mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-17 22:21:48 +08:00
[Other] Deprecate some option api and parameters (#1243)
* Optimize Poros backend * fix error * Add more pybind * fix conflicts * add some deprecate notices * [Other] Deprecate some apis in RuntimeOption (#1240) * Deprecate more options * modify serving * Update option.h * fix tensorrt error * Update option_pybind.cc * Update option_pybind.cc * Fix error in serving * fix word spell error
This commit is contained in:
@@ -48,6 +48,8 @@ enum LitePowerMode {
|
||||
LITE_POWER_RAND_LOW = 5 ///< Use Lite Backend with rand low power mode
|
||||
};
|
||||
|
||||
/*! @brief Option object to configure Paddle Lite backend
|
||||
*/
|
||||
struct LiteBackendOption {
|
||||
/// Paddle Lite power mode for mobile device.
|
||||
int power_mode = 3;
|
||||
@@ -55,12 +57,20 @@ struct LiteBackendOption {
|
||||
int cpu_threads = 1;
|
||||
/// Enable use half precision
|
||||
bool enable_fp16 = false;
|
||||
/// Enable use int8 precision for quantized model
|
||||
bool enable_int8 = false;
|
||||
|
||||
/// Inference device, Paddle Lite support CPU/KUNLUNXIN/TIMVX/ASCEND
|
||||
Device device = Device::CPU;
|
||||
/// Index of inference device
|
||||
int device_id = 0;
|
||||
|
||||
// optimized model dir for CxxConfig
|
||||
int kunlunxin_l3_workspace_size = 0xfffc00;
|
||||
bool kunlunxin_locked = false;
|
||||
bool kunlunxin_autotune = true;
|
||||
std::string kunlunxin_autotune_file = "";
|
||||
std::string kunlunxin_precision = "int16";
|
||||
bool kunlunxin_adaptive_seqlen = false;
|
||||
bool kunlunxin_enable_multi_stream = false;
|
||||
|
||||
/// Optimized model dir for CxxConfig
|
||||
std::string optimized_model_dir = "";
|
||||
std::string nnadapter_subgraph_partition_config_path = "";
|
||||
std::string nnadapter_subgraph_partition_config_buffer = "";
|
||||
@@ -70,13 +80,5 @@ struct LiteBackendOption {
|
||||
std::map<std::string, std::vector<std::vector<int64_t>>>
|
||||
nnadapter_dynamic_shape_info = {{"", {{0}}}};
|
||||
std::vector<std::string> nnadapter_device_names = {};
|
||||
int device_id = 0;
|
||||
int kunlunxin_l3_workspace_size = 0xfffc00;
|
||||
bool kunlunxin_locked = false;
|
||||
bool kunlunxin_autotune = true;
|
||||
std::string kunlunxin_autotune_file = "";
|
||||
std::string kunlunxin_precision = "int16";
|
||||
bool kunlunxin_adaptive_seqlen = false;
|
||||
bool kunlunxin_enable_multi_stream = false;
|
||||
};
|
||||
} // namespace fastdeploy
|
||||
} // namespace fastdeploy
|
||||
|
@@ -23,7 +23,6 @@ void BindLiteOption(pybind11::module& m) {
|
||||
.def_readwrite("power_mode", &LiteBackendOption::power_mode)
|
||||
.def_readwrite("cpu_threads", &LiteBackendOption::cpu_threads)
|
||||
.def_readwrite("enable_fp16", &LiteBackendOption::enable_fp16)
|
||||
.def_readwrite("enable_int8", &LiteBackendOption::enable_int8)
|
||||
.def_readwrite("device", &LiteBackendOption::device)
|
||||
.def_readwrite("optimized_model_dir",
|
||||
&LiteBackendOption::optimized_model_dir)
|
||||
|
@@ -23,9 +23,13 @@
|
||||
#include <set>
|
||||
namespace fastdeploy {
|
||||
|
||||
/*! @brief Option object to configure OpenVINO backend
|
||||
*/
|
||||
struct OpenVINOBackendOption {
|
||||
std::string device = "CPU";
|
||||
int cpu_thread_num = -1;
|
||||
|
||||
/// Number of streams while use OpenVINO
|
||||
int num_streams = 0;
|
||||
|
||||
/**
|
||||
|
@@ -22,20 +22,30 @@
|
||||
#include <map>
|
||||
namespace fastdeploy {
|
||||
|
||||
/*! @brief Option object to configure ONNX Runtime backend
|
||||
*/
|
||||
struct OrtBackendOption {
|
||||
// -1 means default
|
||||
// 0: ORT_DISABLE_ALL
|
||||
// 1: ORT_ENABLE_BASIC
|
||||
// 2: ORT_ENABLE_EXTENDED
|
||||
// 99: ORT_ENABLE_ALL (enable some custom optimizations e.g bert)
|
||||
/*
|
||||
* @brief Level of graph optimization, -1: mean default(Enable all the optimization strategy)/0: disable all the optimization strategy/1: enable basic strategy/2:enable extend strategy/99: enable all
|
||||
*/
|
||||
int graph_optimization_level = -1;
|
||||
/*
|
||||
* @brief Number of threads to execute the operator, -1: default
|
||||
*/
|
||||
int intra_op_num_threads = -1;
|
||||
/*
|
||||
* @brief Number of threads to execute the graph, -1: default. This parameter only will bring effects while the `OrtBackendOption::execution_mode` set to 1.
|
||||
*/
|
||||
int inter_op_num_threads = -1;
|
||||
// 0: ORT_SEQUENTIAL
|
||||
// 1: ORT_PARALLEL
|
||||
/*
|
||||
* @brief Execution mode for the graph, -1: default(Sequential mode)/0: Sequential mode, execute the operators in graph one by one. /1: Parallel mode, execute the operators in graph parallelly.
