mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-21 07:40:37 +08:00
[Model] Add FSANet model (#448)
* add yolov5cls * fixed bugs * fixed bugs * fixed preprocess bug * add yolov5cls readme * deal with comments * Add YOLOv5Cls Note * add yolov5cls test * add rvm support * support rvm model * add rvm demo * fixed bugs * add rvm readme * add TRT support * add trt support * add rvm test * add EXPORT.md * rename export.md * rm poros doxyen * deal with comments * deal with comments * add rvm video_mode note * add fsanet * fixed bug * update readme * fixed for ci * deal with comments * deal with comments * deal with comments Co-authored-by: Jason <jiangjiajun@baidu.com> Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
This commit is contained in:
67
examples/vision/headpose/fsanet/python/README.md
Normal file
67
examples/vision/headpose/fsanet/python/README.md
Normal file
@@ -0,0 +1,67 @@
|
||||
# FSANet Python部署示例
|
||||
|
||||
在部署前,需确认以下两个步骤
|
||||
|
||||
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
||||
- 2. FastDeploy Python whl包安装,参考[FastDeploy Python安装](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
||||
|
||||
本目录下提供`infer.py`快速完成FSANet在CPU/GPU,以及GPU上通过TensorRT加速部署的示例,保证 FastDeploy 版本 >= 0.6.0 支持FSANet模型。执行如下脚本即可完成
|
||||
|
||||
```bash
|
||||
#下载部署示例代码
|
||||
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
||||
cd FastDeploy/examples/vision/headpose/fsanet/python
|
||||
|
||||
# 下载FSANet模型文件和测试图片
|
||||
## 原版ONNX模型
|
||||
wget https://bj.bcebos.com/paddlehub/fastdeploy/fsanet-var.onnx
|
||||
wget https://bj.bcebos.com/paddlehub/fastdeploy/headpose_input.png
|
||||
# CPU推理
|
||||
python infer.py --model fsanet-var.onnx --image headpose_input.png --device cpu
|
||||
# GPU推理
|
||||
python infer.py --model fsanet-var.onnx --image headpose_input.png --device gpu
|
||||
# TRT推理
|
||||
python infer.py --model fsanet-var.onnx --image headpose_input.png --device gpu --backend trt
|
||||
```
|
||||
|
||||
运行完成可视化结果如下图所示
|
||||
|
||||
<div width="520">
|
||||
<img width="500" height="514" float="left" src="https://user-images.githubusercontent.com/19977378/198279932-3eee424e-98a2-4249-bdeb-0f79127cbc9d.png">
|
||||
</div>
|
||||
|
||||
## FSANet Python接口
|
||||
|
||||
```python
|
||||
fd.vision.headpose.FSANet(model_file, params_file=None, runtime_option=None, model_format=ModelFormat.ONNX)
|
||||
```
|
||||
|
||||
FSANet 模型加载和初始化,其中model_file为导出的ONNX模型格式
|
||||
|
||||
**参数**
|
||||
|
||||
> * **model_file**(str): 模型文件路径
|
||||
> * **params_file**(str): 参数文件路径,当模型格式为ONNX格式时,此参数无需设定
|
||||
> * **runtime_option**(RuntimeOption): 后端推理配置,默认为None,即采用默认配置
|
||||
> * **model_format**(ModelFormat): 模型格式,默认为ONNX
|
||||
### predict函数
|
||||
|
||||
> ```python
|
||||
> FSANet.predict(input_image)
|
||||
> ```
|
||||
>
|
||||
> 模型预测结口,输入图像直接输出头部姿态预测结果。
|
||||
>
|
||||
> **参数**
|
||||
>
|
||||
> > * **input_image**(np.ndarray): 输入数据,注意需为HWC,BGR格式
|
||||
> **返回**
|
||||
>
|
||||
> > 返回`fastdeploy.vision.HeadPoseResult`结构体,结构体说明参考文档[视觉模型预测结果](../../../../../docs/api/vision_results/)
|
||||
|
||||
## 其它文档
|
||||
|
||||
- [FSANet 模型介绍](..)
|
||||
- [FSANet C++部署](../cpp)
|
||||
- [模型预测结果说明](../../../../../docs/api/vision_results/)
|
||||
- [如何切换模型推理后端引擎](../../../../../docs/cn/faq/how_to_change_backend.md)
|
Reference in New Issue
Block a user