts.101.down_proj.weight', 'ernie.layers.4.mlp.experts.102.down_proj.weight', 'ernie.layers.4.mlp.experts.103.down_proj.weight', 'ernie.layers.4.mlp.experts.104.down_proj.weight', 'ernie.layers.4.mlp.experts.105.down_proj.weight', 'ernie.layers.4.mlp.experts.106.down_proj.weight', 'ernie.layers.4.mlp.experts.107.down_proj.weight', 'ernie.layers.4.mlp.experts.108.down_proj.weight', 'ernie.layers.4.mlp.experts.109.down_proj.weight', 'ernie.layers.4.mlp.experts.110.down_proj.weight', 'ernie.layers.4.mlp.experts.111.down_proj.weight', 'ernie.layers.4.mlp.experts.112.down_proj.weight', 'ernie.layers.4.mlp.experts.113.down_proj.weight', 'ernie.layers.4.mlp.experts.114.down_proj.weight', 'ernie.layers.4.mlp.experts.115.down_proj.weight', 'ernie.layers.4.mlp.experts.116.down_proj.weight', 'ernie.layers.4.mlp.experts.117.down_proj.weight', 'ernie.layers.4.mlp.experts.118.down_proj.weight', 'ernie.layers.4.mlp.experts.119.down_proj.weight', 'ernie.layers.4.mlp.experts.120.down_proj.weight', 'ernie.layers.4.mlp.experts.121.down_proj.weight', 'ernie.layers.4.mlp.experts.122.down_proj.weight', 'ernie.layers.4.mlp.experts.123.down_proj.weight', 'ernie.layers.4.mlp.experts.124.down_proj.weight', 'ernie.layers.4.mlp.experts.125.down_proj.weight', 'ernie.layers.4.mlp.experts.126.down_proj.weight', 'ernie.layers.4.mlp.experts.127.down_proj.weight']
ernie.layers.5.mlp.image_fused_moe.gate.weight:ernie.layers.5.mlp.gate.weight_1
ernie.layers.5.mlp.image_fused_moe.experts.gate_correction_bias:ernie.layers.5.mlp.moe_statics.e_score_correction_bias
ernie.layers.5.mlp.image_fused_moe.experts.up_gate_proj_weight:['ernie.layers.5.mlp.experts.32.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.33.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.34.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.35.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.36.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.37.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.38.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.39.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.40.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.41.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.42.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.43.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.44.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.45.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.46.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.47.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.48.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.49.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.50.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.51.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.52.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.53.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.54.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.55.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.56.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.57.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.58.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.59.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.60.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.61.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.62.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.63.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.96.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.97.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.98.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.99.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.100.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.101.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.102.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.103.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.104.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.105.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.106.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.107.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.108.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.109.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.110.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.111.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.112.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.113.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.114.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.115.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.116.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.117.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.118.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.119.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.120.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.121.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.122.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.123.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.124.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.125.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.126.up_gate_proj.weight', 'ernie.layers.5.mlp.experts.127.up_gate_proj.weight']
ernie.layers.5.mlp.image_fused_moe.experts.down_proj_weight:['ernie.layers.5.mlp.experts.32.down_proj.weight', 'ernie.layers.5.mlp.experts.33.down_proj.weight', 'ernie.layers.5.mlp.experts.34.down_proj.weight', 'ernie.layers.5.mlp.experts.35.down_proj.weight', 'ernie.layers.5.mlp.experts.36.down_proj.weight', 'ernie.layers.5.mlp.experts.37.down_proj.weight', 'ernie.layers.5.mlp.experts.38.down_proj.weight', 'ernie.layers.5.mlp.experts.39.down_proj.weight', 'ernie.layers.5.mlp.experts.40.down_proj.weight', 'ernie.layers.5.mlp.experts.41.down_proj.weight', 'ernie.layers.5.mlp.experts.42.down_proj.weight', 'ernie.layers.5.mlp.experts.43.down_proj.weight', 'ernie.layers.5.mlp.experts.44.down_proj.weight', 'ernie.layers.5.mlp.experts.45.down_proj.weight', 'ernie.layers.5.mlp.experts.46.down_proj.weight', 'ernie.layers.5.mlp.experts.47.down_proj.weight', 'ernie.layers.5.mlp.experts.48.down_proj.weight', 'ernie.layers.5.mlp.experts.49.down_proj.weight', 'ernie.layers.5.mlp.experts.50.down_proj.weight', 'ernie.layers.5.mlp.experts.51.down_proj.weight', 'ernie.layers.5.mlp.experts.52.down_proj.weight', 'ernie.layers.5.mlp.experts.53.down_proj.weight', 'ernie.layers.5.mlp.experts.54.down_proj.weight', 'ernie.layers.5.mlp.experts.55.down_proj.weight', 'ernie.layers.5.mlp.experts.56.down_proj.weight', 'ernie.layers.5.mlp.experts.57.down_proj.weight', 'ernie.layers.5.mlp.experts.58.down_proj.weight', 'ernie.layers.5.mlp.experts.59.down_proj.weight', 'ernie.layers.5.mlp.experts.60.down_proj.weight', 'ernie.layers.5.mlp.experts.61.down_proj.weight', 'ernie.layers.5.mlp.experts.62.down_proj.weight', 'ernie.layers.5.mlp.experts.63.down_proj.weight', 'ernie.layers.5.mlp.experts.96.down_proj.weight', 'ernie.layers.5.mlp.experts.97.down_proj.weight', 'ernie.layers.5.mlp.experts.98.down_proj.weight', 'ernie.layers.5.mlp.experts.99.down_proj.weight', 'ernie.layers.5.mlp.experts.100.down_proj.weight', 'ernie.layers.5.mlp.experts.101.down_proj.weight', 'ernie.layers.5.mlp.experts.102.down_proj.weight', 'ernie.layers.5.mlp.experts.103.down_proj.weight', 'ernie.layers.5.mlp.experts.104.down_proj.weight', 'ernie.layers.5.mlp.experts.105.down_proj.weight', 'ernie.layers.5.mlp.experts.106.down_proj.weight', 'ernie.layers.5.mlp.experts.107.down_proj.weight', 'ernie.layers.5.mlp.experts.108.down_proj.weight', 'ernie.layers.5.mlp.experts.109.down_proj.weight', 'ernie.layers.5.mlp.experts.110.down_proj.weight', 'ernie.layers.5.mlp.experts.111.down_proj.weight', 'ernie.layers.5.mlp.experts.112.down_proj.weight', 'ernie.layers.5.mlp.experts.113.down_proj.weight', 'ernie.layers.5.mlp.experts.114.down_proj.weight', 'ernie.layers.5.mlp.experts.115.down_proj.weight', 'ernie.layers.5.mlp.experts.116.down_proj.weight', 'ernie.layers.5.mlp.experts.117.down_proj.weight', 'ernie.layers.5.mlp.experts.118.down_proj.weight', 'ernie.layers.5.mlp.experts.119.down_proj.weight', 'ernie.layers.5.mlp.experts.120.down_proj.weight', 'ernie.layers.5.mlp.experts.121.down_proj.weight', 'ernie.layers.5.mlp.experts.122.down_proj.weight', 'ernie.layers.5.mlp.experts.123.down_proj.weight', 'ernie.layers.5.mlp.experts.124.down_proj.weight', 'ernie.layers.5.mlp.experts.125.down_proj.weight', 'ernie.layers.5.mlp.experts.126.down_proj.weight', 'ernie.layers.5.mlp.experts.127.down_proj.weight']
ernie.layers.6.mlp.image_fused_moe.gate.weight:ernie.layers.6.mlp.gate.weight_1
ernie.layers.6.mlp.image_fused_moe.experts.gate_correction_bias:ernie.layers.6.mlp.moe_statics.e_score_correction_bias
ernie.layers.6.mlp.image_fused_moe.experts.up_gate_proj_weight:['ernie.layers.6.mlp.experts.32.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.33.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.34.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.35.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.36.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.37.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.38.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.39.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.40.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.41.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.42.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.43.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.44.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.45.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.46.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.47.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.48.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.49.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.50.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.51.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.52.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.53.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.54.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.55.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.56.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.57.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.58.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.59.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.60.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.61.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.62.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.63.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.96.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.97.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.98.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.99.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.100.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.101.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.102.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.103.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.104.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.105.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.106.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.107.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.108.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.109.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.110.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.111.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.112.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.113.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.114.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.115.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.116.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.117.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.118.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.119.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.120.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.121.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.122.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.123.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.124.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.125.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.126.up_gate_proj.weight', 'ernie.layers.6.mlp.experts.127.up_gate_proj.weight']
ernie.layers.6.mlp.image_fused_moe.experts.down_proj_weight:['ernie.layers.6.mlp.experts.32.down_proj.weight', 'ernie.layers.6.mlp.experts.33.down_proj.weight', 'ernie.layers.6.mlp.experts.34.down_proj.weight', 'ernie.layers.6.mlp.experts.35.down_proj.weight', 'ernie.layers.6.mlp.experts.36.down_proj.weight', 'ernie.layers.6.mlp.experts.37.down_proj.weight', 'ernie.layers.6.mlp.experts.38.down_proj.weight', 'ernie.layers.6.mlp.experts.39.down_proj.weight', 'ernie.layers.6.mlp.experts.40.down_proj.weight', 'ernie.layers.6.mlp.experts.41.down_proj.weight', 'ernie.layers.6.mlp.experts.42.down_proj.weight', 'ernie.layers.6.mlp.experts.43.down_proj.weight', 'ernie.layers.6.mlp.experts.44.down_proj.weight', 'ernie.layers.6.mlp.experts.45.down_proj.weight', 'ernie.layers.6.mlp.experts.46.down_proj.weight', 'ernie.layers.6.mlp.experts.47.down_proj.weight', 'ernie.layers.6.mlp.experts.48.down_proj.weight', 'ernie.layers.6.mlp.experts.49.down_proj.weight', 'ernie.layers.6.mlp.experts.50.down_proj.weight', 'ernie.layers.6.mlp.experts.51.down_proj.weight', 'ernie.layers.6.mlp.experts.52.down_proj.weight', 'ernie.layers.6.mlp.experts.53.down_proj.weight', 'ernie.layers.6.mlp.experts.54.down_proj.weight', 'ernie.layers.6.mlp.experts.55.down_proj.weight', 'ernie.layers.6.mlp.experts.56.down_proj.weight', 'ernie.layers.6.mlp.experts.57.down_proj.weight', 'ernie.layers.6.mlp.experts.58.down_proj.weight', 'ernie.layers.6.mlp.experts.59.down_proj.weight', 'ernie.layers.6.mlp.experts.60.down_proj.weight', 'ernie.layers.6.mlp.experts.61.down_proj.weight', 'ernie.layers.6.mlp.experts.62.down_proj.weight', 'ernie.layers.6.mlp.experts.63.down_proj.weight', 'ernie.layers.6.mlp.experts.96.down_proj.weight', 'ernie.layers.6.mlp.experts.97.down_proj.weight', 'ernie.layers.6.mlp.experts.98.down_proj.weight', 'ernie.layers.6.mlp.experts.99.down_proj.weight', 'ernie.layers.6.mlp.experts.100.down_proj.weight', 'ernie.layers.6.mlp.experts.101.down_proj.weight', 'ernie.layers.6.mlp.experts.102.down_proj.weight', 'ernie.layers.6.mlp.experts.103.down_proj.weight', 'ernie.layers.6.mlp.experts.104.down_proj.weight', 'ernie.layers.6.mlp.experts.105.down_proj.weight', 'ernie.layers.6.mlp.experts.106.down_proj.weight', 'ernie.layers.6.mlp.experts.107.down_proj.weight', 'ernie.layers.6.mlp.experts.108.down_proj.weight', 'ernie.layers.6.mlp.experts.109.down_proj.weight', 'ernie.layers.6.mlp.experts.110.down_proj.weight', 'ernie.layers.6.mlp.experts.111.down_proj.weight', 'ernie.layers.6.mlp.experts.112.down_proj.weight', 'ernie.layers.6.mlp.experts.113.down_proj.weight', 'ernie.layers.6.mlp.experts.114.down_proj.weight', 'ernie.layers.6.mlp.experts.115.down_proj.weight', 'ernie.layers.6.mlp.experts.116.down_proj.weight', 'ernie.layers.6.mlp.experts.117.down_proj.weight', 'ernie.layers.6.mlp.experts.118.down_proj.weight', 'ernie.layers.6.mlp.experts.119.down_proj.weight', 'ernie.layers.6.mlp.experts.120.down_proj.weight', 'ernie.layers.6.mlp.experts.121.down_proj.weight', 'ernie.layers.6.mlp.experts.122.down_proj.weight', 'ernie.layers.6.mlp.experts.123.down_proj.weight', 'ernie.layers.6.mlp.experts.124.down_proj.weight', 'ernie.layers.6.mlp.experts.125.down_proj.weight', 'ernie.layers.6.mlp.experts.126.down_proj.weight', 'ernie.layers.6.mlp.experts.127.down_proj.weight']
ernie.layers.7.mlp.image_fused_moe.gate.weight:ernie.layers.7.mlp.gate.weight_1
ernie.layers.7.mlp.image_fused_moe.experts.gate_correction_bias:ernie.layers.7.mlp.moe_statics.e_score_correction_bias
ernie.layers.7.mlp.image_fused_moe.experts.up_gate_proj_weight:['ernie.layers.7.mlp.experts.32.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.33.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.34.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.35.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.36.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.37.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.38.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.39.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.40.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.41.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.42.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.43.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.44.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.45.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.46.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.47.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.48.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.49.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.50.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.51.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.52.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.53.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.54.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.55.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.56.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.57.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.58.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.59.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.60.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.61.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.62.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.63.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.96.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.97.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.98.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.99.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.100.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.101.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.102.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.103.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.104.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.105.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.106.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.107.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.108.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.109.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.110.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.111.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.112.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.113.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.114.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.115.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.116.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.117.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.118.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.119.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.120.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.121.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.122.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.123.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.124.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.125.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.126.up_gate_proj.weight', 'ernie.layers.7.mlp.experts.127.up_gate_proj.weight']
ernie.layers.7.mlp.image_fused_moe.experts.down_proj_weight:['ernie.layers.7.mlp.experts.32.down_proj.weight', 'ernie.layers.7.mlp.experts.33.down_proj.weight', 'ernie.layers.7.mlp.experts.34.down_proj.weight', 'ernie.layers.7.mlp.experts.35.down_proj.weight', 'ernie.layers.7.mlp.experts.36.down_proj.weight', 'ernie.layers.7.mlp.experts.37.down_proj.weight', 'ernie.layers.7.mlp.experts.38.down_proj.weight', 'ernie.layers.7.mlp.experts.39.down_proj.weight', 'ernie.layers.7.mlp.experts.40.down_proj.weight', 'ernie.layers.7.mlp.experts.41.down_proj.weight', 'ernie.layers.7.mlp.experts.42.down_proj.weight', 'ernie.layers.7.mlp.experts.43.down_proj.weight', 'ernie.layers.7.mlp.experts.44.down_proj.weight', 'ernie.layers.7.mlp.experts.45.down_proj.weight', 'ernie.layers.7.mlp.experts.46.down_proj.weight', 'ernie.layers.7.mlp.experts.47.down_proj.weight', 'ernie.layers.7.mlp.experts.48.down_proj.weight', 'ernie.layers.7.mlp.experts.49.down_proj.weight', 'ernie.layers.7.mlp.experts.50.down_proj.weight', 'ernie.layers.7.mlp.experts.51.down_proj.weight', 'ernie.layers.7.mlp.experts.52.down_proj.weight', 'ernie.layers.7.mlp.experts.53.down_proj.weight', 'ernie.layers.7.mlp.experts.54.down_proj.weight', 'ernie.layers.7.mlp.experts.55.down_proj.weight', 'ernie.layers.7.mlp.experts.56.down_proj.weight', 'ernie.layers.7.mlp.experts.57.down_proj.weight', 'ernie.layers.7.mlp.experts.58.down_proj.weight', 'ernie.layers.7.mlp.experts.59.down_proj.weight', 'ernie.layers.7.mlp.experts.60.down_proj.weight', 'ernie.layers.7.mlp.experts.61.down_proj.weight', 'ernie.layers.7.mlp.experts.62.down_proj.weight', 'ernie.layers.7.mlp.experts.63.down_proj.weight', 'ernie.layers.7.mlp.experts.96.down_proj.weight', 'ernie.layers.7.mlp.experts.97.down_proj.weight', 'ernie.layers.7.mlp.experts.98.down_proj.weight', 'ernie.layers.7.mlp.experts.99.down_proj.weight', 'ernie.layers.7.mlp.experts.100.down_proj.weight', 'ernie.layers.7.mlp.experts.101.down_proj.weight', 'ernie.layers.7.mlp.experts.102.down_proj.weight', 'ernie.layers.7.mlp.experts.103.down_proj.weight', 'ernie.layers.7.mlp.experts.104.down_proj.weight', 'ernie.layers.7.mlp.experts.105.down_proj.weight', 'ernie.layers.7.mlp.experts.106.down_proj.weight', 'ernie.layers.7.mlp.experts.107.down_proj.weight', 'ernie.layers.7.mlp.experts.108.down_proj.weight', 'ernie.layers.7.mlp.experts.109.down_proj.weight', 'ernie.layers.7.mlp.experts.110.down_proj.weight', 'ernie.layers.7.mlp.experts.111.down_proj.weight', 'ernie.layers.7.mlp.experts.112.down_proj.weight', 'ernie.layers.7.mlp.experts.113.down_proj.weight', 'ernie.layers.7.mlp.experts.114.down_proj.weight', 'ernie.layers.7.mlp.experts.115.down_proj.weight', 'ernie.layers.7.mlp.experts.116.down_proj.weight', 'ernie.layers.7.mlp.experts.117.down_proj.weight', 'ernie.layers.7.mlp.experts.118.down_proj.weight', 'ernie.layers.7.mlp.experts.119.down_proj.weight', 'ernie.layers.7.mlp.experts.120.down_proj.weight', 'ernie.layers.7.mlp.experts.121.down_proj.weight', 'ernie.layers.7.mlp.experts.122.down_proj.weight', 'ernie.layers.7.mlp.experts.123.down_proj.weight', 'ernie.layers.7.mlp.experts.124.down_proj.weight', 'ernie.layers.7.mlp.experts.125.down_proj.weight', 'ernie.layers.7.mlp.experts.126.down_proj.weight', 'ernie.layers.7.mlp.experts.127.down_proj.weight']
