enable dcu ci (#3402)

This commit is contained in:
lifulll
2025-08-29 10:23:08 +08:00
committed by GitHub
parent 73d60fe64d
commit 72094d4d82
11 changed files with 295 additions and 5 deletions

View File

@@ -14,12 +14,14 @@
# limitations under the License.
"""
import gc
import time
import paddle
from fastdeploy.config import FDConfig
from fastdeploy.utils import get_logger
from fastdeploy.utils import get_logger, set_random_seed
from fastdeploy.worker.dcu_model_runner import DCUModelRunner
from fastdeploy.worker.gpu_worker import GpuWorker
logger = get_logger("dcu_worker", "dcu_worker.log")
@@ -41,6 +43,41 @@ class DcuWorker(GpuWorker):
)
pass
def init_device(self):
"""
Initialize device and construct model runner
"""
self.max_chips_per_node = 8
if self.device_config.device_type == "cuda" and paddle.device.is_compiled_with_cuda():
# Set evironment variable
self.device_ids = self.parallel_config.device_ids.split(",")
self.device = f"gpu:{self.local_rank % self.max_chips_per_node}"
paddle.device.set_device(self.device)
paddle.set_default_dtype(self.parallel_config.dtype)
gc.collect()
paddle.device.cuda.empty_cache()
if (
self.parallel_config.enable_custom_all_reduce
and self.parallel_config.tensor_parallel_size > 1
and paddle.is_compiled_with_cuda()
):
from fastdeploy.distributed.communication import use_custom_allreduce
use_custom_allreduce()
else:
raise RuntimeError(f"Not support device type: {self.device_config.device}")
set_random_seed(self.fd_config.model_config.seed)
# Construct model runner
self.model_runner: DCUModelRunner = DCUModelRunner(
fd_config=self.fd_config,
device=self.device,
device_id=self.device_ids[self.local_rank % self.max_chips_per_node],
rank=self.rank,
local_rank=self.local_rank,
)
def determine_available_memory(self) -> int:
"""
Profiles the peak memory usage of the model to determine how much