|
||||
*/
|
||||
int execution_mode = -1;
|
||||
/// Inference device, OrtBackend supports CPU/GPU
|
||||
Device device = Device::CPU;
|
||||
/// Inference device id
|
||||
int device_id = 0;
|
||||
|
||||
void* external_stream_ = nullptr;
|
||||
};
|
||||
} // namespace fastdeploy
|
||||
|
@@ -22,6 +22,8 @@
|
||||
|
||||
namespace fastdeploy {
|
||||
|
||||
/*! @brief Option object to configure Poros backend
|
||||
*/
|
||||
struct PorosBackendOption {
|
||||
Device device = Device::CPU;
|
||||
int device_id = 0;
|
||||
|
@@ -21,23 +21,64 @@
|
||||
|
||||
namespace fastdeploy {
|
||||
|
||||
/*! @brief Option object to configure TensorRT backend
|
||||
*/
|
||||
struct TrtBackendOption {
|
||||
std::string model_file = ""; // Path of model file
|
||||
std::string params_file = ""; // Path of parameters file, can be empty
|
||||
|
||||
// format of input model
|
||||
ModelFormat model_format = ModelFormat::AUTOREC;
|
||||
|
||||
int gpu_id = 0;
|
||||
bool enable_fp16 = false;
|
||||
bool enable_int8 = false;
|
||||
/// `max_batch_size`, it's deprecated in TensorRT 8.x
|
||||
size_t max_batch_size = 32;
|
||||
|
||||
/// `max_workspace_size` for TensorRT
|
||||
size_t max_workspace_size = 1 << 30;
|
||||
|
||||
/*
|
||||
* @brief Enable half precison inference, on some device not support half precision, it will fallback to float32 mode
|
||||
*/
|
||||
bool enable_fp16 = false;
|
||||
|
||||
/** \brief Set shape range of input tensor for the model that contain dynamic input shape while using TensorRT backend
|
||||
*
|
||||
* \param[in] tensor_name The name of input for the model which is dynamic shape
|
||||
* \param[in] min The minimal shape for the input tensor
|
||||
* \param[in] opt The optimized shape for the input tensor, just set the most common shape, if set as default value, it will keep same with min_shape
|
||||
* \param[in] max The maximum shape for the input tensor, if set as default value, it will keep same with min_shape
|
||||
*/
|
||||
void SetShape(const std::string& tensor_name,
|
||||
const std::vector<int32_t>& min,
|
||||
const std::vector<int32_t>& opt,
|
||||
const std::vector<int32_t>& max) {
|
||||
min_shape[tensor_name].clear();
|
||||
max_shape[tensor_name].clear();
|
||||
opt_shape[tensor_name].clear();
|
||||
min_shape[tensor_name].assign(min.begin(), min.end());
|
||||
if (opt.size() == 0) {
|
||||
opt_shape[tensor_name].assign(min.begin(), min.end());
|
||||
} else {
|
||||
opt_shape[tensor_name].assign(opt.begin(), opt.end());
|
||||
}
|
||||
if (max.size() == 0) {
|
||||
max_shape[tensor_name].assign(min.begin(), min.end());
|
||||
} else {
|
||||
max_shape[tensor_name].assign(max.begin(), max.end());
|
||||
}
|
||||
}
|
||||
/**
|
||||
* @brief Set cache file path while use TensorRT backend. Loadding a Paddle/ONNX model and initialize TensorRT will take a long time, by this interface it will save the tensorrt engine to `cache_file_path`, and load it directly while execute the code again
|
||||
*/
|
||||
std::string serialize_file = "";
|
||||
|
||||
// The below parameters may be removed in next version, please do not
|
||||
// visit or use them directly
|
||||
std::map<std::string, std::vector<int32_t>> max_shape;
|
||||
std::map<std::string, std::vector<int32_t>> min_shape;
|
||||
std::map<std::string, std::vector<int32_t>> opt_shape;
|
||||
std::string serialize_file = "";
|
||||
bool enable_pinned_memory = false;
|
||||
void* external_stream_ = nullptr;
|
||||
int gpu_id = 0;
|
||||
std::string model_file = ""; // Path of model file
|
||||
std::string params_file = ""; // Path of parameters file, can be empty
|
||||
// format of input model
|
||||
ModelFormat model_format = ModelFormat::AUTOREC;
|
||||
};
|
||||
|
||||
|
||||
} // namespace fastdeploy
|
||||
|
31
fastdeploy/runtime/backends/tensorrt/option_pybind.cc
Normal file
31
fastdeploy/runtime/backends/tensorrt/option_pybind.cc
Normal file
@@ -0,0 +1,31 @@
|
||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "fastdeploy/pybind/main.h"
|
||||
#include "fastdeploy/runtime/backends/tensorrt/option.h"
|
||||
|
||||
namespace fastdeploy {
|
||||
|
||||
void BindTrtOption(pybind11::module& m) {
|
||||
pybind11::class_<TrtBackendOption>(m, "TrtBackendOption")
|
||||
.def(pybind11::init())
|
||||
.def_readwrite("enable_fp16", &TrtBackendOption::enable_fp16)
|
||||
.def_readwrite("max_batch_size", &TrtBackendOption::max_batch_size)
|
||||
.def_readwrite("max_workspace_size",
|
||||
&TrtBackendOption::max_workspace_size)
|
||||
.def_readwrite("serialize_file", &TrtBackendOption::serialize_file)
|
||||
.def("set_shape", &TrtBackendOption::SetShape);
|
||||
}
|
||||
|
||||
} // namespace fastdeploy
|
Reference in New Issue
Block a user