ernie.layers.8.mlp.image_fused_moe.gate.weight:ernie.layers.8.mlp.gate.weight_1
ernie.layers.8.mlp.image_fused_moe.experts.gate_correction_bias:ernie.layers.8.mlp.moe_statics.e_score_correction_bias
ernie.layers.8.mlp.image_fused_moe.experts.up_gate_proj_weight:['ernie.layers.8.mlp.experts.32.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.33.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.34.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.35.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.36.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.37.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.38.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.39.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.40.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.41.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.42.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.43.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.44.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.45.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.46.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.47.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.48.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.49.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.50.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.51.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.52.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.53.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.54.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.55.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.56.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.57.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.58.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.59.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.60.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.61.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.62.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.63.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.96.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.97.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.98.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.99.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.100.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.101.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.102.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.103.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.104.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.105.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.106.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.107.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.108.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.109.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.110.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.111.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.112.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.113.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.114.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.115.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.116.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.117.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.118.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.119.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.120.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.121.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.122.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.123.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.124.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.125.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.126.up_gate_proj.weight', 'ernie.layers.8.mlp.experts.127.up_gate_proj.weight']
ernie.layers.8.mlp.image_fused_moe.experts.down_proj_weight:['ernie.layers.8.mlp.experts.32.down_proj.weight', 'ernie.layers.8.mlp.experts.33.down_proj.weight', 'ernie.layers.8.mlp.experts.34.down_proj.weight', 'ernie.layers.8.mlp.experts.35.down_proj.weight', 'ernie.layers.8.mlp.experts.36.down_proj.weight', 'ernie.layers.8.mlp.experts.37.down_proj.weight', 'ernie.layers.8.mlp.experts.38.down_proj.weight', 'ernie.layers.8.mlp.experts.39.down_proj.weight', 'ernie.layers.8.mlp.experts.40.down_proj.weight', 'ernie.layers.8.mlp.experts.41.down_proj.weight', 'ernie.layers.8.mlp.experts.42.down_proj.weight', 'ernie.layers.8.mlp.experts.43.down_proj.weight', 'ernie.layers.8.mlp.experts.44.down_proj.weight', 'ernie.layers.8.mlp.experts.45.down_proj.weight', 'ernie.layers.8.mlp.experts.46.down_proj.weight', 'ernie.layers.8.mlp.experts.47.down_proj.weight', 'ernie.layers.8.mlp.experts.48.down_proj.weight', 'ernie.layers.8.mlp.experts.49.down_proj.weight', 'ernie.layers.8.mlp.experts.50.down_proj.weight', 'ernie.layers.8.mlp.experts.51.down_proj.weight', 'ernie.layers.8.mlp.experts.52.down_proj.weight', 'ernie.layers.8.mlp.experts.53.down_proj.weight', 'ernie.layers.8.mlp.experts.54.down_proj.weight', 'ernie.layers.8.mlp.experts.55.down_proj.weight', 'ernie.layers.8.mlp.experts.56.down_proj.weight', 'ernie.layers.8.mlp.experts.57.down_proj.weight', 'ernie.layers.8.mlp.experts.58.down_proj.weight', 'ernie.layers.8.mlp.experts.59.down_proj.weight', 'ernie.layers.8.mlp.experts.60.down_proj.weight', 'ernie.layers.8.mlp.experts.61.down_proj.weight', 'ernie.layers.8.mlp.experts.62.down_proj.weight', 'ernie.layers.8.mlp.experts.63.down_proj.weight', 'ernie.layers.8.mlp.experts.96.down_proj.weight', 'ernie.layers.8.mlp.experts.97.down_proj.weight', 'ernie.layers.8.mlp.experts.98.down_proj.weight', 'ernie.layers.8.mlp.experts.99.down_proj.weight', 'ernie.layers.8.mlp.experts.100.down_proj.weight', 'ernie.layers.8.mlp.experts.101.down_proj.weight', 'ernie.layers.8.mlp.experts.102.down_proj.weight', 'ernie.layers.8.mlp.experts.103.down_proj.weight', 'ernie.layers.8.mlp.experts.104.down_proj.weight', 'ernie.layers.8.mlp.experts.105.down_proj.weight', 'ernie.layers.8.mlp.experts.106.down_proj.weight', 'ernie.layers.8.mlp.experts.107.down_proj.weight', 'ernie.layers.8.mlp.experts.108.down_proj.weight', 'ernie.layers.8.mlp.experts.109.down_proj.weight', 'ernie.layers.8.mlp.experts.110.down_proj.weight', 'ernie.layers.8.mlp.experts.111.down_proj.weight', 'ernie.layers.8.mlp.experts.112.down_proj.weight', 'ernie.layers.8.mlp.experts.113.down_proj.weight', 'ernie.layers.8.mlp.experts.114.down_proj.weight', 'ernie.layers.8.mlp.experts.115.down_proj.weight', 'ernie.layers.8.mlp.experts.116.down_proj.weight', 'ernie.layers.8.mlp.experts.117.down_proj.weight', 'ernie.layers.8.mlp.experts.118.down_proj.weight', 'ernie.layers.8.mlp.experts.119.down_proj.weight', 'ernie.layers.8.mlp.experts.120.down_proj.weight', 'ernie.layers.8.mlp.experts.121.down_proj.weight', 'ernie.layers.8.mlp.experts.122.down_proj.weight', 'ernie.layers.8.mlp.experts.123.down_proj.weight', 'ernie.layers.8.mlp.experts.124.down_proj.weight', 'ernie.layers.8.mlp.experts.125.down_proj.weight', 'ernie.layers.8.mlp.experts.126.down_proj.weight', 'ernie.layers.8.mlp.experts.127.down_proj.weight']
ernie.layers.9.mlp.image_fused_moe.gate.weight:ernie.layers.9.mlp.gate.weight_1
ernie.layers.9.mlp.image_fused_moe.experts.gate_correction_bias:ernie.layers.9.mlp.moe_statics.e_score_correction_bias
ernie.layers.9.mlp.image_fused_moe.experts.up_gate_proj_weight:['ernie.layers.9.mlp.experts.32.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.33.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.34.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.35.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.36.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.37.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.38.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.39.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.40.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.41.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.42.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.43.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.44.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.45.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.46.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.47.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.48.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.49.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.50.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.51.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.52.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.53.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.54.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.55.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.56.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.57.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.58.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.59.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.60.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.61.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.62.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.63.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.96.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.97.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.98.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.99.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.100.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.101.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.102.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.103.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.104.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.105.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.106.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.107.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.108.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.109.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.110.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.111.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.112.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.113.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.114.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.115.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.116.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.117.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.118.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.119.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.120.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.121.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.122.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.123.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.124.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.125.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.126.up_gate_proj.weight', 'ernie.layers.9.mlp.experts.127.up_gate_proj.weight']
ernie.layers.9.mlp.image_fused_moe.experts.down_proj_weight:['ernie.layers.9.mlp.experts.32.down_proj.weight', 'ernie.layers.9.mlp.experts.33.down_proj.weight', 'ernie.layers.9.mlp.experts.34.down_proj.weight', 'ernie.layers.9.mlp.experts.35.down_proj.weight', 'ernie.layers.9.mlp.experts.36.down_proj.weight', 'ernie.layers.9.mlp.experts.37.down_proj.weight', 'ernie.layers.9.mlp.experts.38.down_proj.weight', 'ernie.layers.9.mlp.experts.39.down_proj.weight', 'ernie.layers.9.mlp.experts.40.down_proj.weight', 'ernie.layers.9.mlp.experts.41.down_proj.weight', 'ernie.layers.9.mlp.experts.42.down_proj.weight', 'ernie.layers.9.mlp.experts.43.down_proj.weight', 'ernie.layers.9.mlp.experts.44.down_proj.weight', 'ernie.layers.9.mlp.experts.45.down_proj.weight', 'ernie.layers.9.mlp.experts.46.down_proj.weight', 'ernie.layers.9.mlp.experts.47.down_proj.weight', 'ernie.layers.9.mlp.experts.48.down_proj.weight', 'ernie.layers.9.mlp.experts.49.down_proj.weight', 'ernie.layers.9.mlp.experts.50.down_proj.weight', 'ernie.layers.9.mlp.experts.51.down_proj.weight', 'ernie.layers.9.mlp.experts.52.down_proj.weight', 'ernie.layers.9.mlp.experts.53.down_proj.weight', 'ernie.layers.9.mlp.experts.54.down_proj.weight', 'ernie.layers.9.mlp.experts.55.down_proj.weight', 'ernie.layers.9.mlp.experts.56.down_proj.weight', 'ernie.layers.9.mlp.experts.57.down_proj.weight', 'ernie.layers.9.mlp.experts.58.down_proj.weight', 'ernie.layers.9.mlp.experts.59.down_proj.weight', 'ernie.layers.9.mlp.experts.60.down_proj.weight', 'ernie.layers.9.mlp.experts.61.down_proj.weight', 'ernie.layers.9.mlp.experts.62.down_proj.weight', 'ernie.layers.9.mlp.experts.63.down_proj.weight', 'ernie.layers.9.mlp.experts.96.down_proj.weight', 'ernie.layers.9.mlp.experts.97.down_proj.weight', 'ernie.layers.9.mlp.experts.98.down_proj.weight', 'ernie.layers.9.mlp.experts.99.down_proj.weight', 'ernie.layers.9.mlp.experts.100.down_proj.weight', 'ernie.layers.9.mlp.experts.101.down_proj.weight', 'ernie.layers.9.mlp.experts.102.down_proj.weight', 'ernie.layers.9.mlp.experts.103.down_proj.weight', 'ernie.layers.9.mlp.experts.104.down_proj.weight', 'ernie.layers.9.mlp.experts.105.down_proj.weight', 'ernie.layers.9.mlp.experts.106.down_proj.weight', 'ernie.layers.9.mlp.experts.107.down_proj.weight', 'ernie.layers.9.mlp.experts.108.down_proj.weight', 'ernie.layers.9.mlp.experts.109.down_proj.weight', 'ernie.layers.9.mlp.experts.110.down_proj.weight', 'ernie.layers.9.mlp.experts.111.down_proj.weight', 'ernie.layers.9.mlp.experts.112.down_proj.weight', 'ernie.layers.9.mlp.experts.113.down_proj.weight', 'ernie.layers.9.mlp.experts.114.down_proj.weight', 'ernie.layers.9.mlp.experts.115.down_proj.weight', 'ernie.layers.9.mlp.experts.116.down_proj.weight', 'ernie.layers.9.mlp.experts.117.down_proj.weight', 'ernie.layers.9.mlp.experts.118.down_proj.weight', 'ernie.layers.9.mlp.experts.119.down_proj.weight', 'ernie.layers.9.mlp.experts.120.down_proj.weight', 'ernie.layers.9.mlp.experts.121.down_proj.weight', 'ernie.layers.9.mlp.experts.122.down_proj.weight', 'ernie.layers.9.mlp.experts.123.down_proj.weight', 'ernie.layers.9.mlp.experts.124.down_proj.weight', 'ernie.layers.9.mlp.experts.125.down_proj.weight', 'ernie.layers.9.mlp.experts.126.down_proj.weight', 'ernie.layers.9.mlp.experts.127.down_proj.weight']
ernie.layers.10.mlp.image_fused_moe.gate.weight:ernie.layers.10.mlp.gate.weight_1
ernie.layers.10.mlp.image_fused_moe.experts.gate_correction_bias:ernie.layers.10.mlp.moe_statics.e_score_correction_bias
ernie.layers.10.mlp.image_fused_moe.experts.up_gate_proj_weight:['ernie.layers.10.mlp.experts.32.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.33.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.34.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.35.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.36.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.37.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.38.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.39.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.40.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.41.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.42.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.43.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.44.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.45.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.46.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.47.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.48.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.49.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.50.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.51.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.52.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.53.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.54.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.55.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.56.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.57.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.58.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.59.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.60.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.61.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.62.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.63.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.96.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.97.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.98.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.99.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.100.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.101.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.102.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.103.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.104.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.105.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.106.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.107.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.108.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.109.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.110.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.111.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.112.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.113.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.114.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.115.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.116.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.117.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.118.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.119.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.120.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.121.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.122.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.123.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.124.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.125.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.126.up_gate_proj.weight', 'ernie.layers.10.mlp.experts.127.up_gate_proj.weight']
ernie.layers.10.mlp.image_fused_moe.experts.down_proj_weight:['ernie.layers.10.mlp.experts.32.down_proj.weight', 'ernie.layers.10.mlp.experts.33.down_proj.weight', 'ernie.layers.10.mlp.experts.34.down_proj.weight', 'ernie.layers.10.mlp.experts.35.down_proj.weight', 'ernie.layers.10.mlp.experts.36.down_proj.weight', 'ernie.layers.10.mlp.experts.37.down_proj.weight', 'ernie.layers.10.mlp.experts.38.down_proj.weight', 'ernie.layers.10.mlp.experts.39.down_proj.weight', 'ernie.layers.10.mlp.experts.40.down_proj.weight', 'ernie.layers.10.mlp.experts.41.down_proj.weight', 'ernie.layers.10.mlp.experts.42.down_proj.weight', 'ernie.layers.10.mlp.experts.43.down_proj.weight', 'ernie.layers.10.mlp.experts.44.down_proj.weight', 'ernie.layers.10.mlp.experts.45.down_proj.weight', 'ernie.layers.10.mlp.experts.46.down_proj.weight', 'ernie.layers.10.mlp.experts.47.down_proj.weight', 'ernie.layers.10.mlp.experts.48.down_proj.weight', 'ernie.layers.10.mlp.experts.49.down_proj.weight', 'ernie.layers.10.mlp.experts.50.down_proj.weight', 'ernie.layers.10.mlp.experts.51.down_proj.weight', 'ernie.layers.10.mlp.experts.52.down_proj.weight', 'ernie.layers.10.mlp.experts.53.down_proj.weight', 'ernie.layers.10.mlp.experts.54.down_proj.weight', 'ernie.layers.10.mlp.experts.55.down_proj.weight', 'ernie.layers.10.mlp.experts.56.down_proj.weight', 'ernie.layers.10.mlp.experts.57.down_proj.weight', 'ernie.layers.10.mlp.experts.58.down_proj.weight', 'ernie.layers.10.mlp.experts.59.down_proj.weight', 'ernie.layers.10.mlp.experts.60.down_proj.weight', 'ernie.layers.10.mlp.experts.61.down_proj.weight', 'ernie.layers.10.mlp.experts.62.down_proj.weight', 'ernie.layers.10.mlp.experts.63.down_proj.weight', 'ernie.layers.10.mlp.experts.96.down_proj.weight', 'ernie.layers.10.mlp.experts.97.down_proj.weight', 'ernie.layers.10.mlp.experts.98.down_proj.weight', 'ernie.layers.10.mlp.experts.99.down_proj.weight', 'ernie.layers.10.mlp.experts.100.down_proj.weight', 'ernie.layers.10.mlp.experts.101.down_proj.weight', 'ernie.layers.10.mlp.experts.102.down_proj.weight', 'ernie.layers.10.mlp.experts.103.down_proj.weight', 'ernie.layers.10.mlp.experts.104.down_proj.weight', 'ernie.layers.10.mlp.experts.105.down_proj.weight', 'ernie.layers.10.mlp.experts.106.down_proj.weight', 'ernie.layers.10.mlp.experts.107.down_proj.weight', 'ernie.layers.10.mlp.experts.108.down_proj.weight', 'ernie.layers.10.mlp.experts.109.down_proj.weight', 'ernie.layers.10.mlp.experts.110.down_proj.weight', 'ernie.layers.10.mlp.experts.111.down_proj.weight', 'ernie.layers.10.mlp.experts.112.down_proj.weight', 'ernie.layers.10.mlp.experts.113.down_proj.weight', 'ernie.layers.10.mlp.experts.114.down_proj.weight', 'ernie.layers.10.mlp.experts.115.down_proj.weight', 'ernie.layers.10.mlp.experts.116.down_proj.weight', 'ernie.layers.10.mlp.experts.117.down_proj.weight', 'ernie.layers.10.mlp.experts.118.down_proj.weight', 'ernie.layers.10.mlp.experts.119.down_proj.weight', 'ernie.layers.10.mlp.experts.120.down_proj.weight', 'ernie.layers.10.mlp.experts.121.down_proj.weight', 'ernie.layers.10.mlp.experts.122.down_proj.weight', 'ernie.layers.10.mlp.experts.123.down_proj.weight', 'ernie.layers.10.mlp.experts.124.down_proj.weight', 'ernie.layers.10.mlp.experts.125.down_proj.weight', 'ernie.layers.10.mlp.experts.126.down_proj.weight', 'ernie.layers.10.mlp.experts.127.down_proj.weight']
