add csrc code

This commit is contained in:
jiangjiajun
2022-08-10 02:52:36 +00:00
parent 22ca63982b
commit 72eb130193
203 changed files with 31124 additions and 0 deletions

View File

@@ -0,0 +1,32 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/function/eigen.h"
namespace fastdeploy {
std::shared_ptr<EigenDeviceWrapper> EigenDeviceWrapper::instance_ = nullptr;
std::shared_ptr<EigenDeviceWrapper> EigenDeviceWrapper::GetInstance() {
if (instance_ == nullptr) {
instance_ = std::make_shared<EigenDeviceWrapper>();
}
return instance_;
}
const Eigen::DefaultDevice* EigenDeviceWrapper::GetDevice() const {
return &device_;
}
} // namespace fastdeploy

View File

@@ -0,0 +1,109 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <algorithm>
#include <memory>
#include <vector>
#include "fastdeploy/core/fd_tensor.h"
#include "unsupported/Eigen/CXX11/Tensor"
namespace fastdeploy {
// EigenDim converts shape into Eigen::DSizes.
template <int D>
struct EigenDim {
using Type = Eigen::DSizes<Eigen::DenseIndex, D>;
static Type From(const std::vector<int64_t>& dims) {
Type ret;
for (int64_t d = 0; d < dims.size(); d++) {
ret[d] = dims[d];
}
return ret;
}
};
// Interpret FDTensor as EigenTensor and EigenConstTensor.
template <typename T, size_t D, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
struct EigenTensor {
using Type = Eigen::TensorMap<Eigen::Tensor<T, D, MajorType, IndexType>>;
using ConstType =
Eigen::TensorMap<Eigen::Tensor<const T, D, MajorType, IndexType>>;
static Type From(FDTensor& tensor,
const std::vector<int64_t>& dims) { // NOLINT
return Type(reinterpret_cast<T*>(tensor.Data()), EigenDim<D>::From(dims));
}
static Type From(FDTensor& tensor) { // NOLINT
return From(tensor, tensor.shape);
} // NOLINT
static ConstType From(const FDTensor& tensor,
const std::vector<int64_t>& dims) {
return ConstType(reinterpret_cast<const T*>(tensor.Data()),
EigenDim<D>::From(dims));
}
static ConstType From(const FDTensor& tensor) {
return From(tensor, tensor.shape);
}
};
template <typename T, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
struct EigenScalar {
// Scalar tensor (implemented as a rank-0 tensor) of scalar type T.
using Type = Eigen::TensorMap<
Eigen::TensorFixedSize<T, Eigen::Sizes<>, MajorType, IndexType>>;
using ConstType = Eigen::TensorMap<
Eigen::TensorFixedSize<const T, Eigen::Sizes<>, MajorType, IndexType>>;
static Type From(FDTensor& tensor) {
return Type(reinterpret_cast<T*>(tensor.Data()));
} // NOLINT
static ConstType From(const FDTensor& tensor) {
return ConstType(reinterpret_cast<const T*>(tensor.Data()));
}
};
template <typename T, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
struct EigenVector : public EigenTensor<T, 1, MajorType, IndexType> {
// Flatten reshapes a Tensor into an EigenVector.
static typename EigenVector::Type Flatten(FDTensor& tensor) { // NOLINT
return EigenVector::From(tensor, {tensor.Numel()});
}
static typename EigenVector::ConstType Flatten(
const FDTensor& tensor) { // NOLINT
return EigenVector::From(tensor, {tensor.Numel()});
}
};
class EigenDeviceWrapper {
public:
static std::shared_ptr<EigenDeviceWrapper> GetInstance();
const Eigen::DefaultDevice* GetDevice() const;
private:
Eigen::DefaultDevice device_;
static std::shared_ptr<EigenDeviceWrapper> instance_;
};
} // namespace fastdeploy

