[Model] Add FSANet model (#448)

* add yolov5cls

* fixed bugs

* fixed bugs

* fixed preprocess bug

* add yolov5cls readme

* deal with comments

* Add YOLOv5Cls Note

* add yolov5cls test

* add rvm support

* support rvm model

* add rvm demo

* fixed bugs

* add rvm readme

* add TRT support

* add trt support

* add rvm test

* add EXPORT.md

* rename export.md

* rm poros doxyen

* deal with comments

* deal with comments

* add rvm video_mode note

* add fsanet

* fixed bug

* update readme

* fixed for ci

* deal with comments

* deal with comments

* deal with comments

Co-authored-by: Jason <jiangjiajun@baidu.com>
Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
This commit is contained in:
WJJ1995
2022-11-04 11:00:35 +08:00
committed by GitHub
parent ce828ecb38
commit 7150e6405c
31 changed files with 922 additions and 22 deletions

View File

@@ -0,0 +1,67 @@
# FSANet Python部署示例
在部署前,需确认以下两个步骤
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
- 2. FastDeploy Python whl包安装参考[FastDeploy Python安装](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
本目录下提供`infer.py`快速完成FSANet在CPU/GPU以及GPU上通过TensorRT加速部署的示例保证 FastDeploy 版本 >= 0.6.0 支持FSANet模型。执行如下脚本即可完成
```bash
#下载部署示例代码
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd FastDeploy/examples/vision/headpose/fsanet/python
# 下载FSANet模型文件和测试图片
## 原版ONNX模型
wget https://bj.bcebos.com/paddlehub/fastdeploy/fsanet-var.onnx
wget https://bj.bcebos.com/paddlehub/fastdeploy/headpose_input.png
# CPU推理
python infer.py --model fsanet-var.onnx --image headpose_input.png --device cpu
# GPU推理
python infer.py --model fsanet-var.onnx --image headpose_input.png --device gpu
# TRT推理
python infer.py --model fsanet-var.onnx --image headpose_input.png --device gpu --backend trt
```
运行完成可视化结果如下图所示
<div width="520">
<img width="500" height="514" float="left" src="https://user-images.githubusercontent.com/19977378/198279932-3eee424e-98a2-4249-bdeb-0f79127cbc9d.png">
</div>
## FSANet Python接口
```python
fd.vision.headpose.FSANet(model_file, params_file=None, runtime_option=None, model_format=ModelFormat.ONNX)
```
FSANet 模型加载和初始化其中model_file为导出的ONNX模型格式
**参数**
> * **model_file**(str): 模型文件路径
> * **params_file**(str): 参数文件路径当模型格式为ONNX格式时此参数无需设定
> * **runtime_option**(RuntimeOption): 后端推理配置默认为None即采用默认配置
> * **model_format**(ModelFormat): 模型格式默认为ONNX
### predict函数
> ```python
> FSANet.predict(input_image)
> ```
>
> 模型预测结口,输入图像直接输出头部姿态预测结果。
>
> **参数**
>
> > * **input_image**(np.ndarray): 输入数据注意需为HWCBGR格式
> **返回**
>
> > 返回`fastdeploy.vision.HeadPoseResult`结构体,结构体说明参考文档[视觉模型预测结果](../../../../../docs/api/vision_results/)
## 其它文档
- [FSANet 模型介绍](..)
- [FSANet C++部署](../cpp)
- [模型预测结果说明](../../../../../docs/api/vision_results/)
- [如何切换模型推理后端引擎](../../../../../docs/cn/faq/how_to_change_backend.md)

View File

@@ -0,0 +1,88 @@
import fastdeploy as fd
import cv2
import os
def parse_arguments():
import argparse
import ast
parser = argparse.ArgumentParser()
parser.add_argument("--model", required=True, help="Path of FSANet model.")
parser.add_argument("--image", type=str, help="Path of test image file.")
parser.add_argument(
"--device",
type=str,
default='cpu',
help="Type of inference device, support 'cpu' or 'gpu'.")
parser.add_argument(
"--backend",
type=str,
default="default",
help="inference backend, default, ort, ov, trt, paddle, paddle_trt.")
parser.add_argument(
"--enable_trt_fp16",
type=ast.literal_eval,
default=False,
help="whether enable fp16 in trt/paddle_trt backend")
return parser.parse_args()
def build_option(args):
option = fd.RuntimeOption()
device = args.device
backend = args.backend
enable_trt_fp16 = args.enable_trt_fp16
if device == "gpu":
option.use_gpu()
if backend == "ort":
option.use_ort_backend()
elif backend == "paddle":
option.use_paddle_backend()
elif backend in ["trt", "paddle_trt"]:
option.use_trt_backend()
option.set_trt_input_shape("input", [1, 3, 64, 64])
if backend == "paddle_trt":
option.enable_paddle_to_trt()
if enable_trt_fp16:
option.enable_trt_fp16()
elif backend == "default":
return option
else:
raise Exception(
"While inference with GPU, only support default/ort/paddle/trt/paddle_trt now, {} is not supported.".
format(backend))
elif device == "cpu":
if backend == "ort":
option.use_ort_backend()
elif backend == "ov":
option.use_openvino_backend()
elif backend == "paddle":
option.use_paddle_backend()
elif backend == "default":
return option
else:
raise Exception(
"While inference with CPU, only support default/ort/ov/paddle now, {} is not supported.".
format(backend))
else:
raise Exception(
"Only support device CPU/GPU now, {} is not supported.".format(
device))
return option
args = parse_arguments()
# 配置runtime加载模型
runtime_option = build_option(args)
model = fd.vision.headpose.FSANet(args.model, runtime_option=runtime_option)
# for image
im = cv2.imread(args.image)
result = model.predict(im.copy())
print(result)
# 可视化结果
vis_im = fd.vision.vis_headpose(im, result)
cv2.imwrite("visualized_result.jpg", vis_im)
print("Visualized result save in ./visualized_result.jpg")