ernie.layers.11.mlp.image_fused_moe.gate.weight:ernie.layers.11.mlp.gate.weight_1
ernie.layers.11.mlp.image_fused_moe.experts.gate_correction_bias:ernie.layers.11.mlp.moe_statics.e_score_correction_bias
ernie.layers.11.mlp.image_fused_moe.experts.up_gate_proj_weight:['ernie.layers.11.mlp.experts.32.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.33.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.34.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.35.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.36.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.37.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.38.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.39.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.40.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.41.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.42.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.43.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.44.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.45.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.46.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.47.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.48.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.49.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.50.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.51.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.52.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.53.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.54.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.55.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.56.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.57.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.58.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.59.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.60.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.61.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.62.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.63.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.96.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.97.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.98.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.99.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.100.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.101.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.102.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.103.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.104.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.105.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.106.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.107.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.108.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.109.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.110.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.111.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.112.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.113.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.114.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.115.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.116.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.117.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.118.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.119.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.120.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.121.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.122.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.123.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.124.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.125.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.126.up_gate_proj.weight', 'ernie.layers.11.mlp.experts.127.up_gate_proj.weight']
ernie.layers.11.mlp.image_fused_moe.experts.down_proj_weight:['ernie.layers.11.mlp.experts.32.down_proj.weight', 'ernie.layers.11.mlp.experts.33.down_proj.weight', 'ernie.layers.11.mlp.experts.34.down_proj.weight', 'ernie.layers.11.mlp.experts.35.down_proj.weight', 'ernie.layers.11.mlp.experts.36.down_proj.weight', 'ernie.layers.11.mlp.experts.37.down_proj.weight', 'ernie.layers.11.mlp.experts.38.down_proj.weight', 'ernie.layers.11.mlp.experts.39.down_proj.weight', 'ernie.layers.11.mlp.experts.40.down_proj.weight', 'ernie.layers.11.mlp.experts.41.down_proj.weight', 'ernie.layers.11.mlp.experts.42.down_proj.weight', 'ernie.layers.11.mlp.experts.43.down_proj.weight', 'ernie.layers.11.mlp.experts.44.down_proj.weight', 'ernie.layers.11.mlp.experts.45.down_proj.weight', 'ernie.layers.11.mlp.experts.46.down_proj.weight', 'ernie.layers.11.mlp.experts.47.down_proj.weight', 'ernie.layers.11.mlp.experts.48.down_proj.weight', 'ernie.layers.11.mlp.experts.49.down_proj.weight', 'ernie.layers.11.mlp.experts.50.down_proj.weight', 'ernie.layers.11.mlp.experts.51.down_proj.weight', 'ernie.layers.11.mlp.experts.52.down_proj.weight', 'ernie.layers.11.mlp.experts.53.down_proj.weight', 'ernie.layers.11.mlp.experts.54.down_proj.weight', 'ernie.layers.11.mlp.experts.55.down_proj.weight', 'ernie.layers.11.mlp.experts.56.down_proj.weight', 'ernie.layers.11.mlp.experts.57.down_proj.weight', 'ernie.layers.11.mlp.experts.58.down_proj.weight', 'ernie.layers.11.mlp.experts.59.down_proj.weight', 'ernie.layers.11.mlp.experts.60.down_proj.weight', 'ernie.layers.11.mlp.experts.61.down_proj.weight', 'ernie.layers.11.mlp.experts.62.down_proj.weight', 'ernie.layers.11.mlp.experts.63.down_proj.weight', 'ernie.layers.11.mlp.experts.96.down_proj.weight', 'ernie.layers.11.mlp.experts.97.down_proj.weight', 'ernie.layers.11.mlp.experts.98.down_proj.weight', 'ernie.layers.11.mlp.experts.99.down_proj.weight', 'ernie.layers.11.mlp.experts.100.down_proj.weight', 'ernie.layers.11.mlp.experts.101.down_proj.weight', 'ernie.layers.11.mlp.experts.102.down_proj.weight', 'ernie.layers.11.mlp.experts.103.down_proj.weight', 'ernie.layers.11.mlp.experts.104.down_proj.weight', 'ernie.layers.11.mlp.experts.105.down_proj.weight', 'ernie.layers.11.mlp.experts.106.down_proj.weight', 'ernie.layers.11.mlp.experts.107.down_proj.weight', 'ernie.layers.11.mlp.experts.108.down_proj.weight', 'ernie.layers.11.mlp.experts.109.down_proj.weight', 'ernie.layers.11.mlp.experts.110.down_proj.weight', 'ernie.layers.11.mlp.experts.111.down_proj.weight', 'ernie.layers.11.mlp.experts.112.down_proj.weight', 'ernie.layers.11.mlp.experts.113.down_proj.weight', 'ernie.layers.11.mlp.experts.114.down_proj.weight', 'ernie.layers.11.mlp.experts.115.down_proj.weight', 'ernie.layers.11.mlp.experts.116.down_proj.weight', 'ernie.layers.11.mlp.experts.117.down_proj.weight', 'ernie.layers.11.mlp.experts.118.down_proj.weight', 'ernie.layers.11.mlp.experts.119.down_proj.weight', 'ernie.layers.11.mlp.experts.120.down_proj.weight', 'ernie.layers.11.mlp.experts.121.down_proj.weight', 'ernie.layers.11.mlp.experts.122.down_proj.weight', 'ernie.layers.11.mlp.experts.123.down_proj.weight', 'ernie.layers.11.mlp.experts.124.down_proj.weight', 'ernie.layers.11.mlp.experts.125.down_proj.weight', 'ernie.layers.11.mlp.experts.126.down_proj.weight', 'ernie.layers.11.mlp.experts.127.down_proj.weight']
ernie.layers.12.mlp.image_fused_moe.gate.weight:ernie.layers.12.mlp.gate.weight_1
ernie.layers.12.mlp.image_fused_moe.experts.gate_correction_bias:ernie.layers.12.mlp.moe_statics.e_score_correction_bias
ernie.layers.12.mlp.image_fused_moe.experts.up_gate_proj_weight:['ernie.layers.12.mlp.experts.32.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.33.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.34.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.35.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.36.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.37.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.38.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.39.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.40.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.41.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.42.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.43.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.44.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.45.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.46.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.47.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.48.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.49.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.50.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.51.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.52.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.53.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.54.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.55.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.56.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.57.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.58.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.59.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.60.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.61.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.62.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.63.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.96.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.97.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.98.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.99.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.100.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.101.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.102.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.103.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.104.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.105.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.106.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.107.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.108.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.109.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.110.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.111.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.112.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.113.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.114.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.115.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.116.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.117.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.118.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.119.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.120.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.121.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.122.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.123.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.124.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.125.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.126.up_gate_proj.weight', 'ernie.layers.12.mlp.experts.127.up_gate_proj.weight']
ernie.layers.12.mlp.image_fused_moe.experts.down_proj_weight:['ernie.layers.12.mlp.experts.32.down_proj.weight', 'ernie.layers.12.mlp.experts.33.down_proj.weight', 'ernie.layers.12.mlp.experts.34.down_proj.weight', 'ernie.layers.12.mlp.experts.35.down_proj.weight', 'ernie.layers.12.mlp.experts.36.down_proj.weight', 'ernie.layers.12.mlp.experts.37.down_proj.weight', 'ernie.layers.12.mlp.experts.38.down_proj.weight', 'ernie.layers.12.mlp.experts.39.down_proj.weight', 'ernie.layers.12.mlp.experts.40.down_proj.weight', 'ernie.layers.12.mlp.experts.41.down_proj.weight', 'ernie.layers.12.mlp.experts.42.down_proj.weight', 'ernie.layers.12.mlp.experts.43.down_proj.weight', 'ernie.layers.12.mlp.experts.44.down_proj.weight', 'ernie.layers.12.mlp.experts.45.down_proj.weight', 'ernie.layers.12.mlp.experts.46.down_proj.weight', 'ernie.layers.12.mlp.experts.47.down_proj.weight', 'ernie.layers.12.mlp.experts.48.down_proj.weight', 'ernie.layers.12.mlp.experts.49.down_proj.weight', 'ernie.layers.12.mlp.experts.50.down_proj.weight', 'ernie.layers.12.mlp.experts.51.down_proj.weight', 'ernie.layers.12.mlp.experts.52.down_proj.weight', 'ernie.layers.12.mlp.experts.53.down_proj.weight', 'ernie.layers.12.mlp.experts.54.down_proj.weight', 'ernie.layers.12.mlp.experts.55.down_proj.weight', 'ernie.layers.12.mlp.experts.56.down_proj.weight', 'ernie.layers.12.mlp.experts.57.down_proj.weight', 'ernie.layers.12.mlp.experts.58.down_proj.weight', 'ernie.layers.12.mlp.experts.59.down_proj.weight', 'ernie.layers.12.mlp.experts.60.down_proj.weight', 'ernie.layers.12.mlp.experts.61.down_proj.weight', 'ernie.layers.12.mlp.experts.62.down_proj.weight', 'ernie.layers.12.mlp.experts.63.down_proj.weight', 'ernie.layers.12.mlp.experts.96.down_proj.weight', 'ernie.layers.12.mlp.experts.97.down_proj.weight', 'ernie.layers.12.mlp.experts.98.down_proj.weight', 'ernie.layers.12.mlp.experts.99.down_proj.weight', 'ernie.layers.12.mlp.experts.100.down_proj.weight', 'ernie.layers.12.mlp.experts.101.down_proj.weight', 'ernie.layers.12.mlp.experts.102.down_proj.weight', 'ernie.layers.12.mlp.experts.103.down_proj.weight', 'ernie.layers.12.mlp.experts.104.down_proj.weight', 'ernie.layers.12.mlp.experts.105.down_proj.weight', 'ernie.layers.12.mlp.experts.106.down_proj.weight', 'ernie.layers.12.mlp.experts.107.down_proj.weight', 'ernie.layers.12.mlp.experts.108.down_proj.weight', 'ernie.layers.12.mlp.experts.109.down_proj.weight', 'ernie.layers.12.mlp.experts.110.down_proj.weight', 'ernie.layers.12.mlp.experts.111.down_proj.weight', 'ernie.layers.12.mlp.experts.112.down_proj.weight', 'ernie.layers.12.mlp.experts.113.down_proj.weight', 'ernie.layers.12.mlp.experts.114.down_proj.weight', 'ernie.layers.12.mlp.experts.115.down_proj.weight', 'ernie.layers.12.mlp.experts.116.down_proj.weight', 'ernie.layers.12.mlp.experts.117.down_proj.weight', 'ernie.layers.12.mlp.experts.118.down_proj.weight', 'ernie.layers.12.mlp.experts.119.down_proj.weight', 'ernie.layers.12.mlp.experts.120.down_proj.weight', 'ernie.layers.12.mlp.experts.121.down_proj.weight', 'ernie.layers.12.mlp.experts.122.down_proj.weight', 'ernie.layers.12.mlp.experts.123.down_proj.weight', 'ernie.layers.12.mlp.experts.124.down_proj.weight', 'ernie.layers.12.mlp.experts.125.down_proj.weight', 'ernie.layers.12.mlp.experts.126.down_proj.weight', 'ernie.layers.12.mlp.experts.127.down_proj.weight']
ernie.layers.13.mlp.image_fused_moe.gate.weight:ernie.layers.13.mlp.gate.weight_1
ernie.layers.13.mlp.image_fused_moe.experts.gate_correction_bias:ernie.layers.13.mlp.moe_statics.e_score_correction_bias
ernie.layers.13.mlp.image_fused_moe.experts.up_gate_proj_weight:['ernie.layers.13.mlp.experts.32.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.33.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.34.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.35.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.36.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.37.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.38.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.39.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.40.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.41.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.42.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.43.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.44.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.45.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.46.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.47.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.48.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.49.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.50.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.51.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.52.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.53.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.54.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.55.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.56.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.57.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.58.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.59.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.60.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.61.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.62.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.63.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.96.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.97.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.98.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.99.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.100.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.101.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.102.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.103.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.104.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.105.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.106.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.107.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.108.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.109.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.110.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.111.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.112.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.113.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.114.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.115.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.116.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.117.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.118.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.119.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.120.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.121.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.122.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.123.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.124.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.125.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.126.up_gate_proj.weight', 'ernie.layers.13.mlp.experts.127.up_gate_proj.weight']
ernie.layers.13.mlp.image_fused_moe.experts.down_proj_weight:['ernie.layers.13.mlp.experts.32.down_proj.weight', 'ernie.layers.13.mlp.experts.33.down_proj.weight', 'ernie.layers.13.mlp.experts.34.down_proj.weight', 'ernie.layers.13.mlp.experts.35.down_proj.weight', 'ernie.layers.13.mlp.experts.36.down_proj.weight', 'ernie.layers.13.mlp.experts.37.down_proj.weight', 'ernie.layers.13.mlp.experts.38.down_proj.weight', 'ernie.layers.13.mlp.experts.39.down_proj.weight', 'ernie.layers.13.mlp.experts.40.down_proj.weight', 'ernie.layers.13.mlp.experts.41.down_proj.weight', 'ernie.layers.13.mlp.experts.42.down_proj.weight', 'ernie.layers.13.mlp.experts.43.down_proj.weight', 'ernie.layers.13.mlp.experts.44.down_proj.weight', 'ernie.layers.13.mlp.experts.45.down_proj.weight', 'ernie.layers.13.mlp.experts.46.down_proj.weight', 'ernie.layers.13.mlp.experts.47.down_proj.weight', 'ernie.layers.13.mlp.experts.48.down_proj.weight', 'ernie.layers.13.mlp.experts.49.down_proj.weight', 'ernie.layers.13.mlp.experts.50.down_proj.weight', 'ernie.layers.13.mlp.experts.51.down_proj.weight', 'ernie.layers.13.mlp.experts.52.down_proj.weight', 'ernie.layers.13.mlp.experts.53.down_proj.weight', 'ernie.layers.13.mlp.experts.54.down_proj.weight', 'ernie.layers.13.mlp.experts.55.down_proj.weight', 'ernie.layers.13.mlp.experts.56.down_proj.weight', 'ernie.layers.13.mlp.experts.57.down_proj.weight', 'ernie.layers.13.mlp.experts.58.down_proj.weight', 'ernie.layers.13.mlp.experts.59.down_proj.weight', 'ernie.layers.13.mlp.experts.60.down_proj.weight', 'ernie.layers.13.mlp.experts.61.down_proj.weight', 'ernie.layers.13.mlp.experts.62.down_proj.weight', 'ernie.layers.13.mlp.experts.63.down_proj.weight', 'ernie.layers.13.mlp.experts.96.down_proj.weight', 'ernie.layers.13.mlp.experts.97.down_proj.weight', 'ernie.layers.13.mlp.experts.98.down_proj.weight', 'ernie.layers.13.mlp.experts.99.down_proj.weight', 'ernie.layers.13.mlp.experts.100.down_proj.weight', 'ernie.layers.13.mlp.experts.101.down_proj.weight', 'ernie.layers.13.mlp.experts.102.down_proj.weight', 'ernie.layers.13.mlp.experts.103.down_proj.weight', 'ernie.layers.13.mlp.experts.104.down_proj.weight', 'ernie.layers.13.mlp.experts.105.down_proj.weight', 'ernie.layers.13.mlp.experts.106.down_proj.weight', 'ernie.layers.13.mlp.experts.107.down_proj.weight', 'ernie.layers.13.mlp.experts.108.down_proj.weight', 'ernie.layers.13.mlp.experts.109.down_proj.weight', 'ernie.layers.13.mlp.experts.110.down_proj.weight', 'ernie.layers.13.mlp.experts.111.down_proj.weight', 'ernie.layers.13.mlp.experts.112.down_proj.weight', 'ernie.layers.13.mlp.experts.113.down_proj.weight', 'ernie.layers.13.mlp.experts.114.down_proj.weight', 'ernie.layers.13.mlp.experts.115.down_proj.weight', 'ernie.layers.13.mlp.experts.116.down_proj.weight', 'ernie.layers.13.mlp.experts.117.down_proj.weight', 'ernie.layers.13.mlp.experts.118.down_proj.weight', 'ernie.layers.13.mlp.experts.119.down_proj.weight', 'ernie.layers.13.mlp.experts.120.down_proj.weight', 'ernie.layers.13.mlp.experts.121.down_proj.weight', 'ernie.layers.13.mlp.experts.122.down_proj.weight', 'ernie.layers.13.mlp.experts.123.down_proj.weight', 'ernie.layers.13.mlp.experts.124.down_proj.weight', 'ernie.layers.13.mlp.experts.125.down_proj.weight', 'ernie.layers.13.mlp.experts.126.down_proj.weight', 'ernie.layers.13.mlp.experts.127.down_proj.weight']
