support vl ori_vacab_size (#2900)

This commit is contained in:
gaoziyuan
2025-07-18 16:26:14 +08:00
committed by GitHub
parent d306944f4f
commit 6efad14b95
6 changed files with 164 additions and 128 deletions

View File

@@ -23,15 +23,14 @@ from paddleformers.utils.log import logger
from fastdeploy.config import FDConfig
from fastdeploy.model_executor.model_loader import ModelRegistry
from fastdeploy.model_executor.models.ernie4_5_moe import \
Ernie4_5_MoeForCausalLM
Ernie4_5_MoeForCausalLM, Ernie4_5_PretrainedModel
from fastdeploy.model_executor.models.ernie4_5_vl.ernie4_5_vl_moe import \
Ernie4_5_VLMoeForConditionalGeneration
from fastdeploy.model_executor.models.qwen2 import Qwen2ForCausalLM
from fastdeploy.model_executor.models.qwen3 import Qwen3ForCausalLM
from fastdeploy.model_executor.models.qwen3moe import Qwen3MoeForCausalLM
Ernie4_5_VLMoeForConditionalGeneration, Ernie4_5_VLPretrainedModel
from fastdeploy.model_executor.models.qwen2 import Qwen2ForCausalLM, Qwen2PretrainedModel
from fastdeploy.model_executor.models.qwen3 import Qwen3ForCausalLM, Qwen3PretrainedModel
from fastdeploy.model_executor.models.qwen3moe import Qwen3MoeForCausalLM, Qwen3MoePretrainedModel
from fastdeploy.rl.rollout_config import RolloutModelConfig
class RolloutModel(nn.Layer):
"""Main model class for rollout operations, supports multimodal components for train."""
@@ -54,6 +53,10 @@ class RolloutModel(nn.Layer):
def get_name_mappings_to_training(self) -> Dict[str, str]:
"""Get parameter name mappings between rollout and training models."""
return getattr(self.rollout_model, "get_name_mappings_to_training", lambda: {})()
def get_quantization_infer_keys(self) -> Dict[str, str]:
"""Get parameter name mappings between rollout and training models."""
return getattr(self.rollout_model, "get_quantization_infer_keys", lambda: {})()
@paddle.no_grad()
def state_dict(self):
@@ -61,10 +64,54 @@ class RolloutModel(nn.Layer):
return self.rollout_model.state_dict()
class Ernie4_5_MoeForCausalLMRL(Ernie4_5_MoeForCausalLM):
class BaseRLModel(nn.Layer):
"""Base class for RL models with common functionality"""
def __init__(self,):
super(BaseRLModel, self).__init__()
self.infer_to_train_mapping = {}
self.fd_config = None
@classmethod
def name(cls) -> str:
return cls.__name__
def _update_base_mappings(self, base_name: str) -> None:
"""Common static mappings"""
static_mappings = {
f"{base_name}.embed_tokens.embeddings.weight": f"{base_name}.embed_tokens.weight",
"lm_head.linear.weight": "lm_head.weight"
}
self.infer_to_train_mapping.update(static_mappings)
def _complete_missing_mappings(self) -> None:
"""
Complete the mapping dictionary with keys that have identical names in inference and training.
"""
for key in self.state_dict().keys():
if key not in self.infer_to_train_mapping and "_scale" not in key:
# Skip weight scale parameters in mapping. Train and infer have same key.
self.infer_to_train_mapping[key] = key
if getattr(self.fd_config.model_config, "tie_word_embeddings", False):
self.infer_to_train_mapping.pop("lm_head.linear.weight")
def get_quantization_infer_keys(self) -> list[str]:
"""Get quantization infer keys"""
quant_weight_key = []
if self.fd_config.quant_config.name() == "wint8":
""" RL only support weight_only_int8 now"""
for key in self.state_dict().keys():
if "scale" in key:
quant_weight_key.append(key.replace(".weight_scale", ".weight"))
else:
raise ValueError("Only 'wint8' quantization is supported in RL roullout.")
