diff --git a/examples/vision/classification/paddleclas/android/README.md b/examples/vision/classification/paddleclas/android/README.md index eba5ceceb..a9262d946 100644 --- a/examples/vision/classification/paddleclas/android/README.md +++ b/examples/vision/classification/paddleclas/android/README.md @@ -125,7 +125,7 @@ option.enableLiteFp16(); model.init(modelFile, paramFile, configFile, option); // Bitmap读取、模型预测、资源释放 同上 ... ``` -更详细的用法请参考 [MainActivity](./app/src/main/java/com/baidu/paddle/fastdeploy/examples/MainActivity.java#L207) 中的用法 +更详细的用法请参考 [MainActivity](./app/src/main/java/com/baidu/paddle/fastdeploy/app/examples/classification/ClassificationMainActivity.java) 中的用法 ## 替换 FastDeploy 预测库和模型 替换FastDeploy预测库和模型的步骤非常简单。预测库所在的位置为 `app/libs/fastdeploy-android-xxx-shared`,其中 `xxx` 表示当前您使用的预测库版本号。模型所在的位置为,`app/src/main/assets/models/MobileNetV1_x0_25_infer`。 diff --git a/examples/vision/ocr/PP-OCRv2/android/README.md b/examples/vision/ocr/PP-OCRv2/android/README.md index 51163d8a6..4181a93e1 100644 --- a/examples/vision/ocr/PP-OCRv2/android/README.md +++ b/examples/vision/ocr/PP-OCRv2/android/README.md @@ -27,14 +27,14 @@ | --- | --- | --- | | ![app_pic](https://user-images.githubusercontent.com/14995488/203484427-83de2316-fd60-4baf-93b6-3755f9b5559d.jpg) | ![app_res](https://user-images.githubusercontent.com/14995488/203495616-af42a5b7-d3bc-4fce-8d5e-2ed88454f618.jpg) | ![app_setup](https://user-images.githubusercontent.com/14995488/203484436-57fdd041-7dcc-4e0e-b6cb-43e5ac1e729b.jpg) | -### PP-OCRv2 & PP-OCRv3 Java API 说明 +### PP-OCRv2 Java API 说明 - 模型初始化 API: 模型初始化API包含两种方式,方式一是通过构造函数直接初始化;方式二是,通过调用init函数,在合适的程序节点进行初始化。 PP-OCR初始化参数说明如下: - modelFile: String, paddle格式的模型文件路径,如 model.pdmodel - paramFile: String, paddle格式的参数文件路径,如 model.pdiparams - labelFile: String, 可选参数,表示label标签文件所在路径,用于可视化,如 ppocr_keys_v1.txt,每一行包含一个label - option: RuntimeOption,可选参数,模型初始化option。如果不传入该参数则会使用默认的运行时选项。 - 与其他模型不同的是,PP-OCRv2 和 PP-OCRv3 包含 DBDetector、Classifier和Recognizer等基础模型,以及PPOCRv2和PPOCRv3等pipeline类型。 + 与其他模型不同的是,PP-OCRv2 包含 DBDetector、Classifier和Recognizer等基础模型,以及pipeline类型。 ```java // 构造函数: constructor w/o label file public DBDetector(String modelFile, String paramsFile); @@ -47,10 +47,6 @@ public PPOCRv2(); // 空构造函数,之后可以调用init初始化 // Constructor w/o classifier public PPOCRv2(DBDetector detModel, Recognizer recModel); public PPOCRv2(DBDetector detModel, Classifier clsModel, Recognizer recModel); -public PPOCRv3(); // 空构造函数,之后可以调用init初始化 -// Constructor w/o classifier -public PPOCRv3(DBDetector detModel, Recognizer recModel); -public PPOCRv3(DBDetector detModel, Classifier clsModel, Recognizer recModel); ``` - 模型预测 API:模型预测API包含直接预测的API以及带可视化功能的API。直接预测是指,不保存图片以及不渲染结果到Bitmap上,仅预测推理结果。预测并且可视化是指,预测结果以及可视化,并将可视化后的图片保存到指定的途径,以及将可视化结果渲染在Bitmap(目前支持ARGB8888格式的Bitmap), 后续可将该Bitmap在camera中进行显示。 ```java @@ -66,6 +62,126 @@ public boolean release(); // 释放native资源 public boolean initialized(); // 检查是否初始化成功 ``` +- RuntimeOption设置说明 + +```java +public void enableLiteFp16(); // 开启fp16精度推理 +public void disableLiteFP16(); // 关闭fp16精度推理 +public void enableLiteInt8(); // 开启int8精度推理,针对量化模型 +public void disableLiteInt8(); // 关闭int8精度推理 +public void setCpuThreadNum(int threadNum); // 设置线程数 +public void setLitePowerMode(LitePowerMode mode); // 设置能耗模式 +public void setLitePowerMode(String modeStr); // 通过字符串形式设置能耗模式 +``` + +- 模型结果OCRResult说明 +```java +public class OCRResult { + public int[][] mBoxes; // 表示单张图片检测出来的所有目标框坐标,每个框以8个int数值依次表示框的4个坐标点,顺序为左下,右下,右上,左上 + public String[] mText; // 表示多个文本框内被识别出来的文本内容 + public float[] mRecScores; // 表示文本框内识别出来的文本的置信度 + public float[] mClsScores; // 表示文本框的分类结果的置信度 + public int[] mClsLabels; // 表示文本框的方向分类类别 + public boolean mInitialized = false; // 检测结果是否有效 +} +``` +其他参考:C++/Python对应的OCRResult说明: [api/vision_results/ocr_result.md](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/api/vision_results/ocr_result.md) + + +- 模型调用示例1:使用构造函数 +```java +import java.nio.ByteBuffer; +import android.graphics.Bitmap; +import android.opengl.GLES20; + +import com.baidu.paddle.fastdeploy.RuntimeOption; +import com.baidu.paddle.fastdeploy.LitePowerMode; +import com.baidu.paddle.fastdeploy.vision.OCRResult; +import com.baidu.paddle.fastdeploy.vision.ocr.Classifier; +import com.baidu.paddle.fastdeploy.vision.ocr.DBDetector; +import com.baidu.paddle.fastdeploy.vision.ocr.Recognizer; + +// 模型路径 +String detModelFile = "ch_PP-OCRv2_det_infer/inference.pdmodel"; +String detParamsFile = "ch_PP-OCRv2_det_infer/inference.pdiparams"; +String clsModelFile = "ch_ppocr_mobile_v2.0_cls_infer/inference.pdmodel"; +String clsParamsFile = "ch_ppocr_mobile_v2.0_cls_infer/inference.pdiparams"; +String recModelFile = "ch_PP-OCRv2_rec_infer/inference.pdmodel"; +String recParamsFile = "ch_PP-OCRv2_rec_infer/inference.pdiparams"; +String recLabelFilePath = "labels/ppocr_keys_v1.txt"; +// 设置RuntimeOption +RuntimeOption detOption = new RuntimeOption(); +RuntimeOption clsOption = new RuntimeOption(); +RuntimeOption recOption = new RuntimeOption(); +detOption.setCpuThreadNum(2); +clsOption.setCpuThreadNum(2); +recOption.setCpuThreadNum(2); +detOption.setLitePowerMode(LitePowerMode.LITE_POWER_HIGH); +clsOption.setLitePowerMode(LitePowerMode.LITE_POWER_HIGH); +recOption.setLitePowerMode(LitePowerMode.LITE_POWER_HIGH); +detOption.enableLiteFp16(); +clsOption.enableLiteFp16(); +recOption.enableLiteFp16(); +// 初始化模型 +DBDetector detModel = new DBDetector(detModelFile, detParamsFile, detOption); +Classifier clsModel = new Classifier(clsModelFile, clsParamsFile, clsOption); +Recognizer recModel = new