ernie.layers.14.mlp.image_fused_moe.gate.weight:ernie.layers.14.mlp.gate.weight_1
ernie.layers.14.mlp.image_fused_moe.experts.gate_correction_bias:ernie.layers.14.mlp.moe_statics.e_score_correction_bias
ernie.layers.14.mlp.image_fused_moe.experts.up_gate_proj_weight:['ernie.layers.14.mlp.experts.32.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.33.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.34.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.35.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.36.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.37.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.38.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.39.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.40.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.41.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.42.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.43.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.44.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.45.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.46.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.47.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.48.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.49.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.50.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.51.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.52.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.53.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.54.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.55.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.56.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.57.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.58.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.59.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.60.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.61.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.62.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.63.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.96.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.97.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.98.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.99.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.100.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.101.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.102.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.103.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.104.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.105.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.106.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.107.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.108.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.109.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.110.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.111.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.112.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.113.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.114.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.115.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.116.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.117.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.118.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.119.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.120.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.121.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.122.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.123.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.124.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.125.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.126.up_gate_proj.weight', 'ernie.layers.14.mlp.experts.127.up_gate_proj.weight']
ernie.layers.14.mlp.image_fused_moe.experts.down_proj_weight:['ernie.layers.14.mlp.experts.32.down_proj.weight', 'ernie.layers.14.mlp.experts.33.down_proj.weight', 'ernie.layers.14.mlp.experts.34.down_proj.weight', 'ernie.layers.14.mlp.experts.35.down_proj.weight', 'ernie.layers.14.mlp.experts.36.down_proj.weight', 'ernie.layers.14.mlp.experts.37.down_proj.weight', 'ernie.layers.14.mlp.experts.38.down_proj.weight', 'ernie.layers.14.mlp.experts.39.down_proj.weight', 'ernie.layers.14.mlp.experts.40.down_proj.weight', 'ernie.layers.14.mlp.experts.41.down_proj.weight', 'ernie.layers.14.mlp.experts.42.down_proj.weight', 'ernie.layers.14.mlp.experts.43.down_proj.weight', 'ernie.layers.14.mlp.experts.44.down_proj.weight', 'ernie.layers.14.mlp.experts.45.down_proj.weight', 'ernie.layers.14.mlp.experts.46.down_proj.weight', 'ernie.layers.14.mlp.experts.47.down_proj.weight', 'ernie.layers.14.mlp.experts.48.down_proj.weight', 'ernie.layers.14.mlp.experts.49.down_proj.weight', 'ernie.layers.14.mlp.experts.50.down_proj.weight', 'ernie.layers.14.mlp.experts.51.down_proj.weight', 'ernie.layers.14.mlp.experts.52.down_proj.weight', 'ernie.layers.14.mlp.experts.53.down_proj.weight', 'ernie.layers.14.mlp.experts.54.down_proj.weight', 'ernie.layers.14.mlp.experts.55.down_proj.weight', 'ernie.layers.14.mlp.experts.56.down_proj.weight', 'ernie.layers.14.mlp.experts.57.down_proj.weight', 'ernie.layers.14.mlp.experts.58.down_proj.weight', 'ernie.layers.14.mlp.experts.59.down_proj.weight', 'ernie.layers.14.mlp.experts.60.down_proj.weight', 'ernie.layers.14.mlp.experts.61.down_proj.weight', 'ernie.layers.14.mlp.experts.62.down_proj.weight', 'ernie.layers.14.mlp.experts.63.down_proj.weight', 'ernie.layers.14.mlp.experts.96.down_proj.weight', 'ernie.layers.14.mlp.experts.97.down_proj.weight', 'ernie.layers.14.mlp.experts.98.down_proj.weight', 'ernie.layers.14.mlp.experts.99.down_proj.weight', 'ernie.layers.14.mlp.experts.100.down_proj.weight', 'ernie.layers.14.mlp.experts.101.down_proj.weight', 'ernie.layers.14.mlp.experts.102.down_proj.weight', 'ernie.layers.14.mlp.experts.103.down_proj.weight', 'ernie.layers.14.mlp.experts.104.down_proj.weight', 'ernie.layers.14.mlp.experts.105.down_proj.weight', 'ernie.layers.14.mlp.experts.106.down_proj.weight', 'ernie.layers.14.mlp.experts.107.down_proj.weight', 'ernie.layers.14.mlp.experts.108.down_proj.weight', 'ernie.layers.14.mlp.experts.109.down_proj.weight', 'ernie.layers.14.mlp.experts.110.down_proj.weight', 'ernie.layers.14.mlp.experts.111.down_proj.weight', 'ernie.layers.14.mlp.experts.112.down_proj.weight', 'ernie.layers.14.mlp.experts.113.down_proj.weight', 'ernie.layers.14.mlp.experts.114.down_proj.weight', 'ernie.layers.14.mlp.experts.115.down_proj.weight', 'ernie.layers.14.mlp.experts.116.down_proj.weight', 'ernie.layers.14.mlp.experts.117.down_proj.weight', 'ernie.layers.14.mlp.experts.118.down_proj.weight', 'ernie.layers.14.mlp.experts.119.down_proj.weight', 'ernie.layers.14.mlp.experts.120.down_proj.weight', 'ernie.layers.14.mlp.experts.121.down_proj.weight', 'ernie.layers.14.mlp.experts.122.down_proj.weight', 'ernie.layers.14.mlp.experts.123.down_proj.weight', 'ernie.layers.14.mlp.experts.124.down_proj.weight', 'ernie.layers.14.mlp.experts.125.down_proj.weight', 'ernie.layers.14.mlp.experts.126.down_proj.weight', 'ernie.layers.14.mlp.experts.127.down_proj.weight']
ernie.layers.15.mlp.image_fused_moe.gate.weight:ernie.layers.15.mlp.gate.weight_1
ernie.layers.15.mlp.image_fused_moe.experts.gate_correction_bias:ernie.layers.15.mlp.moe_statics.e_score_correction_bias
ernie.layers.15.mlp.image_fused_moe.experts.up_gate_proj_weight:['ernie.layers.15.mlp.experts.32.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.33.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.34.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.35.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.36.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.37.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.38.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.39.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.40.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.41.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.42.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.43.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.44.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.45.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.46.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.47.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.48.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.49.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.50.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.51.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.52.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.53.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.54.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.55.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.56.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.57.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.58.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.59.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.60.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.61.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.62.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.63.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.96.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.97.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.98.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.99.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.100.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.101.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.102.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.103.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.104.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.105.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.106.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.107.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.108.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.109.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.110.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.111.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.112.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.113.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.114.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.115.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.116.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.117.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.118.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.119.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.120.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.121.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.122.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.123.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.124.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.125.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.126.up_gate_proj.weight', 'ernie.layers.15.mlp.experts.127.up_gate_proj.weight']
ernie.layers.15.mlp.image_fused_moe.experts.down_proj_weight:['ernie.layers.15.mlp.experts.32.down_proj.weight', 'ernie.layers.15.mlp.experts.33.down_proj.weight', 'ernie.layers.15.mlp.experts.34.down_proj.weight', 'ernie.layers.15.mlp.experts.35.down_proj.weight', 'ernie.layers.15.mlp.experts.36.down_proj.weight', 'ernie.layers.15.mlp.experts.37.down_proj.weight', 'ernie.layers.15.mlp.experts.38.down_proj.weight', 'ernie.layers.15.mlp.experts.39.down_proj.weight', 'ernie.layers.15.mlp.experts.40.down_proj.weight', 'ernie.layers.15.mlp.experts.41.down_proj.weight', 'ernie.layers.15.mlp.experts.42.down_proj.weight', 'ernie.layers.15.mlp.experts.43.down_proj.weight', 'ernie.layers.15.mlp.experts.44.down_proj.weight', 'ernie.layers.15.mlp.experts.45.down_proj.weight', 'ernie.layers.15.mlp.experts.46.down_proj.weight', 'ernie.layers.15.mlp.experts.47.down_proj.weight', 'ernie.layers.15.mlp.experts.48.down_proj.weight', 'ernie.layers.15.mlp.experts.49.down_proj.weight', 'ernie.layers.15.mlp.experts.50.down_proj.weight', 'ernie.layers.15.mlp.experts.51.down_proj.weight', 'ernie.layers.15.mlp.experts.52.down_proj.weight', 'ernie.layers.15.mlp.experts.53.down_proj.weight', 'ernie.layers.15.mlp.experts.54.down_proj.weight', 'ernie.layers.15.mlp.experts.55.down_proj.weight', 'ernie.layers.15.mlp.experts.56.down_proj.weight', 'ernie.layers.15.mlp.experts.57.down_proj.weight', 'ernie.layers.15.mlp.experts.58.down_proj.weight', 'ernie.layers.15.mlp.experts.59.down_proj.weight', 'ernie.layers.15.mlp.experts.60.down_proj.weight', 'ernie.layers.15.mlp.experts.61.down_proj.weight', 'ernie.layers.15.mlp.experts.62.down_proj.weight', 'ernie.layers.15.mlp.experts.63.down_proj.weight', 'ernie.layers.15.mlp.experts.96.down_proj.weight', 'ernie.layers.15.mlp.experts.97.down_proj.weight', 'ernie.layers.15.mlp.experts.98.down_proj.weight', 'ernie.layers.15.mlp.experts.99.down_proj.weight', 'ernie.layers.15.mlp.experts.100.down_proj.weight', 'ernie.layers.15.mlp.experts.101.down_proj.weight', 'ernie.layers.15.mlp.experts.102.down_proj.weight', 'ernie.layers.15.mlp.experts.103.down_proj.weight', 'ernie.layers.15.mlp.experts.104.down_proj.weight', 'ernie.layers.15.mlp.experts.105.down_proj.weight', 'ernie.layers.15.mlp.experts.106.down_proj.weight', 'ernie.layers.15.mlp.experts.107.down_proj.weight', 'ernie.layers.15.mlp.experts.108.down_proj.weight', 'ernie.layers.15.mlp.experts.109.down_proj.weight', 'ernie.layers.15.mlp.experts.110.down_proj.weight', 'ernie.layers.15.mlp.experts.111.down_proj.weight', 'ernie.layers.15.mlp.experts.112.down_proj.weight', 'ernie.layers.15.mlp.experts.113.down_proj.weight', 'ernie.layers.15.mlp.experts.114.down_proj.weight', 'ernie.layers.15.mlp.experts.115.down_proj.weight', 'ernie.layers.15.mlp.experts.116.down_proj.weight', 'ernie.layers.15.mlp.experts.117.down_proj.weight', 'ernie.layers.15.mlp.experts.118.down_proj.weight', 'ernie.layers.15.mlp.experts.119.down_proj.weight', 'ernie.layers.15.mlp.experts.120.down_proj.weight', 'ernie.layers.15.mlp.experts.121.down_proj.weight', 'ernie.layers.15.mlp.experts.122.down_proj.weight', 'ernie.layers.15.mlp.experts.123.down_proj.weight', 'ernie.layers.15.mlp.experts.124.down_proj.weight', 'ernie.layers.15.mlp.experts.125.down_proj.weight', 'ernie.layers.15.mlp.experts.126.down_proj.weight', 'ernie.layers.15.mlp.experts.127.down_proj.weight']
ernie.layers.16.mlp.image_fused_moe.gate.weight:ernie.layers.16.mlp.gate.weight_1
ernie.layers.16.mlp.image_fused_moe.experts.gate_correction_bias:ernie.layers.16.mlp.moe_statics.e_score_correction_bias
ernie.layers.16.mlp.image_fused_moe.experts.up_gate_proj_weight:['ernie.layers.16.mlp.experts.32.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.33.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.34.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.35.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.36.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.37.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.38.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.39.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.40.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.41.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.42.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.43.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.44.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.45.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.46.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.47.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.48.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.49.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.50.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.51.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.52.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.53.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.54.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.55.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.56.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.57.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.58.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.59.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.60.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.61.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.62.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.63.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.96.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.97.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.98.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.99.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.100.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.101.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.102.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.103.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.104.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.105.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.106.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.107.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.108.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.109.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.110.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.111.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.112.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.113.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.114.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.115.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.116.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.117.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.118.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.119.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.120.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.121.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.122.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.123.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.124.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.125.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.126.up_gate_proj.weight', 'ernie.layers.16.mlp.experts.127.up_gate_proj.weight']
ernie.layers.16.mlp.image_fused_moe.experts.down_proj_weight:['ernie.layers.16.mlp.experts.32.down_proj.weight', 'ernie.layers.16.mlp.experts.33.down_proj.weight', 'ernie.layers.16.mlp.experts.34.down_proj.weight', 'ernie.layers.16.mlp.experts.35.down_proj.weight', 'ernie.layers.16.mlp.experts.36.down_proj.weight', 'ernie.layers.16.mlp.experts.37.down_proj.weight', 'ernie.layers.16.mlp.experts.38.down_proj.weight', 'ernie.layers.16.mlp.experts.39.down_proj.weight', 'ernie.layers.16.mlp.experts.40.down_proj.weight', 'ernie.layers.16.mlp.experts.41.down_proj.weight', 'ernie.layers.16.mlp.experts.42.down_proj.weight', 'ernie.layers.16.mlp.experts.43.down_proj.weight', 'ernie.layers.16.mlp.experts.44.down_proj.weight', 'ernie.layers.16.mlp.experts.45.down_proj.weight', 'ernie.layers.16.mlp.experts.46.down_proj.weight', 'ernie.layers.16.mlp.experts.47.down_proj.weight', 'ernie.layers.16.mlp.experts.48.down_proj.weight', 'ernie.layers.16.mlp.experts.49.down_proj.weight', 'ernie.layers.16.mlp.experts.50.down_proj.weight', 'ernie.layers.16.mlp.experts.51.down_proj.weight', 'ernie.layers.16.mlp.experts.52.down_proj.weight', 'ernie.layers.16.mlp.experts.53.down_proj.weight', 'ernie.layers.16.mlp.experts.54.down_proj.weight', 'ernie.layers.16.mlp.experts.55.down_proj.weight', 'ernie.layers.16.mlp.experts.56.down_proj.weight', 'ernie.layers.16.mlp.experts.57.down_proj.weight', 'ernie.layers.16.mlp.experts.58.down_proj.weight', 'ernie.layers.16.mlp.experts.59.down_proj.weight', 'ernie.layers.16.mlp.experts.60.down_proj.weight', 'ernie.layers.16.mlp.experts.61.down_proj.weight', 'ernie.layers.16.mlp.experts.62.down_proj.weight', 'ernie.layers.16.mlp.experts.63.down_proj.weight', 'ernie.layers.16.mlp.experts.96.down_proj.weight', 'ernie.layers.16.mlp.experts.97.down_proj.weight', 'ernie.layers.16.mlp.experts.98.down_proj.weight', 'ernie.layers.16.mlp.experts.99.down_proj.weight', 'ernie.layers.16.mlp.experts.100.down_proj.weight', 'ernie.layers.16.mlp.experts.101.down_proj.weight', 'ernie.layers.16.mlp.experts.102.down_proj.weight', 'ernie.layers.16.mlp.experts.103.down_proj.weight', 'ernie.layers.16.mlp.experts.104.down_proj.weight', 'ernie.layers.16.mlp.experts.105.down_proj.weight', 'ernie.layers.16.mlp.experts.106.down_proj.weight', 'ernie.layers.16.mlp.experts.107.down_proj.weight', 'ernie.layers.16.mlp.experts.108.down_proj.weight', 'ernie.layers.16.mlp.experts.109.down_proj.weight', 'ernie.layers.16.mlp.experts.110.down_proj.weight', 'ernie.layers.16.mlp.experts.111.down_proj.weight', 'ernie.layers.16.mlp.experts.112.down_proj.weight', 'ernie.layers.16.mlp.experts.113.down_proj.weight', 'ernie.layers.16.mlp.experts.114.down_proj.weight', 'ernie.layers.16.mlp.experts.115.down_proj.weight', 'ernie.layers.16.mlp.experts.116.down_proj.weight', 'ernie.layers.16.mlp.experts.117.down_proj.weight', 'ernie.layers.16.mlp.experts.118.down_proj.weight', 'ernie.layers.16.mlp.experts.119.down_proj.weight', 'ernie.layers.16.mlp.experts.120.down_proj.weight', 'ernie.layers.16.mlp.experts.121.down_proj.weight', 'ernie.layers.16.mlp.experts.122.down_proj.weight', 'ernie.layers.16.mlp.experts.123.down_proj.weight', 'ernie.layers.16.mlp.experts.124.down_proj.weight', 'ernie.layers.16.mlp.experts.125.down_proj.weight', 'ernie.layers.16.mlp.experts.126.down_proj.weight', 'ernie.layers.16.mlp.experts.127.down_proj.weight']