return quant_weight_key
class Ernie4_5_MoeForCausalLMRL(Ernie4_5_MoeForCausalLM, BaseRLModel):
"""
Ernie4_5_MoeForCausalLMRL
"""
_get_tensor_parallel_mappings = Ernie4_5_PretrainedModel._get_tensor_parallel_mappings
def __init__(self, fd_config: FDConfig):
"""
@@ -84,31 +131,17 @@ class Ernie4_5_MoeForCausalLMRL(Ernie4_5_MoeForCausalLM):
place_holders = ["weight"]
# Initialize mapping dictionary
infer_to_train = {}
base_name = "ernie"
# Static mappings (non-layer specific)
static_mappings = {
f"{base_name}.embed_tokens.embeddings.weight":
f"{base_name}.embed_tokens.weight",
"lm_head.linear.weight": "lm_head.weight"
}
if getattr(self.fd_config.model_config, "tie_word_embeddings", False):
# Support tie_word_embeddings
logger.debug("enable tie_word_embeddings")
static_mappings.pop("lm_head.linear.weight")
infer_to_train.update(static_mappings)
base_name = base_name + ".layers"
self._update_base_mappings("ernie")
base_name = "ernie.layers"
# Helper function to add layer mappings
def _add_layer_mappings(layer_idx: int):
# MoE specific mappings
infer_to_train[f"{base_name}.{layer_idx}.mlp.fused_moe.gate_weight"] = \
self.infer_to_train_mapping[f"{base_name}.{layer_idx}.mlp.fused_moe.gate_weight"] = \
f"{base_name}.{layer_idx}.mlp.gate.weight"
if self.fd_config.model_config.moe_use_aux_free:
infer_to_train[f"{base_name}.{layer_idx}.mlp.fused_moe.gate_correction_bias"] = \
self.infer_to_train_mapping[f"{base_name}.{layer_idx}.mlp.fused_moe.gate_correction_bias"] = \
f"{base_name}.{layer_idx}.mlp.moe_statics.e_score_correction_bias"
# MoE experts mappings
@@ -116,17 +149,17 @@ class Ernie4_5_MoeForCausalLMRL(Ernie4_5_MoeForCausalLM):
for ph in place_holders:
# up_gate_proj (up_gate_proj)
up_gate_proj_key = f"{base_name}.{layer_idx}.mlp.fused_moe.up_gate_proj_weight"
if up_gate_proj_key not in infer_to_train:
infer_to_train[up_gate_proj_key] = []
infer_to_train[up_gate_proj_key].append(
if up_gate_proj_key not in self.infer_to_train_mapping:
self.infer_to_train_mapping[up_gate_proj_key] = []
self.infer_to_train_mapping[up_gate_proj_key].append(
f"{base_name}.{layer_idx}.mlp.experts.{expert_idx}.up_gate_proj.{ph}"
)
# down_proj (down_proj)
down_proj_key = f"{base_name}.{layer_idx}.mlp.fused_moe.down_proj_weight"
if down_proj_key not in infer_to_train:
infer_to_train[down_proj_key] = []
infer_to_train[down_proj_key].append(
if down_proj_key not in self.infer_to_train_mapping:
self.infer_to_train_mapping[down_proj_key] = []
self.infer_to_train_mapping[down_proj_key].append(
f"{base_name}.{layer_idx}.mlp.experts.{expert_idx}.down_proj.{ph}"
)
@@ -136,13 +169,16 @@ class Ernie4_5_MoeForCausalLMRL(Ernie4_5_MoeForCausalLM):
self.fd_config.model_config.num_hidden_layers):
_add_layer_mappings(layer_idx)
return infer_to_train
self._complete_missing_mappings()
return self.infer_to_train_mapping
class Ernie4_5_VLMoeForConditionalGenerationRL(Ernie4_5_VLMoeForConditionalGeneration):
class Ernie4_5_VLMoeForConditionalGenerationRL(Ernie4_5_VLMoeForConditionalGeneration, BaseRLModel):
