[Other] FastDeploy TensorRT && ONNX backend support to load model form memory (#1130)

* Update all backends load model from buffer

* Delete redundant code

* Format code style

* Format code style

* Delete redundant code

* Delete redundant code

* Add some FDASSERTs

* Update load model form memory when cloning engine

* Update clone engine code

* Update set_model_buffer api parameters with char pointer

* Release memory buffer variables after finish init backends

* Fix conflict

* Fix bug
This commit is contained in:
huangjianhui
2023-02-01 11:36:09 +08:00
committed by GitHub
parent 5b7728e898
commit 76df90afc3
17 changed files with 201 additions and 154 deletions

View File

@@ -229,20 +229,14 @@ class RuntimeOption:
def set_model_buffer(self,
model_buffer,
model_buffer_size,
params_buffer,
params_buffer_size,
params_buffer="",
model_format=ModelFormat.PADDLE):
"""Specify the memory buffer of model and parameter. Used when model and params are loaded directly from memory
:param model_buffer: (bytes)The memory buffer of model
:param model_buffer_size: (unsigned int)The size of the model data.
:param params_buffer: (bytes)The memory buffer of the combined parameters file
:param params_buffer_size: (unsigned inst)The size of the combined parameters data
:param params_buffer: (bytes)The memory buffer of the parameters
:param model_format: (ModelFormat)Format of model, support ModelFormat.PADDLE/ModelFormat.ONNX/ModelFormat.TORCHSCRIPT
"""
return self._option.set_model_buffer(model_buffer, model_buffer_size,
params_buffer, params_buffer_size,
return self._option.set_model_buffer(model_buffer, params_buffer,
model_format)
def use_gpu(self, device_id=0):