ernie.layers.17.mlp.image_fused_moe.gate.weight:ernie.layers.17.mlp.gate.weight_1
ernie.layers.17.mlp.image_fused_moe.experts.gate_correction_bias:ernie.layers.17.mlp.moe_statics.e_score_correction_bias
ernie.layers.17.mlp.image_fused_moe.experts.up_gate_proj_weight:['ernie.layers.17.mlp.experts.32.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.33.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.34.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.35.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.36.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.37.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.38.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.39.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.40.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.41.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.42.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.43.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.44.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.45.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.46.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.47.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.48.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.49.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.50.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.51.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.52.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.53.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.54.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.55.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.56.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.57.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.58.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.59.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.60.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.61.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.62.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.63.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.96.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.97.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.98.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.99.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.100.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.101.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.102.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.103.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.104.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.105.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.106.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.107.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.108.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.109.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.110.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.111.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.112.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.113.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.114.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.115.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.116.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.117.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.118.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.119.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.120.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.121.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.122.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.123.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.124.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.125.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.126.up_gate_proj.weight', 'ernie.layers.17.mlp.experts.127.up_gate_proj.weight']
ernie.layers.17.mlp.image_fused_moe.experts.down_proj_weight:['ernie.layers.17.mlp.experts.32.down_proj.weight', 'ernie.layers.17.mlp.experts.33.down_proj.weight', 'ernie.layers.17.mlp.experts.34.down_proj.weight', 'ernie.layers.17.mlp.experts.35.down_proj.weight', 'ernie.layers.17.mlp.experts.36.down_proj.weight', 'ernie.layers.17.mlp.experts.37.down_proj.weight', 'ernie.layers.17.mlp.experts.38.down_proj.weight', 'ernie.layers.17.mlp.experts.39.down_proj.weight', 'ernie.layers.17.mlp.experts.40.down_proj.weight', 'ernie.layers.17.mlp.experts.41.down_proj.weight', 'ernie.layers.17.mlp.experts.42.down_proj.weight', 'ernie.layers.17.mlp.experts.43.down_proj.weight', 'ernie.layers.17.mlp.experts.44.down_proj.weight', 'ernie.layers.17.mlp.experts.45.down_proj.weight', 'ernie.layers.17.mlp.experts.46.down_proj.weight', 'ernie.layers.17.mlp.experts.47.down_proj.weight', 'ernie.layers.17.mlp.experts.48.down_proj.weight', 'ernie.layers.17.mlp.experts.49.down_proj.weight', 'ernie.layers.17.mlp.experts.50.down_proj.weight', 'ernie.layers.17.mlp.experts.51.down_proj.weight', 'ernie.layers.17.mlp.experts.52.down_proj.weight', 'ernie.layers.17.mlp.experts.53.down_proj.weight', 'ernie.layers.17.mlp.experts.54.down_proj.weight', 'ernie.layers.17.mlp.experts.55.down_proj.weight', 'ernie.layers.17.mlp.experts.56.down_proj.weight', 'ernie.layers.17.mlp.experts.57.down_proj.weight', 'ernie.layers.17.mlp.experts.58.down_proj.weight', 'ernie.layers.17.mlp.experts.59.down_proj.weight', 'ernie.layers.17.mlp.experts.60.down_proj.weight', 'ernie.layers.17.mlp.experts.61.down_proj.weight', 'ernie.layers.17.mlp.experts.62.down_proj.weight', 'ernie.layers.17.mlp.experts.63.down_proj.weight', 'ernie.layers.17.mlp.experts.96.down_proj.weight', 'ernie.layers.17.mlp.experts.97.down_proj.weight', 'ernie.layers.17.mlp.experts.98.down_proj.weight', 'ernie.layers.17.mlp.experts.99.down_proj.weight', 'ernie.layers.17.mlp.experts.100.down_proj.weight', 'ernie.layers.17.mlp.experts.101.down_proj.weight', 'ernie.layers.17.mlp.experts.102.down_proj.weight', 'ernie.layers.17.mlp.experts.103.down_proj.weight', 'ernie.layers.17.mlp.experts.104.down_proj.weight', 'ernie.layers.17.mlp.experts.105.down_proj.weight', 'ernie.layers.17.mlp.experts.106.down_proj.weight', 'ernie.layers.17.mlp.experts.107.down_proj.weight', 'ernie.layers.17.mlp.experts.108.down_proj.weight', 'ernie.layers.17.mlp.experts.109.down_proj.weight', 'ernie.layers.17.mlp.experts.110.down_proj.weight', 'ernie.layers.17.mlp.experts.111.down_proj.weight', 'ernie.layers.17.mlp.experts.112.down_proj.weight', 'ernie.layers.17.mlp.experts.113.down_proj.weight', 'ernie.layers.17.mlp.experts.114.down_proj.weight', 'ernie.layers.17.mlp.experts.115.down_proj.weight', 'ernie.layers.17.mlp.experts.116.down_proj.weight', 'ernie.layers.17.mlp.experts.117.down_proj.weight', 'ernie.layers.17.mlp.experts.118.down_proj.weight', 'ernie.layers.17.mlp.experts.119.down_proj.weight', 'ernie.layers.17.mlp.experts.120.down_proj.weight', 'ernie.layers.17.mlp.experts.121.down_proj.weight', 'ernie.layers.17.mlp.experts.122.down_proj.weight', 'ernie.layers.17.mlp.experts.123.down_proj.weight', 'ernie.layers.17.mlp.experts.124.down_proj.weight', 'ernie.layers.17.mlp.experts.125.down_proj.weight', 'ernie.layers.17.mlp.experts.126.down_proj.weight', 'ernie.layers.17.mlp.experts.127.down_proj.weight']
ernie.layers.18.mlp.image_fused_moe.gate.weight:ernie.layers.18.mlp.gate.weight_1
ernie.layers.18.mlp.image_fused_moe.experts.gate_correction_bias:ernie.layers.18.mlp.moe_statics.e_score_correction_bias
ernie.layers.18.mlp.image_fused_moe.experts.up_gate_proj_weight:['ernie.layers.18.mlp.experts.32.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.33.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.34.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.35.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.36.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.37.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.38.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.39.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.40.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.41.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.42.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.43.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.44.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.45.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.46.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.47.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.48.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.49.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.50.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.51.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.52.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.53.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.54.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.55.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.56.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.57.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.58.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.59.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.60.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.61.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.62.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.63.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.96.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.97.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.98.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.99.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.100.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.101.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.102.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.103.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.104.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.105.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.106.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.107.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.108.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.109.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.110.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.111.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.112.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.113.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.114.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.115.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.116.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.117.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.118.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.119.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.120.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.121.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.122.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.123.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.124.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.125.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.126.up_gate_proj.weight', 'ernie.layers.18.mlp.experts.127.up_gate_proj.weight']
ernie.layers.18.mlp.image_fused_moe.experts.down_proj_weight:['ernie.layers.18.mlp.experts.32.down_proj.weight', 'ernie.layers.18.mlp.experts.33.down_proj.weight', 'ernie.layers.18.mlp.experts.34.down_proj.weight', 'ernie.layers.18.mlp.experts.35.down_proj.weight', 'ernie.layers.18.mlp.experts.36.down_proj.weight', 'ernie.layers.18.mlp.experts.37.down_proj.weight', 'ernie.layers.18.mlp.experts.38.down_proj.weight', 'ernie.layers.18.mlp.experts.39.down_proj.weight', 'ernie.layers.18.mlp.experts.40.down_proj.weight', 'ernie.layers.18.mlp.experts.41.down_proj.weight', 'ernie.layers.18.mlp.experts.42.down_proj.weight', 'ernie.layers.18.mlp.experts.43.down_proj.weight', 'ernie.layers.18.mlp.experts.44.down_proj.weight', 'ernie.layers.18.mlp.experts.45.down_proj.weight', 'ernie.layers.18.mlp.experts.46.down_proj.weight', 'ernie.layers.18.mlp.experts.47.down_proj.weight', 'ernie.layers.18.mlp.experts.48.down_proj.weight', 'ernie.layers.18.mlp.experts.49.down_proj.weight', 'ernie.layers.18.mlp.experts.50.down_proj.weight', 'ernie.layers.18.mlp.experts.51.down_proj.weight', 'ernie.layers.18.mlp.experts.52.down_proj.weight', 'ernie.layers.18.mlp.experts.53.down_proj.weight', 'ernie.layers.18.mlp.experts.54.down_proj.weight', 'ernie.layers.18.mlp.experts.55.down_proj.weight', 'ernie.layers.18.mlp.experts.56.down_proj.weight', 'ernie.layers.18.mlp.experts.57.down_proj.weight', 'ernie.layers.18.mlp.experts.58.down_proj.weight', 'ernie.layers.18.mlp.experts.59.down_proj.weight', 'ernie.layers.18.mlp.experts.60.down_proj.weight', 'ernie.layers.18.mlp.experts.61.down_proj.weight', 'ernie.layers.18.mlp.experts.62.down_proj.weight', 'ernie.layers.18.mlp.experts.63.down_proj.weight', 'ernie.layers.18.mlp.experts.96.down_proj.weight', 'ernie.layers.18.mlp.experts.97.down_proj.weight', 'ernie.layers.18.mlp.experts.98.down_proj.weight', 'ernie.layers.18.mlp.experts.99.down_proj.weight', 'ernie.layers.18.mlp.experts.100.down_proj.weight', 'ernie.layers.18.mlp.experts.101.down_proj.weight', 'ernie.layers.18.mlp.experts.102.down_proj.weight', 'ernie.layers.18.mlp.experts.103.down_proj.weight', 'ernie.layers.18.mlp.experts.104.down_proj.weight', 'ernie.layers.18.mlp.experts.105.down_proj.weight', 'ernie.layers.18.mlp.experts.106.down_proj.weight', 'ernie.layers.18.mlp.experts.107.down_proj.weight', 'ernie.layers.18.mlp.experts.108.down_proj.weight', 'ernie.layers.18.mlp.experts.109.down_proj.weight', 'ernie.layers.18.mlp.experts.110.down_proj.weight', 'ernie.layers.18.mlp.experts.111.down_proj.weight', 'ernie.layers.18.mlp.experts.112.down_proj.weight', 'ernie.layers.18.mlp.experts.113.down_proj.weight', 'ernie.layers.18.mlp.experts.114.down_proj.weight', 'ernie.layers.18.mlp.experts.115.down_proj.weight', 'ernie.layers.18.mlp.experts.116.down_proj.weight', 'ernie.layers.18.mlp.experts.117.down_proj.weight', 'ernie.layers.18.mlp.experts.118.down_proj.weight', 'ernie.layers.18.mlp.experts.119.down_proj.weight', 'ernie.layers.18.mlp.experts.120.down_proj.weight', 'ernie.layers.18.mlp.experts.121.down_proj.weight', 'ernie.layers.18.mlp.experts.122.down_proj.weight', 'ernie.layers.18.mlp.experts.123.down_proj.weight', 'ernie.layers.18.mlp.experts.124.down_proj.weight', 'ernie.layers.18.mlp.experts.125.down_proj.weight', 'ernie.layers.18.mlp.experts.126.down_proj.weight', 'ernie.layers.18.mlp.experts.127.down_proj.weight']
ernie.layers.19.mlp.image_fused_moe.gate.weight:ernie.layers.19.mlp.gate.weight_1
ernie.layers.19.mlp.image_fused_moe.experts.gate_correction_bias:ernie.layers.19.mlp.moe_statics.e_score_correction_bias
ernie.layers.19.mlp.image_fused_moe.experts.up_gate_proj_weight:['ernie.layers.19.mlp.experts.32.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.33.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.34.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.35.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.36.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.37.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.38.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.39.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.40.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.41.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.42.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.43.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.44.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.45.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.46.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.47.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.48.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.49.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.50.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.51.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.52.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.53.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.54.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.55.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.56.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.57.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.58.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.59.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.60.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.61.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.62.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.63.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.96.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.97.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.98.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.99.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.100.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.101.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.102.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.103.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.104.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.105.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.106.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.107.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.108.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.109.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.110.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.111.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.112.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.113.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.114.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.115.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.116.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.117.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.118.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.119.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.120.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.121.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.122.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.123.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.124.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.125.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.126.up_gate_proj.weight', 'ernie.layers.19.mlp.experts.127.up_gate_proj.weight']
ernie.layers.19.mlp.image_fused_moe.experts.down_proj_weight:['ernie.layers.19.mlp.experts.32.down_proj.weight', 'ernie.layers.19.mlp.experts.33.down_proj.weight', 'ernie.layers.19.mlp.experts.34.down_proj.weight', 'ernie.layers.19.mlp.experts.35.down_proj.weight', 'ernie.layers.19.mlp.experts.36.down_proj.weight', 'ernie.layers.19.mlp.experts.37.down_proj.weight', 'ernie.layers.19.mlp.experts.38.down_proj.weight', 'ernie.layers.19.mlp.experts.39.down_proj.weight', 'ernie.layers.19.mlp.experts.40.down_proj.weight', 'ernie.layers.19.mlp.experts.41.down_proj.weight', 'ernie.layers.19.mlp.experts.42.down_proj.weight', 'ernie.layers.19.mlp.experts.43.down_proj.weight', 'ernie.layers.19.mlp.experts.44.down_proj.weight', 'ernie.layers.19.mlp.experts.45.down_proj.weight', 'ernie.layers.19.mlp.experts.46.down_proj.weight', 'ernie.layers.19.mlp.experts.47.down_proj.weight', 'ernie.layers.19.mlp.experts.48.down_proj.weight', 'ernie.layers.19.mlp.experts.49.down_proj.weight', 'ernie.layers.19.mlp.experts.50.down_proj.weight', 'ernie.layers.19.mlp.experts.51.down_proj.weight', 'ernie.layers.19.mlp.experts.52.down_proj.weight', 'ernie.layers.19.mlp.experts.53.down_proj.weight', 'ernie.layers.19.mlp.experts.54.down_proj.weight', 'ernie.layers.19.mlp.experts.55.down_proj.weight', 'ernie.layers.19.mlp.experts.56.down_proj.weight', 'ernie.layers.19.mlp.experts.57.down_proj.weight', 'ernie.layers.19.mlp.experts.58.down_proj.weight', 'ernie.layers.19.mlp.experts.59.down_proj.weight', 'ernie.layers.19.mlp.experts.60.down_proj.weight', 'ernie.layers.19.mlp.experts.61.down_proj.weight', 'ernie.layers.19.mlp.experts.62.down_proj.weight', 'ernie.layers.19.mlp.experts.63.down_proj.weight', 'ernie.layers.19.mlp.experts.96.down_proj.weight', 'ernie.layers.19.mlp.experts.97.down_proj.weight', 'ernie.layers.19.mlp.experts.98.down_proj.weight', 'ernie.layers.19.mlp.experts.99.down_proj.weight', 'ernie.layers.19.mlp.experts.100.down_proj.weight', 'ernie.layers.19.mlp.experts.101.down_proj.weight', 'ernie.layers.19.mlp.experts.102.down_proj.weight', 'ernie.layers.19.mlp.experts.103.down_proj.weight', 'ernie.layers.19.mlp.experts.104.down_proj.weight', 'ernie.layers.19.mlp.experts.105.down_proj.weight', 'ernie.layers.19.mlp.experts.106.down_proj.weight', 'ernie.layers.19.mlp.experts.107.down_proj.weight', 'ernie.layers.19.mlp.experts.108.down_proj.weight', 'ernie.layers.19.mlp.experts.109.down_proj.weight', 'ernie.layers.19.mlp.experts.110.down_proj.weight', 'ernie.layers.19.mlp.experts.111.down_proj.weight', 'ernie.layers.19.mlp.experts.112.down_proj.weight', 'ernie.layers.19.mlp.experts.113.down_proj.weight', 'ernie.layers.19.mlp.experts.114.down_proj.weight', 'ernie.layers.19.mlp.experts.115.down_proj.weight', 'ernie.layers.19.mlp.experts.116.down_proj.weight', 'ernie.layers.19.mlp.experts.117.down_proj.weight', 'ernie.layers.19.mlp.experts.118.down_proj.weight', 'ernie.layers.19.mlp.experts.119.down_proj.weight', 'ernie.layers.19.mlp.experts.120.down_proj.weight', 'ernie.layers.19.mlp.experts.121.down_proj.weight', 'ernie.layers.19.mlp.experts.122.down_proj.weight', 'ernie.layers.19.mlp.experts.123.down_proj.weight', 'ernie.layers.19.mlp.experts.124.down_proj.weight', 'ernie.layers.19.mlp.experts.125.down_proj.weight', 'ernie.layers.19.mlp.experts.126.down_proj.weight', 'ernie.layers.19.mlp.experts.127.down_proj.weight']