"""
Ernie4_5_VLMoeForConditionalGenerationRL
"""
_get_tensor_parallel_mappings = Ernie4_5_VLPretrainedModel._get_tensor_parallel_mappings
def __init__(self, fd_config: FDConfig):
"""
@@ -162,58 +198,41 @@ class Ernie4_5_VLMoeForConditionalGenerationRL(Ernie4_5_VLMoeForConditionalGener
place_holders = ["weight"]
# Initialize mapping dictionary
infer_to_train = {}
self._update_base_mappings("ernie")
base_name = "ernie"
# Static mappings (non-layer specific)
static_mappings = {
f"{base_name}.embed_tokens.embeddings.weight":
f"{base_name}.embed_tokens.weight",
"lm_head.linear.weight": "lm_head.weight"
}
if getattr(self.fd_config.model_config, "tie_word_embeddings", False):
# Support tie_word_embeddings
logger.debug("enable tie_word_embeddings")
static_mappings.pop("lm_head.linear.weight")
infer_to_train.update(static_mappings)
base_name = base_name + ".layers"
base_name = "ernie.layers"
# Helper function to add layer mappings
def _add_layer_mappings(layer_idx: int, moe_tag: str):
def _add_expert_mappings(layer_idx: int, moe_tag: str, expert_start: int):
# MoE specific mappings
infer_to_train[f"{base_name}.{layer_idx}.mlp.{moe_tag}_fused_moe.gate_weight"] = f"{base_name}.{layer_idx}.mlp.gate.weight" if moe_tag == "text" else f"{base_name}.{layer_idx}.mlp.gate.weight_1"
gate_suffix = "" if moe_tag == "text" else "_1"
self.infer_to_train_mapping[f"{base_name}.{layer_idx}.mlp.{moe_tag}_fused_moe.gate_weight"] = \
f"{base_name}.{layer_idx}.mlp.gate.weight{gate_suffix}"
if self.fd_config.model_config.moe_use_aux_free:
infer_to_train[f"{base_name}.{layer_idx}.mlp.{moe_tag}_fused_moe.gate_correction_bias"] = \
self.infer_to_train_mapping[f"{base_name}.{layer_idx}.mlp.{moe_tag}_fused_moe.gate_correction_bias"] = \
f"{base_name}.{layer_idx}.mlp.moe_statics.e_score_correction_bias"
# MoE experts mappings
assert isinstance(self.fd_config.model_config.moe_num_experts, list)
if moe_tag == "text":
expert_idx_start = 0
expert_idx_end = self.fd_config.model_config.moe_num_experts[0]
else:
expert_idx_start = self.fd_config.model_config.moe_num_experts[0]
expert_idx_end = self.fd_config.model_config.moe_num_experts[1]
for expert_idx in range(expert_idx_start, expert_idx_end):
# Initialize defaultdict for expert weights
from collections import defaultdict
from itertools import chain
def _generate_ranges(start, end, step=16, take=8):
"""生成 [start, start+take), [start+step, start+step+take), ... 直到 end"""
return chain(
*(range(i, min(i + take, end)) # 防止越界
for i in range(start, end, step)))
expert_mappings = defaultdict(list)
for expert_idx in _generate_ranges(expert_start, total_moe_num, expert_num_per_rank * 2, expert_num_per_rank):
for ph in place_holders:
# up_gate_proj (up_gate_proj)
up_gate_proj_key = f"{base_name}.{layer_idx}.mlp.{moe_tag}_fused_moe.up_gate_proj_weight"
if up_gate_proj_key not in infer_to_train:
infer_to_train[up_gate_proj_key] = []
infer_to_train[up_gate_proj_key].append(
expert_mappings[f"{base_name}.{layer_idx}.mlp.{moe_tag}_fused_moe.up_gate_proj_weight"].append(
