mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 17:17:14 +08:00
[Other] Deprecate some option api and parameters (#1243)
* Optimize Poros backend * fix error * Add more pybind * fix conflicts * add some deprecate notices * [Other] Deprecate some apis in RuntimeOption (#1240) * Deprecate more options * modify serving * Update option.h * fix tensorrt error * Update option_pybind.cc * Update option_pybind.cc * Fix error in serving * fix word spell error
This commit is contained in:
@@ -21,23 +21,64 @@
|
||||
|
||||
namespace fastdeploy {
|
||||
|
||||
/*! @brief Option object to configure TensorRT backend
|
||||
*/
|
||||
struct TrtBackendOption {
|
||||
std::string model_file = ""; // Path of model file
|
||||
std::string params_file = ""; // Path of parameters file, can be empty
|
||||
|
||||
// format of input model
|
||||
ModelFormat model_format = ModelFormat::AUTOREC;
|
||||
|
||||
int gpu_id = 0;
|
||||
bool enable_fp16 = false;
|
||||
bool enable_int8 = false;
|
||||
/// `max_batch_size`, it's deprecated in TensorRT 8.x
|
||||
size_t max_batch_size = 32;
|
||||
|
||||
/// `max_workspace_size` for TensorRT
|
||||
size_t max_workspace_size = 1 << 30;
|
||||
|
||||
/*
|
||||
* @brief Enable half precison inference, on some device not support half precision, it will fallback to float32 mode
|
||||
*/
|
||||
bool enable_fp16 = false;
|
||||
|
||||
/** \brief Set shape range of input tensor for the model that contain dynamic input shape while using TensorRT backend
|
||||
*
|
||||
* \param[in] tensor_name The name of input for the model which is dynamic shape
|
||||
* \param[in] min The minimal shape for the input tensor
|
||||
* \param[in] opt The optimized shape for the input tensor, just set the most common shape, if set as default value, it will keep same with min_shape
|
||||
* \param[in] max The maximum shape for the input tensor, if set as default value, it will keep same with min_shape
|
||||
*/
|
||||
void SetShape(const std::string& tensor_name,
|
||||
const std::vector<int32_t>& min,
|
||||
const std::vector<int32_t>& opt,
|
||||
const std::vector<int32_t>& max) {
|
||||
min_shape[tensor_name].clear();
|
||||
max_shape[tensor_name].clear();
|
||||
opt_shape[tensor_name].clear();
|
||||
min_shape[tensor_name].assign(min.begin(), min.end());
|
||||
if (opt.size() == 0) {
|
||||
opt_shape[tensor_name].assign(min.begin(), min.end());
|
||||
} else {
|
||||
opt_shape[tensor_name].assign(opt.begin(), opt.end());
|
||||
}
|
||||
if (max.size() == 0) {
|
||||
max_shape[tensor_name].assign(min.begin(), min.end());
|
||||
} else {
|
||||
max_shape[tensor_name].assign(max.begin(), max.end());
|
||||
}
|
||||
}
|
||||
/**
|
||||
* @brief Set cache file path while use TensorRT backend. Loadding a Paddle/ONNX model and initialize TensorRT will take a long time, by this interface it will save the tensorrt engine to `cache_file_path`, and load it directly while execute the code again
|
||||
*/
|
||||
std::string serialize_file = "";
|
||||
|
||||
// The below parameters may be removed in next version, please do not
|
||||
// visit or use them directly
|
||||
std::map<std::string, std::vector<int32_t>> max_shape;
|
||||
std::map<std::string, std::vector<int32_t>> min_shape;
|
||||
std::map<std::string, std::vector<int32_t>> opt_shape;
|
||||
std::string serialize_file = "";
|
||||
bool enable_pinned_memory = false;
|
||||
void* external_stream_ = nullptr;
|
||||
int gpu_id = 0;
|
||||
std::string model_file = ""; // Path of model file
|
||||
std::string params_file = ""; // Path of parameters file, can be empty
|
||||
// format of input model
|
||||
ModelFormat model_format = ModelFormat::AUTOREC;
|
||||
};
|
||||
|
||||
|
||||
} // namespace fastdeploy
|
||||
|
Reference in New Issue
Block a user