Recognizer(recModelFile, recParamsFile, recLabelFilePath, recOption); +PPOCRv2 model = new PPOCRv2(detModel, clsModel, recModel); + +// 读取图片: 以下仅为读取Bitmap的伪代码 +ByteBuffer pixelBuffer = ByteBuffer.allocate(width * height * 4); +GLES20.glReadPixels(0, 0, width, height, GLES20.GL_RGBA, GLES20.GL_UNSIGNED_BYTE, pixelBuffer); +Bitmap ARGB8888ImageBitmap = Bitmap.createBitmap(width, height, Bitmap.Config.ARGB_8888); +ARGB8888ImageBitmap.copyPixelsFromBuffer(pixelBuffer); + +// 模型推理 +OCRResult result = model.predict(ARGB8888ImageBitmap); + +// 释放模型资源 +model.release(); +``` + +- 模型调用示例2: 在合适的程序节点,手动调用init +```java +// import 同上 ... +import com.baidu.paddle.fastdeploy.RuntimeOption; +import com.baidu.paddle.fastdeploy.LitePowerMode; +import com.baidu.paddle.fastdeploy.vision.OCRResult; +import com.baidu.paddle.fastdeploy.vision.ocr.Classifier; +import com.baidu.paddle.fastdeploy.vision.ocr.DBDetector; +import com.baidu.paddle.fastdeploy.vision.ocr.Recognizer; +// 新建空模型 +PPOCRv2 model = new PPOCRv2(); +// 模型路径 +String detModelFile = "ch_PP-OCRv2_det_infer/inference.pdmodel"; +String detParamsFile = "ch_PP-OCRv2_det_infer/inference.pdiparams"; +String clsModelFile = "ch_ppocr_mobile_v2.0_cls_infer/inference.pdmodel"; +String clsParamsFile = "ch_ppocr_mobile_v2.0_cls_infer/inference.pdiparams"; +String recModelFile = "ch_PP-OCRv2_rec_infer/inference.pdmodel"; +String recParamsFile = "ch_PP-OCRv2_rec_infer/inference.pdiparams"; +String recLabelFilePath = "labels/ppocr_keys_v1.txt"; +// 设置RuntimeOption +RuntimeOption detOption = new RuntimeOption(); +RuntimeOption clsOption = new RuntimeOption(); +RuntimeOption recOption = new RuntimeOption(); +detOption.setCpuThreadNum(2); +clsOption.setCpuThreadNum(2); +recOption.setCpuThreadNum(2); +detOption.setLitePowerMode(LitePowerMode.LITE_POWER_HIGH); +clsOption.setLitePowerMode(LitePowerMode.LITE_POWER_HIGH); +recOption.setLitePowerMode(LitePowerMode.LITE_POWER_HIGH); +detOption.enableLiteFp16(); +clsOption.enableLiteFp16(); +recOption.enableLiteFp16(); +// 使用init函数初始化 +DBDetector detModel = new DBDetector(detModelFile, detParamsFile, detOption); +Classifier clsModel = new Classifier(clsModelFile, clsParamsFile, clsOption); +Recognizer recModel = new Recognizer(recModelFile, recParamsFile, recLabelFilePath, recOption); +model.init(detModel, clsModel, recModel); +// Bitmap读取、模型预测、资源释放 同上 ... +``` +更详细的用法请参考 [OcrMainActivity](./app/src/main/java/com/baidu/paddle/fastdeploy/app/examples/ocr/OcrMainActivity.java)中的用法 + ## 替换 FastDeploy SDK和模型 替换FastDeploy预测库和模型的步骤非常简单。预测库所在的位置为 `app/libs/fastdeploy-android-sdk-xxx.aar`,其中 `xxx` 表示当前您使用的预测库版本号。模型所在的位置为,`app/src/main/assets/models`。 - 替换FastDeploy Android SDK: 下载或编译最新的FastDeploy Android SDK,解压缩后放在 `app/libs` 目录下;详细配置文档可参考: diff --git a/examples/vision/ocr/PP-OCRv3/android/README.md b/examples/vision/ocr/PP-OCRv3/android/README.md index 0028547a5..f4e23ab99 100644 --- a/examples/vision/ocr/PP-OCRv3/android/README.md +++ b/examples/vision/ocr/PP-OCRv3/android/README.md @@ -27,14 +27,14 @@ | --- | --- | --- | | ![app_pic](https://user-images.githubusercontent.com/14995488/203484427-83de2316-fd60-4baf-93b6-3755f9b5559d.jpg) | ![app_res](https://user-images.githubusercontent.com/14995488/203495616-af42a5b7-d3bc-4fce-8d5e-2ed88454f618.jpg) | ![app_setup](https://user-images.githubusercontent.com/14995488/203484436-57fdd041-7dcc-4e0e-b6cb-43e5ac1e729b.jpg) | -### PP-OCRv2 & PP-OCRv3 Java API 说明 +### PP-OCRv3 Java API 说明 - 模型初始化 API: 模型初始化API包含两种方式,方式一是通过构造函数直接初始化;方式二是,通过调用init函数,在合适的程序节点进行初始化。 PP-OCR初始化参数说明如下: - modelFile: String, paddle格式的模型文件路径,如 model.pdmodel - paramFile: String, paddle格式的参数文件路径,如 model.pdiparams - labelFile: String, 可选参数,表示label标签文件所在路径,用于可视化,如 ppocr_keys_v1.txt,每一行包含一个label - option: RuntimeOption,可选参数,模型初始化option。如果不传入该参数则会使用默认的运行时选项。 - 与其他模型不同的是,PP-OCRv2 和 PP-OCRv3 包含 DBDetector、Classifier和Recognizer等基础模型,以及PPOCRv2和PPOCRv3等pipeline类型。 + 与其他模型不同的是,PP-OCRv3 包含 DBDetector、Classifier和Recognizer等基础模型,以及pipeline类型。 ```java // 构造函数: constructor w/o label file public DBDetector(String modelFile, String paramsFile); @@ -43,10 +43,6 @@ public Classifier(String modelFile, String paramsFile); public Classifier(String modelFile, String paramsFile, RuntimeOption option); public Recognizer(String modelFile, String paramsFile, String labelPath); public Recognizer(String modelFile, String paramsFile, String labelPath, RuntimeOption option); -public PPOCRv2(); // 空构造函数,之后可以调用init初始化 -// Constructor w/o classifier -public PPOCRv2(DBDetector detModel, Recognizer recModel); -public PPOCRv2(DBDetector detModel, Classifier clsModel, Recognizer recModel); public PPOCRv3(); // 空构造函数,之后可以调用init初始化 // Constructor w/o classifier public PPOCRv3(DBDetector detModel, Recognizer recModel); @@ -66,6 +62,126 @@ public boolean release(); // 释放native资源 public boolean initialized(); // 检查是否初始化成功 ``` +- RuntimeOption设置说明 + +```java +public void enableLiteFp16(); // 开启fp16精度推理 +public void disableLiteFP16(); // 关闭fp16精度推理 +public void enableLiteInt8(); // 开启int8精度推理,针对量化模型 +public void disableLiteInt8(); // 关闭int8精度推理 +public void setCpuThreadNum(int threadNum); // 设置线程数 +public void setLitePowerMode(LitePowerMode mode); // 设置能耗模式 +public void setLitePowerMode(String modeStr); // 通过字符串形式设置能耗模式 +``` + +- 模型结果OCRResult说明 +```java +public class OCRResult { + public int[][] mBoxes; // 表示单张图片检测出来的所有目标框坐标,每个框以8个int数值依次表示框的4个坐标点,顺序为左下,右下,右上,左上 + public String[] mText; // 表示多个文本框内被识别出来的文本内容 + public float[] mRecScores; // 表示文本框内识别出来的文本的置信度 + public float[] mClsScores; // 表示文本框的分类结果的置信度 + public int[] mClsLabels; // 表示文本框的方向分类类别 + public boolean mInitialized = false; // 检测结果是否有效 +} +``` +其他参考:C++/Python对应的OCRResult说明: [api/vision_results/ocr_result.md](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/api/vision_results/ocr_result.md) + + +- 模型调用示例1:使用构造函数 +```java +import java.nio.ByteBuffer; +import android.graphics.Bitmap; +import android.opengl.GLES20; + +import com.baidu.paddle.fastdeploy.RuntimeOption; +import com.baidu.paddle.fastdeploy.LitePowerMode; +import com.baidu.paddle.fastdeploy.vision.OCRResult; +import com.baidu.paddle.fastdeploy.vision.ocr.Classifier; +import com.baidu.paddle.fastdeploy.vision.ocr.DBDetector; +import com.baidu.paddle.fastdeploy.vision.ocr.Recognizer; + +// 模型路径 +String detModelFile = "ch_PP-OCRv3_det_infer/inference.pdmodel"; +String detParamsFile = "ch_PP-OCRv3_det_infer/inference.pdiparams"; +String clsModelFile = "ch_ppocr_mobile_v2.0_cls_infer/inference.pdmodel"; +String clsParamsFile = "ch_ppocr_mobile_v2.0_cls_infer/inference.pdiparams"; +String recModelFile = "ch_PP-OCRv3_rec_infer/inference.pdmodel"; +String recParamsFile = "ch_PP-OCRv3_rec_infer/inference.pdiparams"; +String recLabelFilePath = "labels/ppocr_keys_v1.txt"; +// 设置RuntimeOption +RuntimeOption detOption = new RuntimeOption(); +RuntimeOption clsOption = new RuntimeOption(); +RuntimeOption recOption = new RuntimeOption(); +detOption.setCpuThreadNum(2); +clsOption.setCpuThreadNum(2); +recOption.setCpuThreadNum(2); +detOption.setLitePowerMode(LitePowerMode.LITE_POWER_HIGH); +clsOption.setLitePowerMode(LitePowerMode.LITE_POWER_HIGH); +recOption.setLitePowerMode(LitePowerMode.LITE_POWER_HIGH); +detOption.enableLiteFp16(); +clsOption.enableLiteFp16(); +recOption.enableLiteFp16(); +// 初始化模型 +DBDetector detModel = new DBDetector(detModelFile, detParamsFile, detOption); +Classifier clsModel = new Classifier(clsModelFile, clsParamsFile, clsOption); +Recognizer recModel = new Recognizer(recModelFile, recParamsFile, recLabelFilePath, recOption); +PPOCRv3 model = new PPOCRv3(detModel,clsModel,recModel); + +// 读取图片: 以下仅为读取Bitmap的伪代码 +ByteBuffer pixelBuffer = ByteBuffer.allocate(width * height * 4); +GLES20.glReadPixels(0, 0, width, height, GLES20.GL_RGBA, GLES20.GL_UNSIGNED_BYTE, pixelBuffer); +Bitmap ARGB8888ImageBitmap = Bitmap.createBitmap(width, height, Bitmap.Config.ARGB_8888); +ARGB8888ImageBitmap.copyPixelsFromBuffer(pixelBuffer); + +// 模型推理 +OCRResult result = model.predict(ARGB8888ImageBitmap); + +// 释放模型资源 +model.release(); +``` + +- 模型调用示例2: 在合适的程序节点,手动调用init +```java +// import 同上 ... +import com.baidu.paddle.fastdeploy.RuntimeOption; +import com.baidu.paddle.fastdeploy.LitePowerMode; +import com.baidu.paddle.fastdeploy.vision.OCRResult; +import com.baidu.paddle.fastdeploy.vision.ocr.Classifier; +import com.baidu.paddle.fastdeploy.vision.ocr.DBDetector; +import