mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00
[Model] add RobustVideoMatting model (#400)
* add yolov5cls * fixed bugs * fixed bugs * fixed preprocess bug * add yolov5cls readme * deal with comments * Add YOLOv5Cls Note * add yolov5cls test * add rvm support * support rvm model * add rvm demo * fixed bugs * add rvm readme * add TRT support * add trt support * add rvm test * add EXPORT.md * rename export.md * rm poros doxyen * deal with comments * deal with comments * add rvm video_mode note Co-authored-by: Jason <jiangjiajun@baidu.com> Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
This commit is contained in:
88
examples/vision/matting/rvm/python/README.md
Executable file
88
examples/vision/matting/rvm/python/README.md
Executable file
@@ -0,0 +1,88 @@
|
||||
# RobustVideoMatting Python部署示例
|
||||
|
||||
在部署前,需确认以下两个步骤
|
||||
|
||||
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
||||
- 2. FastDeploy Python whl包安装,参考[FastDeploy Python安装](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
||||
|
||||
本目录下提供`infer.py`快速完成RobustVideoMatting在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。执行如下脚本即可完成
|
||||
|
||||
```bash
|
||||
#下载部署示例代码
|
||||
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
||||
cd FastDeploy/examples/vision/matting/rvm/python
|
||||
|
||||
# 下载RobustVideoMatting模型文件和测试图片以及视频
|
||||
## 原版ONNX模型
|
||||
wget https://bj.bcebos.com/paddlehub/fastdeploy/rvm_mobilenetv3_fp32.onnx
|
||||
## 为加载TRT特殊处理ONNX模型
|
||||
wget https://bj.bcebos.com/paddlehub/fastdeploy/rvm_mobilenetv3_trt.onnx
|
||||
wget https://bj.bcebos.com/paddlehub/fastdeploy/matting_input.jpg
|
||||
wget https://bj.bcebos.com/paddlehub/fastdeploy/matting_bgr.jpg
|
||||
wget https://bj.bcebos.com/paddlehub/fastdeploy/video.mp4
|
||||
|
||||
# CPU推理
|
||||
## 图片
|
||||
python infer.py --model rvm_mobilenetv3_fp32.onnx --image matting_input.jpg --bg matting_bgr.jpg --device cpu
|
||||
## 视频
|
||||
python infer.py --model rvm_mobilenetv3_fp32.onnx --video video.mp4 --bg matting_bgr.jpg --device cpu
|
||||
# GPU推理
|
||||
## 图片
|
||||
python infer.py --model rvm_mobilenetv3_fp32.onnx --image matting_input.jpg --bg matting_bgr.jpg --device gpu
|
||||
## 视频
|
||||
python infer.py --model rvm_mobilenetv3_fp32.onnx --video video.mp4 --bg matting_bgr.jpg --device gpu
|
||||
# TRT推理
|
||||
## 图片
|
||||
python infer.py --model rvm_mobilenetv3_trt.onnx --image matting_input.jpg --bg matting_bgr.jpg --device gpu --use_trt True
|
||||
## 视频
|
||||
python infer.py --model rvm_mobilenetv3_trt.onnx --video video.mp4 --bg matting_bgr.jpg --device gpu --use_trt True
|
||||
```
|
||||
|
||||
运行完成可视化结果如下图所示
|
||||
<div width="1240">
|
||||
<img width="200" height="200" float="left" src="https://user-images.githubusercontent.com/67993288/186852040-759da522-fca4-4786-9205-88c622cd4a39.jpg">
|
||||
<img width="200" height="200" float="left" src="https://user-images.githubusercontent.com/67993288/186852587-48895efc-d24a-43c9-aeec-d7b0362ab2b9.jpg">
|
||||
<img width="200" height="200" float="left" src="https://user-images.githubusercontent.com/67993288/186852116-cf91445b-3a67-45d9-a675-c69fe77c383a.jpg">
|
||||
<img width="200" height="200" float="left" src="https://user-images.githubusercontent.com/67993288/186852554-6960659f-4fd7-4506-b33b-54e1a9dd89bf.jpg">
|
||||
<img width="200" height="200" float="left" src="https://user-images.githubusercontent.com/19977378/196653716-f7043bd5-dfc2-4e7d-be0f-e12a6af4c55b.gif">
|
||||
<img width="200" height="200" float="left" src="https://user-images.githubusercontent.com/19977378/196654529-866bff5d-47a2-4584-9627-39b587799228.gif">
|
||||
</div>
|
||||
|
||||
## RobustVideoMatting Python接口
|
||||
|
||||
```python
|
||||
fd.vision.matting.RobustVideoMatting(model_file, params_file=None, runtime_option=None, model_format=ModelFormat.ONNX)
|
||||
```
|
||||
|
||||
RobustVideoMatting模型加载和初始化,其中model_file为导出的ONNX模型格式
|
||||
|
||||
**参数**
|
||||
|
||||
> * **model_file**(str): 模型文件路径
|
||||
> * **params_file**(str): 参数文件路径,当模型格式为ONNX格式时,此参数无需设定
|
||||
> * **runtime_option**(RuntimeOption): 后端推理配置,默认为None,即采用默认配置
|
||||
> * **model_format**(ModelFormat): 模型格式,默认为ONNX
|
||||
|
||||
### predict函数
|
||||
|
||||
> ```python
|
||||
> RobustVideoMatting.predict(input_image)
|
||||
> ```
|
||||
>
|
||||
> 模型预测结口,输入图像直接输出抠图结果。
|
||||
>
|
||||
> **参数**
|
||||
>
|
||||
> > * **input_image**(np.ndarray): 输入数据,注意需为HWC,BGR格式
|
||||
|
||||
> **返回**
|
||||
>
|
||||
> > 返回`fastdeploy.vision.MattingResult`结构体,结构体说明参考文档[视觉模型预测结果](../../../../../docs/api/vision_results/)
|
||||
|
||||
|
||||
## 其它文档
|
||||
|
||||
- [RobustVideoMatting 模型介绍](..)