View File

@@ -0,0 +1,246 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <set>
#include "fastdeploy/function/eigen.h"
#include "fastdeploy/function/reduce.h"
#include "fastdeploy/function/reduce_functor.h"
#include "fastdeploy/utils/utils.h"
namespace fastdeploy {
#ifdef ENABLE_FDTENSOR_FUNC
template <typename T, size_t D, size_t R_D, typename Functor>
void ReduceFunctor(const FDTensor& input, FDTensor* output,
const std::vector<int64_t>& dims, bool keep_dim) {
auto x = EigenTensor<T, D>::From(input);
auto x_rank = static_cast<int>(x.dimensions().size());
auto reduce_dim = Eigen::array<int, R_D>();
std::vector<int64_t> dims_ref = dims;
auto out_dims = input.shape;
for (size_t i = 0; i < dims_ref.size(); ++i) {
if (dims_ref[i] < 0) dims_ref[i] = x_rank + dims_ref[i];
reduce_dim[i] = dims_ref[i];
out_dims[dims_ref[i]] = 1;
}
auto origin_output_dims = out_dims;
output->Allocate(origin_output_dims, TypeToDataType<T>::dtype);
// construct the squeezed output tensor
if (x_rank > 1) {
const int kDelFlag = -2;
for (size_t i = 0; i < dims_ref.size(); ++i) {
out_dims[dims_ref[i]] = kDelFlag;
}
out_dims.erase(remove(out_dims.begin(), out_dims.end(), kDelFlag),
out_dims.end());
}
auto& place = *EigenDeviceWrapper::GetInstance()->GetDevice();
Functor functor;
if (D == 1) {
auto out = EigenScalar<T>::From(*output);
functor(place, &x, &out, reduce_dim);
} else {
auto out = EigenTensor<T, (D - R_D)>::From(*output, out_dims);
functor(place, &x, &out, reduce_dim);
if (!keep_dim) {
output->shape = std::move(out_dims);
}
}
}
#define HANDLE_REDUCE_DIM(NDIM, RDIM) \
if (ndim == NDIM && rdim == RDIM) { \
ReduceFunctor<OutT, NDIM, RDIM, Functor>(input, output, dims, keep_dim); \
}
inline void GetShuffledDim(const std::vector<int64_t>& src_dims,
std::vector<int64_t>* dst_dims,
const std::vector<int64_t>& reduced_dims,
std::vector<int>* perm_axis) {
// check if it's a reduced dim
std::vector<bool> src_dims_check(src_dims.size(), false);
size_t src_size = src_dims.size();
size_t reduce_size = reduced_dims.size();
std::vector<int64_t> regular_reduced_dims = reduced_dims;
for (size_t i = 0; i < regular_reduced_dims.size(); i++) {
if (regular_reduced_dims[i] < 0) {
regular_reduced_dims[i] = src_size + regular_reduced_dims[i];
}
}
for (size_t i = 0; i < reduce_size; ++i) {
dst_dims->at(src_size - reduce_size + i) =
src_dims[regular_reduced_dims[i]];
(*perm_axis)[src_size - reduce_size + i] = regular_reduced_dims[i];
src_dims_check[regular_reduced_dims[i]] = true;
}
size_t offset = 0;
for (size_t i = 0; i < src_dims_check.size(); ++i) {
bool is_reduced = src_dims_check[i];
if (!is_reduced) {
(*perm_axis)[offset] = i;
dst_dims->at(offset++) = src_dims[i];
}
}
}
template <typename OutT>
void GetShuffledInput(const FDTensor& input, FDTensor* shuffled_input,
const std::vector<int64_t>& dims) {
auto shuffled_dims = input.shape;
std::vector<int> perm_axis(input.shape.size());
GetShuffledDim(input.shape, &shuffled_dims, dims, &perm_axis);
shuffled_input->Allocate(shuffled_dims, input.dtype);
// TODO(zhoushunjie) : Need to implement trans function
// phi::funcs::TransposeNormal<DeviceContext, OutT> trans;
// trans(dev_ctx, input, shuffled_input, perm_axis);
}
//////////////// HandleLargeDim
template <typename OutT, typename Functor>
void HandleLargeDim(const FDTensor& input, FDTensor* output,
const std::vector<int64_t>& dims, bool keep_dim) {
// shuffle the reduced dim to the end
FDTensor shuffled_input;
GetShuffledInput<OutT>(input, &shuffled_input, dims);
// transpose to 2D tensor whose shape is {unreduced, reduced}.
const int64_t unreduced = output->Numel();
const int64_t reduced = shuffled_input.Numel() / unreduced;