com.baidu.paddle.fastdeploy.vision.ocr.Recognizer; +// 新建空模型 +PPOCRv3 model = new PPOCRv3(); +// 模型路径 +String detModelFile = "ch_PP-OCRv3_det_infer/inference.pdmodel"; +String detParamsFile = "ch_PP-OCRv3_det_infer/inference.pdiparams"; +String clsModelFile = "ch_ppocr_mobile_v2.0_cls_infer/inference.pdmodel"; +String clsParamsFile = "ch_ppocr_mobile_v2.0_cls_infer/inference.pdiparams"; +String recModelFile = "ch_PP-OCRv3_rec_infer/inference.pdmodel"; +String recParamsFile = "ch_PP-OCRv3_rec_infer/inference.pdiparams"; +String recLabelFilePath = "labels/ppocr_keys_v1.txt"; +// 设置RuntimeOption +RuntimeOption detOption = new RuntimeOption(); +RuntimeOption clsOption = new RuntimeOption(); +RuntimeOption recOption = new RuntimeOption(); +detOption.setCpuThreadNum(2); +clsOption.setCpuThreadNum(2); +recOption.setCpuThreadNum(2); +detOption.setLitePowerMode(LitePowerMode.LITE_POWER_HIGH); +clsOption.setLitePowerMode(LitePowerMode.LITE_POWER_HIGH); +recOption.setLitePowerMode(LitePowerMode.LITE_POWER_HIGH); +detOption.enableLiteFp16(); +clsOption.enableLiteFp16(); +recOption.enableLiteFp16(); +// 使用init函数初始化 +DBDetector detModel = new DBDetector(detModelFile, detParamsFile, detOption); +Classifier clsModel = new Classifier(clsModelFile, clsParamsFile, clsOption); +Recognizer recModel = new Recognizer(recModelFile, recParamsFile, recLabelFilePath, recOption); +model.init(detModel, clsModel, recModel); +// Bitmap读取、模型预测、资源释放 同上 ... +``` +更详细的用法请参考 [OcrMainActivity](./app/src/main/java/com/baidu/paddle/fastdeploy/app/examples/ocr/OcrMainActivity.java)中的用法 + ## 替换 FastDeploy SDK和模型 替换FastDeploy预测库和模型的步骤非常简单。预测库所在的位置为 `app/libs/fastdeploy-android-sdk-xxx.aar`,其中 `xxx` 表示当前您使用的预测库版本号。模型所在的位置为,`app/src/main/assets/models`。 - 替换FastDeploy Android SDK: 下载或编译最新的FastDeploy Android SDK,解压缩后放在 `app/libs` 目录下;详细配置文档可参考: diff --git a/examples/vision/segmentation/paddleseg/android/README.md b/examples/vision/segmentation/paddleseg/android/README.md index 9b3fe5062..f5fc5cfa7 100644 --- a/examples/vision/segmentation/paddleseg/android/README.md +++ b/examples/vision/segmentation/paddleseg/android/README.md @@ -155,7 +155,7 @@ model.setVerticalScreenFlag(true); model.init(modelFile, paramFile, configFile, option); // Bitmap读取、模型预测、资源释放 同上 ... ``` -更详细的用法请参考 [SegmentationMainActivity](./app/src/main/java/com/baidu/paddle/fastdeploy/app/examples/detection/SegmentationMainActivity.java) 中的用法 +更详细的用法请参考 [SegmentationMainActivity](./app/src/main/java/com/baidu/paddle/fastdeploy/app/examples/segmentation/SegmentationMainActivity.java) 中的用法 ## 替换 FastDeploy SDK和模型 替换FastDeploy预测库和模型的步骤非常简单。预测库所在的位置为 `app/libs/fastdeploy-android-sdk-xxx.aar`,其中 `xxx` 表示当前您使用的预测库版本号。模型所在的位置为,`app/src/main/assets/models/portrait_pp_humansegv2_lite_256x144_inference_model`。