add csrc code

This commit is contained in:
jiangjiajun
2022-08-10 02:52:36 +00:00
parent 22ca63982b
commit 72eb130193
203 changed files with 31124 additions and 0 deletions

View File

@@ -0,0 +1,138 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "fastdeploy/fastdeploy_model.h"
#include "fastdeploy/vision/common/processors/transform.h"
#include "fastdeploy/vision/common/result.h"
namespace fastdeploy {
namespace vision {
namespace detection {
class FASTDEPLOY_DECL YOLOv5Lite : public FastDeployModel {
public:
// 当model_format为ONNX时无需指定params_file
// 当model_format为Paddle时则需同时指定model_file & params_file
YOLOv5Lite(const std::string& model_file, const std::string& params_file = "",
const RuntimeOption& custom_option = RuntimeOption(),
const Frontend& model_format = Frontend::ONNX);
// 定义模型的名称
virtual std::string ModelName() const { return "YOLOv5-Lite"; }
// 模型预测接口,即用户调用的接口
// im 为用户的输入数据目前对于CV均定义为cv::Mat
// result 为模型预测的输出结构体
// conf_threshold 为后处理的参数
// nms_iou_threshold 为后处理的参数
virtual bool Predict(cv::Mat* im, DetectionResult* result,
float conf_threshold = 0.45,
float nms_iou_threshold = 0.25);
// 以下为模型在预测时的一些参数,基本是前后处理所需
// 用户在创建模型后,可根据模型的要求,以及自己的需求
// 对参数进行修改
// tuple of (width, height)
std::vector<int> size;
// padding value, size should be same with Channels
std::vector<float> padding_value;
// only pad to the minimum rectange which height and width is times of stride
bool is_mini_pad;
// while is_mini_pad = false and is_no_pad = true, will resize the image to
// the set size
bool is_no_pad;
// if is_scale_up is false, the input image only can be zoom out, the maximum
// resize scale cannot exceed 1.0
bool is_scale_up;
// padding stride, for is_mini_pad
int stride;
// for offseting the boxes by classes when using NMS
float max_wh;
// downsample strides for YOLOv5Lite to generate anchors, will take
// (8,16,32) as default values, might have stride=64.
std::vector<int> downsample_strides;
// anchors parameters, downsample_strides will take
// (8,16,32), each stride has three anchors with width and hight.
std::vector<std::vector<float>> anchor_config;
// whether the model_file was exported with decode module. The official
// YOLOv5Lite/export.py script will export ONNX file without
// decode module. Please set it 'true' manually if the model file
// was exported with decode module.
// false : ONNX files without decode module.
// true : ONNX file with decode module.
bool is_decode_exported;
private:
// necessary parameters for GenerateAnchors to generate anchors when ONNX file
// without decode module.
struct Anchor {
int grid0;
int grid1;
int stride;
float anchor_w;
float anchor_h;
};
// 初始化函数,包括初始化后端,以及其它模型推理需要涉及的操作
bool Initialize();
// 输入图像预处理操作
// Mat为FastDeploy定义的数据结构
// FDTensor为预处理后的Tensor数据传给后端进行推理
// im_info为预处理过程保存的数据在后处理中需要用到
bool Preprocess(Mat* mat, FDTensor* output,
std::map<std::string, std::array<float, 2>>* im_info);
// 后端推理结果后处理,输出给用户
// infer_result 为后端推理后的输出Tensor
// result 为模型预测的结果
// im_info 为预处理记录的信息后处理用于还原box
// conf_threshold 后处理时过滤box的置信度阈值
// nms_iou_threshold 后处理时NMS设定的iou阈值
bool Postprocess(FDTensor& infer_result, DetectionResult* result,
const std::map<std::string, std::array<float, 2>>& im_info,
float conf_threshold, float nms_iou_threshold);
// YOLOv5Lite的官方脚本默认导出不带decode模块的模型文件 需要在后处理进行decode
// the official YOLOv5Lite/export.py will export ONNX file without decode
// module.
// this fuction support the postporocess for ONNX file without decode module.
// set the `is_decode_exported = false`, this function will work.
bool PostprocessWithDecode(
FDTensor& infer_result, DetectionResult* result,
const std::map<std::string, std::array<float, 2>>& im_info,
float conf_threshold, float nms_iou_threshold);
// 对图片进行LetterBox处理
// mat 为读取到的原图
// size 为输入模型的图像尺寸
void LetterBox(Mat* mat, const std::vector<int>& size,
const std::vector<float>& color, bool _auto,
bool scale_fill = false, bool scale_up = true,
int stride = 32);
// generate anchors for decodeing when ONNX file without decode module.
void GenerateAnchors(const std::vector<int>& size,
const std::vector<int>& downsample_strides,
std::vector<Anchor>* anchors, const int num_anchors = 3);
// whether to inference with dynamic shape (e.g ONNX export with dynamic shape
// or not.)
// while is_dynamic_shape if 'false', is_mini_pad will force 'false'. This
// value will
// auto check by fastdeploy after the internal Runtime already initialized.
bool is_dynamic_input_;
};
} // namespace detection
} // namespace vision
} // namespace fastdeploy