shuffled_input.Allocate({unreduced, reduced}, TypeToDataType<OutT>::dtype);
auto output_dim = output->shape;
output->Allocate({unreduced}, TypeToDataType<OutT>::dtype);
ReduceFunctor<OutT, 2, 1, Functor>(shuffled_input, output, {1}, keep_dim);
output->shape = output_dim;
}
////////////// ReduceKernel
template <typename OutT, typename Functor>
void ReduceKernelImpl(const FDTensor& input, FDTensor* output,
const std::vector<int64_t>& dims, bool keep_dim,
bool reduce_all) {
output->Allocate({1}, TypeToDataType<OutT>::dtype);
const auto& dev = *EigenDeviceWrapper::GetInstance()->GetDevice();
if (reduce_all) {
// Flatten and reduce 1-D tensor
auto x = EigenVector<OutT>::Flatten(input);
auto out = EigenScalar<OutT>::From(*output);
auto reduce_dim = Eigen::array<int, 1>({{0}});
Functor functor;
functor(dev, &x, &out, reduce_dim);
} else {
int ndim = input.shape.size();
int rdim = dims.size();
if (ndim > 3) {
HandleLargeDim<OutT, Functor>(input, output, dims, keep_dim);
} else {
HANDLE_REDUCE_DIM(4, 3);
HANDLE_REDUCE_DIM(4, 2);
HANDLE_REDUCE_DIM(4, 1);
HANDLE_REDUCE_DIM(3, 2);
HANDLE_REDUCE_DIM(3, 1);
HANDLE_REDUCE_DIM(2, 1);
HANDLE_REDUCE_DIM(1, 1);
}
}
}
template <typename OutT, typename Functor>
void BoolReduceKernel(const FDTensor& input, FDTensor* output,
const std::vector<int64_t>& dims, bool keep_dim,
bool reduce_all) {
// The dims has full dim, set the reduce_all is True
const auto& input_dim_size = input.shape.size();
std::set<int> dims_set(dims.begin(), dims.end());
bool full_dim = true;
for (auto i = 0; i < input_dim_size; i++) {
if (dims_set.find(i) == dims_set.end()) {
full_dim = false;
break;
}
}
reduce_all = (reduce_all || full_dim);
ReduceKernelImpl<bool, Functor>(input, output, dims, keep_dim, reduce_all);
}
template <typename Functor>
void Reduce(const FDTensor& x, FDTensor* out, const std::vector<int64_t>& dims,
bool keep_dim, bool reduce_all) {
// If the dims has full dim, set the reduce_all is True
const int& input_dim_size = x.shape.size();
std::set<int> dims_set(dims.begin(), dims.end());
bool full_dim = true;
for (int i = 0; i < input_dim_size; ++i) {
if (dims_set.find(i) == dims_set.end() &&
dims_set.find(i - input_dim_size) == dims_set.end()) {
full_dim = false;
break;
}
}
reduce_all = (reduce_all || full_dim);
FD_VISIT_ALL_TYPES(x.dtype, "ReduceKernelImpl", ([&] {
ReduceKernelImpl<data_t, Functor>(x, out, dims, keep_dim,
reduce_all);
}));
}
void Max(const FDTensor& x, FDTensor* out, const std::vector<int64_t>& dims,
bool keep_dim, bool reduce_all) {
Reduce<MaxFunctor>(x, out, dims, keep_dim, reduce_all);
}
void Min(const FDTensor& x, FDTensor* out, const std::vector<int64_t>& dims,
bool keep_dim, bool reduce_all) {
Reduce<MinFunctor>(x, out, dims, keep_dim, reduce_all);
}
void Sum(const FDTensor& x, FDTensor* out, const std::vector<int64_t>& dims,
bool keep_dim, bool reduce_all) {
Reduce<SumFunctor>(x, out, dims, keep_dim, reduce_all);
}
void All(const FDTensor& x, FDTensor* out, const std::vector<int64_t>& dims,
bool keep_dim, bool reduce_all) {
BoolReduceKernel<bool, AllFunctor>(x, out, dims, keep_dim, reduce_all);
}
void Any(const FDTensor& x, FDTensor* out, const std::vector<int64_t>& dims,
bool keep_dim, bool reduce_all) {
BoolReduceKernel<bool, AnyFunctor>(x, out, dims, keep_dim, reduce_all);
}
void Mean(const FDTensor& x, FDTensor* out, const std::vector<int64_t>& dims,
bool keep_dim, bool reduce_all) {
Reduce<MeanFunctor>(x, out, dims, keep_dim, reduce_all);
}
void Prod(const FDTensor& x, FDTensor* out, const std::vector<int64_t>& dims,
bool keep_dim, bool reduce_all) {
Reduce<ProdFunctor>(x, out, dims, keep_dim, reduce_all);
}
#endif
} // namespace fastdeploy

