mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-08 18:11:00 +08:00
enable dcu ci (#3402)
This commit is contained in:
@@ -14,12 +14,14 @@
|
||||
# limitations under the License.
|
||||
"""
|
||||
|
||||
import gc
|
||||
import time
|
||||
|
||||
import paddle
|
||||
|
||||
from fastdeploy.config import FDConfig
|
||||
from fastdeploy.utils import get_logger
|
||||
from fastdeploy.utils import get_logger, set_random_seed
|
||||
from fastdeploy.worker.dcu_model_runner import DCUModelRunner
|
||||
from fastdeploy.worker.gpu_worker import GpuWorker
|
||||
|
||||
logger = get_logger("dcu_worker", "dcu_worker.log")
|
||||
@@ -41,6 +43,41 @@ class DcuWorker(GpuWorker):
|
||||
)
|
||||
pass
|
||||
|
||||
def init_device(self):
|
||||
"""
|
||||
Initialize device and construct model runner
|
||||
"""
|
||||
self.max_chips_per_node = 8
|
||||
if self.device_config.device_type == "cuda" and paddle.device.is_compiled_with_cuda():
|
||||
# Set evironment variable
|
||||
self.device_ids = self.parallel_config.device_ids.split(",")
|
||||
self.device = f"gpu:{self.local_rank % self.max_chips_per_node}"
|
||||
paddle.device.set_device(self.device)
|
||||
paddle.set_default_dtype(self.parallel_config.dtype)
|
||||
|
||||
gc.collect()
|
||||
paddle.device.cuda.empty_cache()
|
||||
if (
|
||||
self.parallel_config.enable_custom_all_reduce
|
||||
and self.parallel_config.tensor_parallel_size > 1
|
||||
and paddle.is_compiled_with_cuda()
|
||||
):
|
||||
from fastdeploy.distributed.communication import use_custom_allreduce
|
||||
|
||||
use_custom_allreduce()
|
||||
else:
|
||||
raise RuntimeError(f"Not support device type: {self.device_config.device}")
|
||||
|
||||
set_random_seed(self.fd_config.model_config.seed)
|
||||
# Construct model runner
|
||||
self.model_runner: DCUModelRunner = DCUModelRunner(
|
||||
fd_config=self.fd_config,
|
||||
device=self.device,
|
||||
device_id=self.device_ids[self.local_rank % self.max_chips_per_node],
|
||||
rank=self.rank,
|
||||
local_rank=self.local_rank,
|
||||
)
|
||||
|
||||
def determine_available_memory(self) -> int:
|
||||
"""
|
||||
Profiles the peak memory usage of the model to determine how much
|
||||
|
Reference in New Issue
Block a user