ernie.layers.20.mlp.image_fused_moe.gate.weight:ernie.layers.20.mlp.gate.weight_1
ernie.layers.20.mlp.image_fused_moe.experts.gate_correction_bias:ernie.layers.20.mlp.moe_statics.e_score_correction_bias
ernie.layers.20.mlp.image_fused_moe.experts.up_gate_proj_weight:['ernie.layers.20.mlp.experts.32.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.33.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.34.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.35.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.36.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.37.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.38.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.39.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.40.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.41.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.42.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.43.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.44.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.45.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.46.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.47.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.48.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.49.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.50.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.51.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.52.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.53.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.54.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.55.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.56.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.57.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.58.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.59.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.60.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.61.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.62.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.63.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.96.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.97.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.98.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.99.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.100.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.101.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.102.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.103.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.104.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.105.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.106.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.107.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.108.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.109.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.110.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.111.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.112.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.113.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.114.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.115.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.116.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.117.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.118.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.119.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.120.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.121.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.122.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.123.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.124.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.125.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.126.up_gate_proj.weight', 'ernie.layers.20.mlp.experts.127.up_gate_proj.weight']
ernie.layers.20.mlp.image_fused_moe.experts.down_proj_weight:['ernie.layers.20.mlp.experts.32.down_proj.weight', 'ernie.layers.20.mlp.experts.33.down_proj.weight', 'ernie.layers.20.mlp.experts.34.down_proj.weight', 'ernie.layers.20.mlp.experts.35.down_proj.weight', 'ernie.layers.20.mlp.experts.36.down_proj.weight', 'ernie.layers.20.mlp.experts.37.down_proj.weight', 'ernie.layers.20.mlp.experts.38.down_proj.weight', 'ernie.layers.20.mlp.experts.39.down_proj.weight', 'ernie.layers.20.mlp.experts.40.down_proj.weight', 'ernie.layers.20.mlp.experts.41.down_proj.weight', 'ernie.layers.20.mlp.experts.42.down_proj.weight', 'ernie.layers.20.mlp.experts.43.down_proj.weight', 'ernie.layers.20.mlp.experts.44.down_proj.weight', 'ernie.layers.20.mlp.experts.45.down_proj.weight', 'ernie.layers.20.mlp.experts.46.down_proj.weight', 'ernie.layers.20.mlp.experts.47.down_proj.weight', 'ernie.layers.20.mlp.experts.48.down_proj.weight', 'ernie.layers.20.mlp.experts.49.down_proj.weight', 'ernie.layers.20.mlp.experts.50.down_proj.weight', 'ernie.layers.20.mlp.experts.51.down_proj.weight', 'ernie.layers.20.mlp.experts.52.down_proj.weight', 'ernie.layers.20.mlp.experts.53.down_proj.weight', 'ernie.layers.20.mlp.experts.54.down_proj.weight', 'ernie.layers.20.mlp.experts.55.down_proj.weight', 'ernie.layers.20.mlp.experts.56.down_proj.weight', 'ernie.layers.20.mlp.experts.57.down_proj.weight', 'ernie.layers.20.mlp.experts.58.down_proj.weight', 'ernie.layers.20.mlp.experts.59.down_proj.weight', 'ernie.layers.20.mlp.experts.60.down_proj.weight', 'ernie.layers.20.mlp.experts.61.down_proj.weight', 'ernie.layers.20.mlp.experts.62.down_proj.weight', 'ernie.layers.20.mlp.experts.63.down_proj.weight', 'ernie.layers.20.mlp.experts.96.down_proj.weight', 'ernie.layers.20.mlp.experts.97.down_proj.weight', 'ernie.layers.20.mlp.experts.98.down_proj.weight', 'ernie.layers.20.mlp.experts.99.down_proj.weight', 'ernie.layers.20.mlp.experts.100.down_proj.weight', 'ernie.layers.20.mlp.experts.101.down_proj.weight', 'ernie.layers.20.mlp.experts.102.down_proj.weight', 'ernie.layers.20.mlp.experts.103.down_proj.weight', 'ernie.layers.20.mlp.experts.104.down_proj.weight', 'ernie.layers.20.mlp.experts.105.down_proj.weight', 'ernie.layers.20.mlp.experts.106.down_proj.weight', 'ernie.layers.20.mlp.experts.107.down_proj.weight', 'ernie.layers.20.mlp.experts.108.down_proj.weight', 'ernie.layers.20.mlp.experts.109.down_proj.weight', 'ernie.layers.20.mlp.experts.110.down_proj.weight', 'ernie.layers.20.mlp.experts.111.down_proj.weight', 'ernie.layers.20.mlp.experts.112.down_proj.weight', 'ernie.layers.20.mlp.experts.113.down_proj.weight', 'ernie.layers.20.mlp.experts.114.down_proj.weight', 'ernie.layers.20.mlp.experts.115.down_proj.weight', 'ernie.layers.20.mlp.experts.116.down_proj.weight', 'ernie.layers.20.mlp.experts.117.down_proj.weight', 'ernie.layers.20.mlp.experts.118.down_proj.weight', 'ernie.layers.20.mlp.experts.119.down_proj.weight', 'ernie.layers.20.mlp.experts.120.down_proj.weight', 'ernie.layers.20.mlp.experts.121.down_proj.weight', 'ernie.layers.20.mlp.experts.122.down_proj.weight', 'ernie.layers.20.mlp.experts.123.down_proj.weight', 'ernie.layers.20.mlp.experts.124.down_proj.weight', 'ernie.layers.20.mlp.experts.125.down_proj.weight', 'ernie.layers.20.mlp.experts.126.down_proj.weight', 'ernie.layers.20.mlp.experts.127.down_proj.weight']
ernie.layers.21.mlp.image_fused_moe.gate.weight:ernie.layers.21.mlp.gate.weight_1
ernie.layers.21.mlp.image_fused_moe.experts.gate_correction_bias:ernie.layers.21.mlp.moe_statics.e_score_correction_bias
ernie.layers.21.mlp.image_fused_moe.experts.up_gate_proj_weight:['ernie.layers.21.mlp.experts.32.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.33.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.34.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.35.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.36.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.37.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.38.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.39.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.40.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.41.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.42.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.43.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.44.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.45.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.46.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.47.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.48.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.49.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.50.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.51.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.52.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.53.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.54.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.55.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.56.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.57.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.58.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.59.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.60.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.61.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.62.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.63.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.96.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.97.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.98.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.99.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.100.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.101.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.102.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.103.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.104.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.105.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.106.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.107.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.108.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.109.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.110.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.111.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.112.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.113.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.114.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.115.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.116.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.117.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.118.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.119.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.120.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.121.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.122.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.123.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.124.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.125.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.126.up_gate_proj.weight', 'ernie.layers.21.mlp.experts.127.up_gate_proj.weight']
ernie.layers.21.mlp.image_fused_moe.experts.down_proj_weight:['ernie.layers.21.mlp.experts.32.down_proj.weight', 'ernie.layers.21.mlp.experts.33.down_proj.weight', 'ernie.layers.21.mlp.experts.34.down_proj.weight', 'ernie.layers.21.mlp.experts.35.down_proj.weight', 'ernie.layers.21.mlp.experts.36.down_proj.weight', 'ernie.layers.21.mlp.experts.37.down_proj.weight', 'ernie.layers.21.mlp.experts.38.down_proj.weight', 'ernie.layers.21.mlp.experts.39.down_proj.weight', 'ernie.layers.21.mlp.experts.40.down_proj.weight', 'ernie.layers.21.mlp.experts.41.down_proj.weight', 'ernie.layers.21.mlp.experts.42.down_proj.weight', 'ernie.layers.21.mlp.experts.43.down_proj.weight', 'ernie.layers.21.mlp.experts.44.down_proj.weight', 'ernie.layers.21.mlp.experts.45.down_proj.weight', 'ernie.layers.21.mlp.experts.46.down_proj.weight', 'ernie.layers.21.mlp.experts.47.down_proj.weight', 'ernie.layers.21.mlp.experts.48.down_proj.weight', 'ernie.layers.21.mlp.experts.49.down_proj.weight', 'ernie.layers.21.mlp.experts.50.down_proj.weight', 'ernie.layers.21.mlp.experts.51.down_proj.weight', 'ernie.layers.21.mlp.experts.52.down_proj.weight', 'ernie.layers.21.mlp.experts.53.down_proj.weight', 'ernie.layers.21.mlp.experts.54.down_proj.weight', 'ernie.layers.21.mlp.experts.55.down_proj.weight', 'ernie.layers.21.mlp.experts.56.down_proj.weight', 'ernie.layers.21.mlp.experts.57.down_proj.weight', 'ernie.layers.21.mlp.experts.58.down_proj.weight', 'ernie.layers.21.mlp.experts.59.down_proj.weight', 'ernie.layers.21.mlp.experts.60.down_proj.weight', 'ernie.layers.21.mlp.experts.61.down_proj.weight', 'ernie.layers.21.mlp.experts.62.down_proj.weight', 'ernie.layers.21.mlp.experts.63.down_proj.weight', 'ernie.layers.21.mlp.experts.96.down_proj.weight', 'ernie.layers.21.mlp.experts.97.down_proj.weight', 'ernie.layers.21.mlp.experts.98.down_proj.weight', 'ernie.layers.21.mlp.experts.99.down_proj.weight', 'ernie.layers.21.mlp.experts.100.down_proj.weight', 'ernie.layers.21.mlp.experts.101.down_proj.weight', 'ernie.layers.21.mlp.experts.102.down_proj.weight', 'ernie.layers.21.mlp.experts.103.down_proj.weight', 'ernie.layers.21.mlp.experts.104.down_proj.weight', 'ernie.layers.21.mlp.experts.105.down_proj.weight', 'ernie.layers.21.mlp.experts.106.down_proj.weight', 'ernie.layers.21.mlp.experts.107.down_proj.weight', 'ernie.layers.21.mlp.experts.108.down_proj.weight', 'ernie.layers.21.mlp.experts.109.down_proj.weight', 'ernie.layers.21.mlp.experts.110.down_proj.weight', 'ernie.layers.21.mlp.experts.111.down_proj.weight', 'ernie.layers.21.mlp.experts.112.down_proj.weight', 'ernie.layers.21.mlp.experts.113.down_proj.weight', 'ernie.layers.21.mlp.experts.114.down_proj.weight', 'ernie.layers.21.mlp.experts.115.down_proj.weight', 'ernie.layers.21.mlp.experts.116.down_proj.weight', 'ernie.layers.21.mlp.experts.117.down_proj.weight', 'ernie.layers.21.mlp.experts.118.down_proj.weight', 'ernie.layers.21.mlp.experts.119.down_proj.weight', 'ernie.layers.21.mlp.experts.120.down_proj.weight', 'ernie.layers.21.mlp.experts.121.down_proj.weight', 'ernie.layers.21.mlp.experts.122.down_proj.weight', 'ernie.layers.21.mlp.experts.123.down_proj.weight', 'ernie.layers.21.mlp.experts.124.down_proj.weight', 'ernie.layers.21.mlp.experts.125.down_proj.weight', 'ernie.layers.21.mlp.experts.126.down_proj.weight', 'ernie.layers.21.mlp.experts.127.down_proj.weight']
ernie.layers.22.mlp.image_fused_moe.gate.weight:ernie.layers.22.mlp.gate.weight_1
ernie.layers.22.mlp.image_fused_moe.experts.gate_correction_bias:ernie.layers.22.mlp.moe_statics.e_score_correction_bias
ernie.layers.22.mlp.image_fused_moe.experts.up_gate_proj_weight:['ernie.layers.22.mlp.experts.32.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.33.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.34.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.35.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.36.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.37.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.38.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.39.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.40.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.41.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.42.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.43.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.44.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.45.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.46.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.47.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.48.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.49.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.50.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.51.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.52.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.53.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.54.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.55.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.56.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.57.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.58.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.59.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.60.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.61.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.62.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.63.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.96.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.97.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.98.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.99.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.100.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.101.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.102.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.103.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.104.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.105.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.106.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.107.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.108.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.109.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.110.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.111.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.112.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.113.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.114.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.115.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.116.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.117.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.118.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.119.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.120.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.121.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.122.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.123.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.124.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.125.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.126.up_gate_proj.weight', 'ernie.layers.22.mlp.experts.127.up_gate_proj.weight']
ernie.layers.22.mlp.image_fused_moe.experts.down_proj_weight:['ernie.layers.22.mlp.experts.32.down_proj.weight', 'ernie.layers.22.mlp.experts.33.down_proj.weight', 'ernie.layers.22.mlp.experts.34.down_proj.weight', 'ernie.layers.22.mlp.experts.35.down_proj.weight', 'ernie.layers.22.mlp.experts.36.down_proj.weight', 'ernie.layers.22.mlp.experts.37.down_proj.weight', 'ernie.layers.22.mlp.experts.38.down_proj.weight', 'ernie.layers.22.mlp.experts.39.down_proj.weight', 'ernie.layers.22.mlp.experts.40.down_proj.weight', 'ernie.layers.22.mlp.experts.41.down_proj.weight', 'ernie.layers.22.mlp.experts.42.down_proj.weight', 'ernie.layers.22.mlp.experts.43.down_proj.weight', 'ernie.layers.22.mlp.experts.44.down_proj.weight', 'ernie.layers.22.mlp.experts.45.down_proj.weight', 'ernie.layers.22.mlp.experts.46.down_proj.weight', 'ernie.layers.22.mlp.experts.47.down_proj.weight', 'ernie.layers.22.mlp.experts.48.down_proj.weight', 'ernie.layers.22.mlp.experts.49.down_proj.weight', 'ernie.layers.22.mlp.experts.50.down_proj.weight', 'ernie.layers.22.mlp.experts.51.down_proj.weight', 'ernie.layers.22.mlp.experts.52.down_proj.weight', 'ernie.layers.22.mlp.experts.53.down_proj.weight', 'ernie.layers.22.mlp.experts.54.down_proj.weight', 'ernie.layers.22.mlp.experts.55.down_proj.weight', 'ernie.layers.22.mlp.experts.56.down_proj.weight', 'ernie.layers.22.mlp.experts.57.down_proj.weight', 'ernie.layers.22.mlp.experts.58.down_proj.weight', 'ernie.layers.22.mlp.experts.59.down_proj.weight', 'ernie.layers.22.mlp.experts.60.down_proj.weight', 'ernie.layers.22.mlp.experts.61.down_proj.weight', 'ernie.layers.22.mlp.experts.62.down_proj.weight', 'ernie.layers.22.mlp.experts.63.down_proj.weight', 'ernie.layers.22.mlp.experts.96.down_proj.weight', 'ernie.layers.22.mlp.experts.97.down_proj.weight', 'ernie.layers.22.mlp.experts.98.down_proj.weight', 'ernie.layers.22.mlp.experts.99.down_proj.weight', 'ernie.layers.22.mlp.experts.100.down_proj.weight', 'ernie.layers.22.mlp.experts.101.down_proj.weight', 'ernie.layers.22.mlp.experts.102.down_proj.weight', 'ernie.layers.22.mlp.experts.103.down_proj.weight', 'ernie.layers.22.mlp.experts.104.down_proj.weight', 'ernie.layers.22.mlp.experts.105.down_proj.weight', 'ernie.layers.22.mlp.experts.106.down_proj.weight', 'ernie.layers.22.mlp.experts.107.down_proj.weight', 'ernie.layers.22.mlp.experts.108.down_proj.weight', 'ernie.layers.22.mlp.experts.109.down_proj.weight', 'ernie.layers.22.mlp.experts.110.down_proj.weight', 'ernie.layers.22.mlp.experts.111.down_proj.weight', 'ernie.layers.22.mlp.experts.112.down_proj.weight', 'ernie.layers.22.mlp.experts.113.down_proj.weight', 'ernie.layers.22.mlp.experts.114.down_proj.weight', 'ernie.layers.22.mlp.experts.115.down_proj.weight', 'ernie.layers.22.mlp.experts.116.down_proj.weight', 'ernie.layers.22.mlp.experts.117.down_proj.weight', 'ernie.layers.22.mlp.experts.118.down_proj.weight', 'ernie.layers.22.mlp.experts.119.down_proj.weight', 'ernie.layers.22.mlp.experts.120.down_proj.weight', 'ernie.layers.22.mlp.experts.121.down_proj.weight', 'ernie.layers.22.mlp.experts.122.down_proj.weight', 'ernie.layers.22.mlp.experts.123.down_proj.weight', 'ernie.layers.22.mlp.experts.124.down_proj.weight', 'ernie.layers.22.mlp.experts.125.down_proj.weight', 'ernie.layers.22.mlp.experts.126.down_proj.weight', 'ernie.layers.22.mlp.experts.127.down_proj.weight']