f"{base_name}.{layer_idx}.mlp.experts.{expert_idx}.up_gate_proj.{ph}"
)
# down_proj (down_proj)
down_proj_key = f"{base_name}.{layer_idx}.mlp.{moe_tag}_fused_moe.down_proj_weight"
if down_proj_key not in infer_to_train:
infer_to_train[down_proj_key] = []
infer_to_train[down_proj_key].append(
expert_mappings[f"{base_name}.{layer_idx}.mlp.{moe_tag}_fused_moe.down_proj_weight"].append(
f"{base_name}.{layer_idx}.mlp.experts.{expert_idx}.down_proj.{ph}"
)
self.infer_to_train_mapping.update(expert_mappings)
moe_layer_start_index = self.fd_config.model_config.moe_layer_start_index
if isinstance(moe_layer_start_index, int):
@@ -233,19 +252,28 @@ class Ernie4_5_VLMoeForConditionalGenerationRL(Ernie4_5_VLMoeForConditionalGener
else:
text_moe_layer_end_index = moe_layer_end_index[0]
image_moe_layer_end_index = moe_layer_end_index[1]
assert isinstance(self.fd_config.model_config.moe_num_experts, list)
total_moe_num = sum(self.fd_config.model_config.moe_num_experts)
rollout_model_degree = self.fd_config.parallel_config.tensor_parallel_size
expert_num_per_rank = self.fd_config.model_config.moe_num_experts[0] // rollout_model_degree
# Process MoE layers
for layer_idx in range(text_moe_layer_start_index, text_moe_layer_end_index):
_add_layer_mappings(layer_idx, "text")
_add_expert_mappings(layer_idx, "text", expert_start=0)
for layer_idx in range(image_moe_layer_start_index, image_moe_layer_end_index):
_add_layer_mappings(layer_idx, "image")
_add_expert_mappings(layer_idx, "image", expert_start=expert_num_per_rank)
return infer_to_train
self._complete_missing_mappings()
return self.infer_to_train_mapping
class Qwen2ForCausalLMRL(Qwen2ForCausalLM):
class Qwen2ForCausalLMRL(Qwen2ForCausalLM, BaseRLModel):
"""
Qwen2ForCausalLMRL
"""
_get_tensor_parallel_mappings = Qwen2PretrainedModel._get_tensor_parallel_mappings
def __init__(self, fd_config: FDConfig):
"""
@@ -265,37 +293,29 @@ class Qwen2ForCausalLMRL(Qwen2ForCausalLM):
place_holders = ["weight"]
# Initialize mapping dictionary
infer_to_train = {}
base_name = "qwen2"
# Static mappings (non-layer specific)
static_mappings = {
f"{base_name}.embed_tokens.embeddings.weight":
f"{base_name}.embed_tokens.weight",
"lm_head.linear.weight": "lm_head.weight"
}
infer_to_train.update(static_mappings)
base_name = base_name + ".layers"
self._update_base_mappings("qwen2")
base_name = "qwen2.layers"
# Helper function to add layer mappings
def _add_layer_mappings(layer_idx):
# FFN mappings
for ph in place_holders:
infer_to_train[f"{base_name}.{layer_idx}.mlp.up_gate_proj.{ph}"] = \
self.infer_to_train_mapping[f"{base_name}.{layer_idx}.mlp.up_gate_proj.{ph}"] = \
f"{base_name}.{layer_idx}.mlp.gate_up_fused_proj.{ph}"
for layer_idx in range(
self.fd_config.model_config.num_hidden_layers):
_add_layer_mappings(layer_idx)
return infer_to_train
self._complete_missing_mappings()
return self.infer_to_train_mapping
class Qwen3MoeForCausalLMRL(Qwen3MoeForCausalLM):
class Qwen3MoeForCausalLMRL(Qwen3MoeForCausalLM, BaseRLModel):