|
||||
- [RobustVideoMatting C++部署](../cpp)
|
||||
- [模型预测结果说明](../../../../../docs/api/vision_results/)
|
||||
- [如何切换模型推理后端引擎](../../../../../docs/cn/faq/how_to_change_backend.md)
|
112
examples/vision/matting/rvm/python/infer.py
Executable file
112
examples/vision/matting/rvm/python/infer.py
Executable file
@@ -0,0 +1,112 @@
|
||||
import fastdeploy as fd
|
||||
import cv2
|
||||
import os
|
||||
|
||||
|
||||
def parse_arguments():
|
||||
import argparse
|
||||
import ast
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--model", required=True, help="Path of RobustVideoMatting model.")
|
||||
parser.add_argument("--image", type=str, help="Path of test image file.")
|
||||
parser.add_argument("--video", type=str, help="Path of test video file.")
|
||||
parser.add_argument(
|
||||
"--bg",
|
||||
type=str,
|
||||
required=True,
|
||||
default=None,
|
||||
help="Path of test background image file.")
|
||||
parser.add_argument(
|
||||
'--output-composition',
|
||||
type=str,
|
||||
default="composition.mp4",
|
||||
help="Path of composition video file.")
|
||||
parser.add_argument(
|
||||
'--output-alpha',
|
||||
type=str,
|
||||
default="alpha.mp4",
|
||||
help="Path of alpha video file.")
|
||||
parser.add_argument(
|
||||
"--device",
|
||||
type=str,
|
||||
default='cpu',
|
||||
help="Type of inference device, support 'cpu' or 'gpu'.")
|
||||
parser.add_argument(
|
||||
"--use_trt",
|
||||
type=ast.literal_eval,
|
||||
default=False,
|
||||
help="Wether to use tensorrt.")
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def build_option(args):
|
||||
option = fd.RuntimeOption()
|
||||
if args.device.lower() == "gpu":
|
||||
option.use_gpu()
|
||||
if args.use_trt:
|
||||
option.use_trt_backend()
|
||||
option.set_trt_input_shape("src", [1, 3, 1920, 1080])
|
||||
option.set_trt_input_shape("r1i", [1, 1, 1, 1], [1, 16, 240, 135],
|
||||
[1, 16, 240, 135])
|
||||
option.set_trt_input_shape("r2i", [1, 1, 1, 1], [1, 20, 120, 68],
|
||||
[1, 20, 120, 68])
|
||||
option.set_trt_input_shape("r3i", [1, 1, 1, 1], [1, 40, 60, 34],
|
||||
[1, 40, 60, 34])
|
||||
option.set_trt_input_shape("r4i", [1, 1, 1, 1], [1, 64, 30, 17],
|
||||
[1, 64, 30, 17])
|
||||
|
||||
return option
|
||||
|
||||
|
||||
args = parse_arguments()
|
||||
output_composition = args.output_composition
|
||||
output_alpha = args.output_alpha
|
||||
|
||||
# 配置runtime,加载模型
|
||||
runtime_option = build_option(args)
|
||||
model = fd.vision.matting.RobustVideoMatting(
|
||||
args.model, runtime_option=runtime_option)
|
||||
bg = cv2.imread(args.bg)
|
||||
|
||||
if args.video is not None:
|
||||
# for video
|
||||
cap = cv2.VideoCapture(args.video)
|
||||
# Define the codec and create VideoWriter object
|
||||
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
||||
composition = cv2.VideoWriter(output_composition, fourcc, 20.0,
|
||||
(1080, 1920))
|
||||
alpha = cv2.VideoWriter(output_alpha, fourcc, 20.0, (1080, 1920))
|
||||
|
||||
frame_id = 0
|
||||
while True:
|
||||
frame_id = frame_id + 1
|
||||
_, frame = cap.read()
|
||||
if frame is None:
|
||||
break
|
||||
result = model.predict(frame)
|
||||
vis_im = fd.vision.vis_matting(frame, result)
|
||||
vis_im_with_bg = fd.vision.swap_background_matting(frame, bg, result)
|
||||
alpha.write(vis_im)
|
||||
composition.write(vis_im_with_bg)
|
||||
cv2.waitKey(30)
|
||||
cap.release()
|
||||
composition.release()
|
||||
alpha.release()
|
||||
cv2.destroyAllWindows()
|
||||
print("Visualized result video save in {} and {}".format(
|
||||
output_composition, output_alpha))
|
||||
|
||||
if args.image is not None:
|
||||
# for image
|
||||
im = cv2.imread(args.image)
|
||||
result = model.predict(im.copy())
|
||||
print(result)
|
||||
# 可视化结果
|
||||
vis_im = fd.vision.vis_matting(im, result)
|
||||
vis_im_with_bg = fd.vision.swap_background_matting(im, bg, result)
|
||||
cv2.imwrite("visualized_result_fg.jpg", vis_im)
|
||||
cv2.imwrite("visualized_result_replaced_bg.jpg", vis_im_with_bg)
|
||||
print(
|
||||
"Visualized result save in ./visualized_result_replaced_bg.jpg and ./visualized_result_fg.jpg"
|
||||
)
|
Reference in New Issue
Block a user