ernie.layers.23.mlp.image_fused_moe.gate.weight:ernie.layers.23.mlp.gate.weight_1
ernie.layers.23.mlp.image_fused_moe.experts.gate_correction_bias:ernie.layers.23.mlp.moe_statics.e_score_correction_bias
ernie.layers.23.mlp.image_fused_moe.experts.up_gate_proj_weight:['ernie.layers.23.mlp.experts.32.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.33.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.34.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.35.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.36.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.37.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.38.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.39.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.40.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.41.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.42.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.43.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.44.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.45.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.46.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.47.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.48.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.49.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.50.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.51.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.52.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.53.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.54.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.55.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.56.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.57.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.58.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.59.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.60.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.61.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.62.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.63.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.96.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.97.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.98.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.99.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.100.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.101.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.102.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.103.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.104.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.105.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.106.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.107.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.108.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.109.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.110.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.111.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.112.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.113.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.114.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.115.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.116.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.117.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.118.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.119.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.120.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.121.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.122.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.123.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.124.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.125.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.126.up_gate_proj.weight', 'ernie.layers.23.mlp.experts.127.up_gate_proj.weight']
ernie.layers.23.mlp.image_fused_moe.experts.down_proj_weight:['ernie.layers.23.mlp.experts.32.down_proj.weight', 'ernie.layers.23.mlp.experts.33.down_proj.weight', 'ernie.layers.23.mlp.experts.34.down_proj.weight', 'ernie.layers.23.mlp.experts.35.down_proj.weight', 'ernie.layers.23.mlp.experts.36.down_proj.weight', 'ernie.layers.23.mlp.experts.37.down_proj.weight', 'ernie.layers.23.mlp.experts.38.down_proj.weight', 'ernie.layers.23.mlp.experts.39.down_proj.weight', 'ernie.layers.23.mlp.experts.40.down_proj.weight', 'ernie.layers.23.mlp.experts.41.down_proj.weight', 'ernie.layers.23.mlp.experts.42.down_proj.weight', 'ernie.layers.23.mlp.experts.43.down_proj.weight', 'ernie.layers.23.mlp.experts.44.down_proj.weight', 'ernie.layers.23.mlp.experts.45.down_proj.weight', 'ernie.layers.23.mlp.experts.46.down_proj.weight', 'ernie.layers.23.mlp.experts.47.down_proj.weight', 'ernie.layers.23.mlp.experts.48.down_proj.weight', 'ernie.layers.23.mlp.experts.49.down_proj.weight', 'ernie.layers.23.mlp.experts.50.down_proj.weight', 'ernie.layers.23.mlp.experts.51.down_proj.weight', 'ernie.layers.23.mlp.experts.52.down_proj.weight', 'ernie.layers.23.mlp.experts.53.down_proj.weight', 'ernie.layers.23.mlp.experts.54.down_proj.weight', 'ernie.layers.23.mlp.experts.55.down_proj.weight', 'ernie.layers.23.mlp.experts.56.down_proj.weight', 'ernie.layers.23.mlp.experts.57.down_proj.weight', 'ernie.layers.23.mlp.experts.58.down_proj.weight', 'ernie.layers.23.mlp.experts.59.down_proj.weight', 'ernie.layers.23.mlp.experts.60.down_proj.weight', 'ernie.layers.23.mlp.experts.61.down_proj.weight', 'ernie.layers.23.mlp.experts.62.down_proj.weight', 'ernie.layers.23.mlp.experts.63.down_proj.weight', 'ernie.layers.23.mlp.experts.96.down_proj.weight', 'ernie.layers.23.mlp.experts.97.down_proj.weight', 'ernie.layers.23.mlp.experts.98.down_proj.weight', 'ernie.layers.23.mlp.experts.99.down_proj.weight', 'ernie.layers.23.mlp.experts.100.down_proj.weight', 'ernie.layers.23.mlp.experts.101.down_proj.weight', 'ernie.layers.23.mlp.experts.102.down_proj.weight', 'ernie.layers.23.mlp.experts.103.down_proj.weight', 'ernie.layers.23.mlp.experts.104.down_proj.weight', 'ernie.layers.23.mlp.experts.105.down_proj.weight', 'ernie.layers.23.mlp.experts.106.down_proj.weight', 'ernie.layers.23.mlp.experts.107.down_proj.weight', 'ernie.layers.23.mlp.experts.108.down_proj.weight', 'ernie.layers.23.mlp.experts.109.down_proj.weight', 'ernie.layers.23.mlp.experts.110.down_proj.weight', 'ernie.layers.23.mlp.experts.111.down_proj.weight', 'ernie.layers.23.mlp.experts.112.down_proj.weight', 'ernie.layers.23.mlp.experts.113.down_proj.weight', 'ernie.layers.23.mlp.experts.114.down_proj.weight', 'ernie.layers.23.mlp.experts.115.down_proj.weight', 'ernie.layers.23.mlp.experts.116.down_proj.weight', 'ernie.layers.23.mlp.experts.117.down_proj.weight', 'ernie.layers.23.mlp.experts.118.down_proj.weight', 'ernie.layers.23.mlp.experts.119.down_proj.weight', 'ernie.layers.23.mlp.experts.120.down_proj.weight', 'ernie.layers.23.mlp.experts.121.down_proj.weight', 'ernie.layers.23.mlp.experts.122.down_proj.weight', 'ernie.layers.23.mlp.experts.123.down_proj.weight', 'ernie.layers.23.mlp.experts.124.down_proj.weight', 'ernie.layers.23.mlp.experts.125.down_proj.weight', 'ernie.layers.23.mlp.experts.126.down_proj.weight', 'ernie.layers.23.mlp.experts.127.down_proj.weight']
ernie.layers.24.mlp.image_fused_moe.gate.weight:ernie.layers.24.mlp.gate.weight_1
ernie.layers.24.mlp.image_fused_moe.experts.gate_correction_bias:ernie.layers.24.mlp.moe_statics.e_score_correction_bias
ernie.layers.24.mlp.image_fused_moe.experts.up_gate_proj_weight:['ernie.layers.24.mlp.experts.32.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.33.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.34.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.35.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.36.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.37.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.38.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.39.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.40.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.41.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.42.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.43.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.44.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.45.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.46.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.47.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.48.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.49.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.50.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.51.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.52.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.53.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.54.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.55.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.56.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.57.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.58.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.59.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.60.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.61.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.62.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.63.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.96.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.97.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.98.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.99.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.100.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.101.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.102.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.103.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.104.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.105.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.106.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.107.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.108.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.109.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.110.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.111.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.112.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.113.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.114.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.115.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.116.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.117.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.118.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.119.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.120.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.121.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.122.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.123.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.124.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.125.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.126.up_gate_proj.weight', 'ernie.layers.24.mlp.experts.127.up_gate_proj.weight']
ernie.layers.24.mlp.image_fused_moe.experts.down_proj_weight:['ernie.layers.24.mlp.experts.32.down_proj.weight', 'ernie.layers.24.mlp.experts.33.down_proj.weight', 'ernie.layers.24.mlp.experts.34.down_proj.weight', 'ernie.layers.24.mlp.experts.35.down_proj.weight', 'ernie.layers.24.mlp.experts.36.down_proj.weight', 'ernie.layers.24.mlp.experts.37.down_proj.weight', 'ernie.layers.24.mlp.experts.38.down_proj.weight', 'ernie.layers.24.mlp.experts.39.down_proj.weight', 'ernie.layers.24.mlp.experts.40.down_proj.weight', 'ernie.layers.24.mlp.experts.41.down_proj.weight', 'ernie.layers.24.mlp.experts.42.down_proj.weight', 'ernie.layers.24.mlp.experts.43.down_proj.weight', 'ernie.layers.24.mlp.experts.44.down_proj.weight', 'ernie.layers.24.mlp.experts.45.down_proj.weight', 'ernie.layers.24.mlp.experts.46.down_proj.weight', 'ernie.layers.24.mlp.experts.47.down_proj.weight', 'ernie.layers.24.mlp.experts.48.down_proj.weight', 'ernie.layers.24.mlp.experts.49.down_proj.weight', 'ernie.layers.24.mlp.experts.50.down_proj.weight', 'ernie.layers.24.mlp.experts.51.down_proj.weight', 'ernie.layers.24.mlp.experts.52.down_proj.weight', 'ernie.layers.24.mlp.experts.53.down_proj.weight', 'ernie.layers.24.mlp.experts.54.down_proj.weight', 'ernie.layers.24.mlp.experts.55.down_proj.weight', 'ernie.layers.24.mlp.experts.56.down_proj.weight', 'ernie.layers.24.mlp.experts.57.down_proj.weight', 'ernie.layers.24.mlp.experts.58.down_proj.weight', 'ernie.layers.24.mlp.experts.59.down_proj.weight', 'ernie.layers.24.mlp.experts.60.down_proj.weight', 'ernie.layers.24.mlp.experts.61.down_proj.weight', 'ernie.layers.24.mlp.experts.62.down_proj.weight', 'ernie.layers.24.mlp.experts.63.down_proj.weight', 'ernie.layers.24.mlp.experts.96.down_proj.weight', 'ernie.layers.24.mlp.experts.97.down_proj.weight', 'ernie.layers.24.mlp.experts.98.down_proj.weight', 'ernie.layers.24.mlp.experts.99.down_proj.weight', 'ernie.layers.24.mlp.experts.100.down_proj.weight', 'ernie.layers.24.mlp.experts.101.down_proj.weight', 'ernie.layers.24.mlp.experts.102.down_proj.weight', 'ernie.layers.24.mlp.experts.103.down_proj.weight', 'ernie.layers.24.mlp.experts.104.down_proj.weight', 'ernie.layers.24.mlp.experts.105.down_proj.weight', 'ernie.layers.24.mlp.experts.106.down_proj.weight', 'ernie.layers.24.mlp.experts.107.down_proj.weight', 'ernie.layers.24.mlp.experts.108.down_proj.weight', 'ernie.layers.24.mlp.experts.109.down_proj.weight', 'ernie.layers.24.mlp.experts.110.down_proj.weight', 'ernie.layers.24.mlp.experts.111.down_proj.weight', 'ernie.layers.24.mlp.experts.112.down_proj.weight', 'ernie.layers.24.mlp.experts.113.down_proj.weight', 'ernie.layers.24.mlp.experts.114.down_proj.weight', 'ernie.layers.24.mlp.experts.115.down_proj.weight', 'ernie.layers.24.mlp.experts.116.down_proj.weight', 'ernie.layers.24.mlp.experts.117.down_proj.weight', 'ernie.layers.24.mlp.experts.118.down_proj.weight', 'ernie.layers.24.mlp.experts.119.down_proj.weight', 'ernie.layers.24.mlp.experts.120.down_proj.weight', 'ernie.layers.24.mlp.experts.121.down_proj.weight', 'ernie.layers.24.mlp.experts.122.down_proj.weight', 'ernie.layers.24.mlp.experts.123.down_proj.weight', 'ernie.layers.24.mlp.experts.124.down_proj.weight', 'ernie.layers.24.mlp.experts.125.down_proj.weight', 'ernie.layers.24.mlp.experts.126.down_proj.weight', 'ernie.layers.24.mlp.experts.127.down_proj.weight']
ernie.layers.25.mlp.image_fused_moe.gate.weight:ernie.layers.25.mlp.gate.weight_1
ernie.layers.25.mlp.image_fused_moe.experts.gate_correction_bias:ernie.layers.25.mlp.moe_statics.e_score_correction_bias
ernie.layers.25.mlp.image_fused_moe.experts.up_gate_proj_weight:['ernie.layers.25.mlp.experts.32.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.33.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.34.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.35.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.36.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.37.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.38.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.39.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.40.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.41.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.42.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.43.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.44.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.45.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.46.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.47.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.48.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.49.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.50.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.51.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.52.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.53.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.54.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.55.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.56.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.57.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.58.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.59.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.60.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.61.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.62.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.63.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.96.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.97.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.98.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.99.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.100.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.101.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.102.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.103.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.104.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.105.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.106.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.107.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.108.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.109.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.110.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.111.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.112.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.113.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.114.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.115.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.116.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.117.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.118.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.119.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.120.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.121.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.122.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.123.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.124.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.125.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.126.up_gate_proj.weight', 'ernie.layers.25.mlp.experts.127.up_gate_proj.weight']
ernie.layers.25.mlp.image_fused_moe.experts.down_proj_weight:['ernie.layers.25.mlp.experts.32.down_proj.weight', 'ernie.layers.25.mlp.experts.33.down_proj.weight', 'ernie.layers.25.mlp.experts.34.down_proj.weight', 'ernie.layers.25.mlp.experts.35.down_proj.weight', 'ernie.layers.25.mlp.experts.36.down_proj.weight', 'ernie.layers.25.mlp.experts.37.down_proj.weight', 'ernie.layers.25.mlp.experts.38.down_proj.weight', 'ernie.layers.25.mlp.experts.39.down_proj.weight', 'ernie.layers.25.mlp.experts.40.down_proj.weight', 'ernie.layers.25.mlp.experts.41.down_proj.weight', 'ernie.layers.25.mlp.experts.42.down_proj.weight', 'ernie.layers.25.mlp.experts.43.down_proj.weight', 'ernie.layers.25.mlp.experts.44.down_proj.weight', 'ernie.layers.25.mlp.experts.45.down_proj.weight', 'ernie.layers.25.mlp.experts.46.down_proj.weight', 'ernie.layers.25.mlp.experts.47.down_proj.weight', 'ernie.layers.25.mlp.experts.48.down_proj.weight', 'ernie.layers.25.mlp.experts.49.down_proj.weight', 'ernie.layers.25.mlp.experts.50.down_proj.weight', 'ernie.layers.25.mlp.experts.51.down_proj.weight', 'ernie.layers.25.mlp.experts.52.down_proj.weight', 'ernie.layers.25.mlp.experts.53.down_proj.weight', 'ernie.layers.25.mlp.experts.54.down_proj.weight', 'ernie.layers.25.mlp.experts.55.down_proj.weight', 'ernie.layers.25.mlp.experts.56.down_proj.weight', 'ernie.layers.25.mlp.experts.57.down_proj.weight', 'ernie.layers.25.mlp.experts.58.down_proj.weight', 'ernie.layers.25.mlp.experts.59.down_proj.weight', 'ernie.layers.25.mlp.experts.60.down_proj.weight', 'ernie.layers.25.mlp.experts.61.down_proj.weight', 'ernie.layers.25.mlp.experts.62.down_proj.weight', 'ernie.layers.25.mlp.experts.63.down_proj.weight', 'ernie.layers.25.mlp.experts.96.down_proj.weight', 'ernie.layers.25.mlp.experts.97.down_proj.weight', 'ernie.layers.25.mlp.experts.98.down_proj.weight', 'ernie.layers.25.mlp.experts.99.down_proj.weight', 'ernie.layers.25.mlp.experts.100.down_proj.weight', 'ernie.layers.25.mlp.experts.101.down_proj.weight', 'ernie.layers.25.mlp.experts.102.down_proj.weight', 'ernie.layers.25.mlp.experts.103.down_proj.weight', 'ernie.layers.25.mlp.experts.104.down_proj.weight', 'ernie.layers.25.mlp.experts.105.down_proj.weight', 'ernie.layers.25.mlp.experts.106.down_proj.weight', 'ernie.layers.25.mlp.experts.107.down_proj.weight', 'ernie.layers.25.mlp.experts.108.down_proj.weight', 'ernie.layers.25.mlp.experts.109.down_proj.weight', 'ernie.layers.25.mlp.experts.110.down_proj.weight', 'ernie.layers.25.mlp.experts.111.down_proj.weight', 'ernie.layers.25.mlp.experts.112.down_proj.weight', 'ernie.layers.25.mlp.experts.113.down_proj.weight', 'ernie.layers.25.mlp.experts.114.down_proj.weight', 'ernie.layers.25.mlp.experts.115.down_proj.weight', 'ernie.layers.25.mlp.experts.116.down_proj.weight', 'ernie.layers.25.mlp.experts.117.down_proj.weight', 'ernie.layers.25.mlp.experts.118.down_proj.weight', 'ernie.layers.25.mlp.experts.119.down_proj.weight', 'ernie.layers.25.mlp.experts.120.down_proj.weight', 'ernie.layers.25.mlp.experts.121.down_proj.weight', 'ernie.layers.25.mlp.experts.122.down_proj.weight', 'ernie.layers.25.mlp.experts.123.down_proj.weight', 'ernie.layers.25.mlp.experts.124.down_proj.weight', 'ernie.layers.25.mlp.experts.125.down_proj.weight', 'ernie.layers.25.mlp.experts.126.down_proj.weight', 'ernie.layers.25.mlp.experts.127.down_proj.weight']