"""
Qwen3MoeForCausalLMRL
"""
_get_tensor_parallel_mappings = Qwen3MoePretrainedModel._get_tensor_parallel_mappings
def __init__(self, fd_config: FDConfig):
"""
@@ -315,27 +335,19 @@ class Qwen3MoeForCausalLMRL(Qwen3MoeForCausalLM):
place_holders = ["weight"]
# Initialize mapping dictionary
infer_to_train = {}
self._update_base_mappings("model")
self.infer_to_train_mapping = {}
base_name = "model"
# Static mappings (non-layer specific)
static_mappings = {
f"{base_name}.embed_tokens.embeddings.weight":
f"{base_name}.embed_tokens.weight",
"lm_head.linear.weight": "lm_head.weight"
}
infer_to_train.update(static_mappings)
base_name = base_name + ".layers"
base_name = "model.layers"
# Helper function to add layer mappings
def _add_layer_mappings(layer_idx: int):
# MoE specific mappings
infer_to_train[f"{base_name}.{layer_idx}.mlp.gate_weight"] = \
self.infer_to_train_mapping[f"{base_name}.{layer_idx}.mlp.gate_weight"] = \
f"{base_name}.{layer_idx}.mlp.gate.weight"
if self.fd_config.moe_config.moe_use_aux_free:
infer_to_train[f"{base_name}.{layer_idx}.mlp.fused_moe.gate_correction_bias"] = \
self.infer_to_train_mapping[f"{base_name}.{layer_idx}.mlp.fused_moe.gate_correction_bias"] = \
f"{base_name}.{layer_idx}.mlp.moe_statics.e_score_correction_bias"
# MoE experts mappings
@@ -343,17 +355,17 @@ class Qwen3MoeForCausalLMRL(Qwen3MoeForCausalLM):
for ph in place_holders:
# up_gate_proj (up_gate_proj)
up_gate_proj_key = f"{base_name}.{layer_idx}.mlp.up_gate_proj_weight"
if up_gate_proj_key not in infer_to_train:
infer_to_train[up_gate_proj_key] = []
infer_to_train[up_gate_proj_key].append(
if up_gate_proj_key not in self.infer_to_train_mapping:
self.infer_to_train_mapping[up_gate_proj_key] = []
self.infer_to_train_mapping[up_gate_proj_key].append(
f"{base_name}.{layer_idx}.mlp.experts.{expert_idx}.up_gate_proj.{ph}"
)
# down_proj (down_proj)
down_proj_key = f"{base_name}.{layer_idx}.mlp.down_proj_weight"
if down_proj_key not in infer_to_train:
infer_to_train[down_proj_key] = []
infer_to_train[down_proj_key].append(
if down_proj_key not in self.infer_to_train_mapping:
self.infer_to_train_mapping[down_proj_key] = []
self.infer_to_train_mapping[down_proj_key].append(
f"{base_name}.{layer_idx}.mlp.experts.{expert_idx}.down_proj.{ph}"
)
@@ -361,13 +373,16 @@ class Qwen3MoeForCausalLMRL(Qwen3MoeForCausalLM):
for layer_idx in range(self.fd_config.model_config.num_hidden_layers):
_add_layer_mappings(layer_idx)
return infer_to_train
self._complete_missing_mappings()
return self.infer_to_train_mapping
class Qwen3ForCausalLMRL(Qwen3ForCausalLM):
class Qwen3ForCausalLMRL(Qwen3ForCausalLM, BaseRLModel):
"""
Qwen3ForCausalLMRL
"""
_get_tensor_parallel_mappings = Qwen3PretrainedModel._get_tensor_parallel_mappings
def __init__(self, fd_config: FDConfig):
"""
@@ -380,3 +395,6 @@ class Qwen3ForCausalLMRL(Qwen3ForCausalLM):
def name(self) -> str:
"""name"""
return "Qwen3ForCausalLMRL"
def get_name_mappings_to_training(self) -> Dict[str, str]:
pass