View File

@@ -0,0 +1,100 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "fastdeploy/core/fd_tensor.h"
namespace fastdeploy {
#ifdef ENABLE_FDTENSOR_FUNC
/** Excute the maximum operation for input FDTensor along given dims.
@param x The input tensor.
@param out The output tensor which stores the result.
@param dims The vector of axis which will be reduced.
@param keep_dim Whether to keep the reduced dims, default false.
@param reduce_all Whether to reduce all dims, default false.
*/
FASTDEPLOY_DECL void Max(const FDTensor& x, FDTensor* out,
const std::vector<int64_t>& dims,
bool keep_dim = false, bool reduce_all = false);
/** Excute the minimum operation for input FDTensor along given dims.
@param x The input tensor.
@param out The output tensor which stores the result.
@param dims The vector of axis which will be reduced.
@param keep_dim Whether to keep the reduced dims, default false.
@param reduce_all Whether to reduce all dims, default false.
*/
FASTDEPLOY_DECL void Min(const FDTensor& x, FDTensor* out,
const std::vector<int64_t>& dims,
bool keep_dim = false, bool reduce_all = false);
/** Excute the sum operation for input FDTensor along given dims.
@param x The input tensor.
@param out The output tensor which stores the result.
@param dims The vector of axis which will be reduced.
@param keep_dim Whether to keep the reduced dims, default false.
@param reduce_all Whether to reduce all dims, default false.
*/
FASTDEPLOY_DECL void Sum(const FDTensor& x, FDTensor* out,
const std::vector<int64_t>& dims,
bool keep_dim = false, bool reduce_all = false);
/** Excute the all operation for input FDTensor along given dims.
@param x The input tensor.
@param out The output tensor which stores the result.
@param dims The vector of axis which will be reduced.
@param keep_dim Whether to keep the reduced dims, default false.
@param reduce_all Whether to reduce all dims, default false.
*/
FASTDEPLOY_DECL void All(const FDTensor& x, FDTensor* out,
const std::vector<int64_t>& dims,
bool keep_dim = false, bool reduce_all = false);
/** Excute the any operation for input FDTensor along given dims.
@param x The input tensor.
@param out The output tensor which stores the result.
@param dims The vector of axis which will be reduced.
@param keep_dim Whether to keep the reduced dims, default false.
@param reduce_all Whether to reduce all dims, default false.
*/
FASTDEPLOY_DECL void Any(const FDTensor& x, FDTensor* out,
const std::vector<int64_t>& dims,
bool keep_dim = false, bool reduce_all = false);
/** Excute the mean operation for input FDTensor along given dims.
@param x The input tensor.
@param out The output tensor which stores the result.
@param dims The vector of axis which will be reduced.
@param keep_dim Whether to keep the reduced dims, default false.
@param reduce_all Whether to reduce all dims, default false.
*/
FASTDEPLOY_DECL void Mean(const FDTensor& x, FDTensor* out,
const std::vector<int64_t>& dims,
bool keep_dim = false, bool reduce_all = false);
/** Excute the product operation for input FDTensor along given dims.
@param x The input tensor.
@param out The output tensor which stores the result.
@param dims The vector of axis which will be reduced.
@param keep_dim Whether to keep the reduced dims, default false.
@param reduce_all Whether to reduce all dims, default false.
*/
FASTDEPLOY_DECL void Prod(const FDTensor& x, FDTensor* out,
const std::vector<int64_t>& dims,
bool keep_dim = false, bool reduce_all = false);
#endif
} // namespace fastdeploy

View File

@@ -0,0 +1,76 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "fastdeploy/function/eigen.h"
namespace fastdeploy {
//////// Max Functor ///////
struct MaxFunctor {
template <typename X, typename Y, typename Dim>
void operator()(const Eigen::DefaultDevice& dev, X* x, Y* y, const Dim& dim) {
y->device(dev) = x->maximum(dim);
}
};
//////// Min Functor ///////
struct MinFunctor {
template <typename X, typename Y, typename Dim>
void operator()(const Eigen::DefaultDevice& dev, X* x, Y* y, const Dim& dim) {
y->device(dev) = x->minimum(dim);
}
};
//////// Sum Functor ///////
struct SumFunctor {
template <typename X, typename Y, typename Dim>
void operator()(const Eigen::DefaultDevice& dev, X* x, Y* y, const Dim& dim) {
y->device(dev) = x->sum(dim);
}
};
//////// All Functor ///////
struct AllFunctor {
template <typename X, typename Y, typename Dim>
void operator()(const Eigen::DefaultDevice& dev, X* x, Y* y, const Dim& dim) {
y->device(dev) = x->all(dim);
}
};
//////// Any Functor ///////
struct AnyFunctor {
template <typename X, typename Y, typename Dim>
void operator()(const Eigen::DefaultDevice& dev, X* x, Y* y, const Dim& dim) {
y->device(dev) = x->any(dim);
}
};
//////// Mean Functor ///////
struct MeanFunctor {
template <typename X, typename Y, typename Dim>
void operator()(const Eigen::DefaultDevice& dev, X* x, Y* y, const Dim& dim) {
y->device(dev) = x->mean(dim);
}
};
//////// Prod Functor ///////
struct ProdFunctor {
template <typename X, typename Y, typename Dim>
void operator()(const Eigen::DefaultDevice& dev, X* x, Y* y, const Dim& dim) {
y->device(dev) = x->prod(dim);
}
};
} // namespace fastdeploy