ernie.layers.26.mlp.image_fused_moe.gate.weight:ernie.layers.26.mlp.gate.weight_1
ernie.layers.26.mlp.image_fused_moe.experts.gate_correction_bias:ernie.layers.26.mlp.moe_statics.e_score_correction_bias
ernie.layers.26.mlp.image_fused_moe.experts.up_gate_proj_weight:['ernie.layers.26.mlp.experts.32.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.33.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.34.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.35.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.36.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.37.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.38.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.39.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.40.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.41.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.42.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.43.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.44.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.45.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.46.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.47.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.48.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.49.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.50.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.51.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.52.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.53.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.54.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.55.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.56.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.57.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.58.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.59.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.60.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.61.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.62.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.63.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.96.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.97.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.98.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.99.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.100.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.101.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.102.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.103.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.104.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.105.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.106.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.107.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.108.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.109.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.110.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.111.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.112.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.113.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.114.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.115.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.116.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.117.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.118.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.119.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.120.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.121.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.122.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.123.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.124.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.125.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.126.up_gate_proj.weight', 'ernie.layers.26.mlp.experts.127.up_gate_proj.weight']
ernie.layers.26.mlp.image_fused_moe.experts.down_proj_weight:['ernie.layers.26.mlp.experts.32.down_proj.weight', 'ernie.layers.26.mlp.experts.33.down_proj.weight', 'ernie.layers.26.mlp.experts.34.down_proj.weight', 'ernie.layers.26.mlp.experts.35.down_proj.weight', 'ernie.layers.26.mlp.experts.36.down_proj.weight', 'ernie.layers.26.mlp.experts.37.down_proj.weight', 'ernie.layers.26.mlp.experts.38.down_proj.weight', 'ernie.layers.26.mlp.experts.39.down_proj.weight', 'ernie.layers.26.mlp.experts.40.down_proj.weight', 'ernie.layers.26.mlp.experts.41.down_proj.weight', 'ernie.layers.26.mlp.experts.42.down_proj.weight', 'ernie.layers.26.mlp.experts.43.down_proj.weight', 'ernie.layers.26.mlp.experts.44.down_proj.weight', 'ernie.layers.26.mlp.experts.45.down_proj.weight', 'ernie.layers.26.mlp.experts.46.down_proj.weight', 'ernie.layers.26.mlp.experts.47.down_proj.weight', 'ernie.layers.26.mlp.experts.48.down_proj.weight', 'ernie.layers.26.mlp.experts.49.down_proj.weight', 'ernie.layers.26.mlp.experts.50.down_proj.weight', 'ernie.layers.26.mlp.experts.51.down_proj.weight', 'ernie.layers.26.mlp.experts.52.down_proj.weight', 'ernie.layers.26.mlp.experts.53.down_proj.weight', 'ernie.layers.26.mlp.experts.54.down_proj.weight', 'ernie.layers.26.mlp.experts.55.down_proj.weight', 'ernie.layers.26.mlp.experts.56.down_proj.weight', 'ernie.layers.26.mlp.experts.57.down_proj.weight', 'ernie.layers.26.mlp.experts.58.down_proj.weight', 'ernie.layers.26.mlp.experts.59.down_proj.weight', 'ernie.layers.26.mlp.experts.60.down_proj.weight', 'ernie.layers.26.mlp.experts.61.down_proj.weight', 'ernie.layers.26.mlp.experts.62.down_proj.weight', 'ernie.layers.26.mlp.experts.63.down_proj.weight', 'ernie.layers.26.mlp.experts.96.down_proj.weight', 'ernie.layers.26.mlp.experts.97.down_proj.weight', 'ernie.layers.26.mlp.experts.98.down_proj.weight', 'ernie.layers.26.mlp.experts.99.down_proj.weight', 'ernie.layers.26.mlp.experts.100.down_proj.weight', 'ernie.layers.26.mlp.experts.101.down_proj.weight', 'ernie.layers.26.mlp.experts.102.down_proj.weight', 'ernie.layers.26.mlp.experts.103.down_proj.weight', 'ernie.layers.26.mlp.experts.104.down_proj.weight', 'ernie.layers.26.mlp.experts.105.down_proj.weight', 'ernie.layers.26.mlp.experts.106.down_proj.weight', 'ernie.layers.26.mlp.experts.107.down_proj.weight', 'ernie.layers.26.mlp.experts.108.down_proj.weight', 'ernie.layers.26.mlp.experts.109.down_proj.weight', 'ernie.layers.26.mlp.experts.110.down_proj.weight', 'ernie.layers.26.mlp.experts.111.down_proj.weight', 'ernie.layers.26.mlp.experts.112.down_proj.weight', 'ernie.layers.26.mlp.experts.113.down_proj.weight', 'ernie.layers.26.mlp.experts.114.down_proj.weight', 'ernie.layers.26.mlp.experts.115.down_proj.weight', 'ernie.layers.26.mlp.experts.116.down_proj.weight', 'ernie.layers.26.mlp.experts.117.down_proj.weight', 'ernie.layers.26.mlp.experts.118.down_proj.weight', 'ernie.layers.26.mlp.experts.119.down_proj.weight', 'ernie.layers.26.mlp.experts.120.down_proj.weight', 'ernie.layers.26.mlp.experts.121.down_proj.weight', 'ernie.layers.26.mlp.experts.122.down_proj.weight', 'ernie.layers.26.mlp.experts.123.down_proj.weight', 'ernie.layers.26.mlp.experts.124.down_proj.weight', 'ernie.layers.26.mlp.experts.125.down_proj.weight', 'ernie.layers.26.mlp.experts.126.down_proj.weight', 'ernie.layers.26.mlp.experts.127.down_proj.weight']
ernie.layers.27.mlp.image_fused_moe.gate.weight:ernie.layers.27.mlp.gate.weight_1
ernie.layers.27.mlp.image_fused_moe.experts.gate_correction_bias:ernie.layers.27.mlp.moe_statics.e_score_correction_bias
ernie.layers.27.mlp.image_fused_moe.experts.up_gate_proj_weight:['ernie.layers.27.mlp.experts.32.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.33.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.34.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.35.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.36.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.37.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.38.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.39.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.40.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.41.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.42.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.43.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.44.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.45.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.46.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.47.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.48.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.49.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.50.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.51.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.52.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.53.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.54.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.55.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.56.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.57.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.58.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.59.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.60.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.61.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.62.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.63.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.96.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.97.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.98.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.99.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.100.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.101.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.102.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.103.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.104.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.105.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.106.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.107.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.108.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.109.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.110.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.111.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.112.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.113.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.114.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.115.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.116.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.117.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.118.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.119.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.120.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.121.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.122.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.123.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.124.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.125.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.126.up_gate_proj.weight', 'ernie.layers.27.mlp.experts.127.up_gate_proj.weight']
ernie.layers.27.mlp.image_fused_moe.experts.down_proj_weight:['ernie.layers.27.mlp.experts.32.down_proj.weight', 'ernie.layers.27.mlp.experts.33.down_proj.weight', 'ernie.layers.27.mlp.experts.34.down_proj.weight', 'ernie.layers.27.mlp.experts.35.down_proj.weight', 'ernie.layers.27.mlp.experts.36.down_proj.weight', 'ernie.layers.27.mlp.experts.37.down_proj.weight', 'ernie.layers.27.mlp.experts.38.down_proj.weight', 'ernie.layers.27.mlp.experts.39.down_proj.weight', 'ernie.layers.27.mlp.experts.40.down_proj.weight', 'ernie.layers.27.mlp.experts.41.down_proj.weight', 'ernie.layers.27.mlp.experts.42.down_proj.weight', 'ernie.layers.27.mlp.experts.43.down_proj.weight', 'ernie.layers.27.mlp.experts.44.down_proj.weight', 'ernie.layers.27.mlp.experts.45.down_proj.weight', 'ernie.layers.27.mlp.experts.46.down_proj.weight', 'ernie.layers.27.mlp.experts.47.down_proj.weight', 'ernie.layers.27.mlp.experts.48.down_proj.weight', 'ernie.layers.27.mlp.experts.49.down_proj.weight', 'ernie.layers.27.mlp.experts.50.down_proj.weight', 'ernie.layers.27.mlp.experts.51.down_proj.weight', 'ernie.layers.27.mlp.experts.52.down_proj.weight', 'ernie.layers.27.mlp.experts.53.down_proj.weight', 'ernie.layers.27.mlp.experts.54.down_proj.weight', 'ernie.layers.27.mlp.experts.55.down_proj.weight', 'ernie.layers.27.mlp.experts.56.down_proj.weight', 'ernie.layers.27.mlp.experts.57.down_proj.weight', 'ernie.layers.27.mlp.experts.58.down_proj.weight', 'ernie.layers.27.mlp.experts.59.down_proj.weight', 'ernie.layers.27.mlp.experts.60.down_proj.weight', 'ernie.layers.27.mlp.experts.61.down_proj.weight', 'ernie.layers.27.mlp.experts.62.down_proj.weight', 'ernie.layers.27.mlp.experts.63.down_proj.weight', 'ernie.layers.27.mlp.experts.96.down_proj.weight', 'ernie.layers.27.mlp.experts.97.down_proj.weight', 'ernie.layers.27.mlp.experts.98.down_proj.weight', 'ernie.layers.27.mlp.experts.99.down_proj.weight', 'ernie.layers.27.mlp.experts.100.down_proj.weight', 'ernie.layers.27.mlp.experts.101.down_proj.weight', 'ernie.layers.27.mlp.experts.102.down_proj.weight', 'ernie.layers.27.mlp.experts.103.down_proj.weight', 'ernie.layers.27.mlp.experts.104.down_proj.weight', 'ernie.layers.27.mlp.experts.105.down_proj.weight', 'ernie.layers.27.mlp.experts.106.down_proj.weight', 'ernie.layers.27.mlp.experts.107.down_proj.weight', 'ernie.layers.27.mlp.experts.108.down_proj.weight', 'ernie.layers.27.mlp.experts.109.down_proj.weight', 'ernie.layers.27.mlp.experts.110.down_proj.weight', 'ernie.layers.27.mlp.experts.111.down_proj.weight', 'ernie.layers.27.mlp.experts.112.down_proj.weight', 'ernie.layers.27.mlp.experts.113.down_proj.weight', 'ernie.layers.27.mlp.experts.114.down_proj.weight', 'ernie.layers.27.mlp.experts.115.down_proj.weight', 'ernie.layers.27.mlp.experts.116.down_proj.weight', 'ernie.layers.27.mlp.experts.117.down_proj.weight', 'ernie.layers.27.mlp.experts.118.down_proj.weight', 'ernie.layers.27.mlp.experts.119.down_proj.weight', 'ernie.layers.27.mlp.experts.120.down_proj.weight', 'ernie.layers.27.mlp.experts.121.down_proj.weight', 'ernie.layers.27.mlp.experts.122.down_proj.weight', 'ernie.layers.27.mlp.experts.123.down_proj.weight', 'ernie.layers.27.mlp.experts.124.down_proj.weight', 'ernie.layers.27.mlp.experts.125.down_proj.weight', 'ernie.layers.27.mlp.experts.126.down_proj.weight', 'ernie.layers.27.mlp.experts.127.down_proj.weight']
vision_model.patch_embed.proj.weight:vision_model.patch_embed.proj.weight

120
tests/conftest.py Normal file
View File

@@ -0,0 +1,120 @@
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import signal
import socket
import subprocess
from typing import Any, Union
import pytest
def kill_process_on_port(port: int):
"""
Kill processes that are listening on the given port.
Uses `lsof` to find process ids and sends SIGKILL.
"""
try:
output = subprocess.check_output(f"lsof -i:{port} -t", shell=True).decode().strip()
for pid in output.splitlines():
os.kill(int(pid), signal.SIGKILL)
print(f"Killed process on port {port}, pid={pid}")
except subprocess.CalledProcessError:
pass
def clean_ports(ports_to_clean: list[int]):
"""
Kill all processes occupying the ports listed in PORTS_TO_CLEAN.
"""
for port in ports_to_clean:
kill_process_on_port(port)
def is_port_open(host: str, port: int, timeout=1.0):
"""
Check if a TCP port is open on the given host.
Returns True if connection succeeds, False otherwise.
"""
try:
with socket.create_connection((host, port), timeout):
return True
except Exception:
return False
class FDRunner:
def __init__(
self,
model_name_or_path: str,
tensor_parallel_size: int = 1,
max_model_len: int = 1024,
load_choices: str = "default",
quantization: str = "None",
**kwargs,
) -> None:
from fastdeploy.entrypoints.llm import LLM
ports_to_clean = []
if "engine_worker_queue_port" in kwargs:
ports_to_clean.append(kwargs["engine_worker_queue_port"])
clean_ports(ports_to_clean)
self.llm = LLM(
model=model_name_or_path,
tensor_parallel_size=tensor_parallel_size,
max_model_len=max_model_len,
load_choices=load_choices,
quantization=quantization,
**kwargs,
)
def generate(
self,
prompts: list[str],
sampling_params,
**kwargs: Any,
) -> list[tuple[list[list[int]], list[str]]]:
req_outputs = self.llm.generate(prompts, sampling_params=sampling_params, **kwargs)
outputs: list[tuple[list[list[int]], list[str]]] = []
sample_output_ids: list[list[int]] = []
sample_output_strs: list[str] = []
for output in req_outputs:
sample_output_ids.append(output.outputs.token_ids)
sample_output_strs.append(output.outputs.text)
outputs.append((sample_output_ids, sample_output_strs))
return outputs
def generate_topp0(
self,
prompts: Union[list[str]],
max_tokens: int,
**kwargs: Any,
) -> list[tuple[list[int], str]]:
from fastdeploy.engine.sampling_params import SamplingParams
topp_params = SamplingParams(temperature=0.1, top_p=0, max_tokens=max_tokens)
outputs = self.generate(prompts, topp_params, **kwargs)
return outputs
def __enter__(self):
return self
def __exit__(self, exc_type, exc_value, traceback):
del self.llm
@pytest.fixture(scope="session")
def fd_runner():
return FDRunner

View File

View File

@@ -0,0 +1,175 @@
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import traceback
import warnings
from multiprocessing import Process, Queue
import pytest
FD_ENGINE_QUEUE_PORT = int(os.getenv("FD_ENGINE_QUEUE_PORT", 8313))
MAX_WAIT_SECONDS = 60 * 5
prompts = ["解释下“温故而知新", "Hello, how are you?"]
TokensIdText = list[tuple[list[int], str]]
# (token_ids, text)
def check_tokens_id_and_text_close(
*,
outputs_0_lst: TokensIdText,
outputs_1_lst: TokensIdText,
name_0: str,
name_1: str,
warn_on_mismatch: bool = True,
) -> None:
assert len(outputs_0_lst) == len(outputs_1_lst)
for prompt_idx, (outputs_0, outputs_1) in enumerate(zip(outputs_0_lst, outputs_1_lst)):
assert len(outputs_0) == len(outputs_1)
output_ids_0, output_str_0 = outputs_0
output_ids_1, output_str_1 = outputs_1
# Loop through generated tokens.
for idx, (output_id_0, output_id_1) in enumerate(zip(output_ids_0, output_ids_1)):
is_tok_mismatch = output_id_0 != output_id_1
if is_tok_mismatch and warn_on_mismatch:
fail_msg = (
f"Test{prompt_idx}:"
f"\nMatched tokens:\t{output_ids_0[:idx]}"
f"\n{name_0}:\t{output_str_0!r}"
f"\n{name_1}:\t{output_str_1!r}"
)
with warnings.catch_warnings():
warnings.simplefilter("always")
warnings.warn(fail_msg, stacklevel=2)
break
else:
if output_str_0 != output_str_1 and warn_on_mismatch:
fail_msg = f"Test{prompt_idx}:" f"\n{name_0}:\t{output_str_0!r}" f"\n{name_1}:\t{output_str_1!r}"
with warnings.catch_warnings():
warnings.simplefilter("always")
warnings.warn(fail_msg, stacklevel=2)
def form_model_get_output(
fd_runner,
model_path,
tensor_parallel_size,
max_model_len,
max_tokens,
quantization,
load_choices,
result_queue,
):
try:
with fd_runner(
model_path,
tensor_parallel_size=tensor_parallel_size,
max_model_len=max_model_len,
load_choices=load_choices,
quantization=quantization,
engine_worker_queue_port=FD_ENGINE_QUEUE_PORT,
) as fd_model:
fd_outputs = fd_model.generate_topp0(prompts, max_tokens=max_tokens)
result_queue.put(fd_outputs)
except Exception:
print(f"Failed using {load_choices} laoder to load model from {model_path}.")
traceback.print_exc()
pytest.fail(f"Failed to initialize LLM model from {model_path}")
model_param_map = {
"Qwen3-0.6B": {
"quantizations": ["None", "wint4", "wint8"],
},
"ernie-4_5-21b-a3b-bf16-paddle": {
"tensor_parallel_size": 2,
"quantizations": ["wint8"],
},
}
params = []
for model, cfg in model_param_map.items():
for q in cfg["quantizations"]:
params.append(
pytest.param(
model,
cfg.get("tensor_parallel_size", 1),
cfg.get("max_model_len", 1024),
q,
cfg.get("max_tokens", 32),
marks=[pytest.mark.core_model],
)
)
@pytest.mark.parametrize(
"model_name_or_path,tensor_parallel_size,max_model_len,quantization,max_tokens",
params,
)
def test_common_model(
fd_runner,
model_name_or_path: str,
tensor_parallel_size: int,
max_model_len: int,
max_tokens: int,
quantization: str,
) -> None:
base_path = os.getenv("MODEL_PATH")
if base_path:
model_path = os.path.join(base_path, model_name_or_path)
else:
model_path = model_name_or_path
result_queue = Queue()
p = Process(
target=form_model_get_output,
args=(
fd_runner,
model_path,
tensor_parallel_size,
max_model_len,
max_tokens,
quantization,
"default",
result_queue,
),
)
p.start()
p.join()
fd_outputs_v0 = result_queue.get(timeout=60)
p = Process(
target=form_model_get_output,
args=(
fd_runner,
model_path,
tensor_parallel_size,
max_model_len,
max_tokens,
quantization,
"default_v1",
result_queue,
),
)
p.start()
p.join()
fd_outputs_v1 = result_queue.get(timeout=60)
check_tokens_id_and_text_close(
outputs_0_lst=fd_outputs_v0,
outputs_1_lst=fd_outputs_v1,
name_0="default loader",
name_1="default_v1 loader",
)