mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00
Merge branch 'develop' into matting
This commit is contained in:
@@ -715,6 +715,16 @@ if(WITH_ASCEND)
|
||||
)
|
||||
endif()
|
||||
|
||||
if(WITH_CAPI)
|
||||
install(
|
||||
DIRECTORY ${PROJECT_SOURCE_DIR}/c_api/fastdeploy_capi
|
||||
DESTINATION ${CMAKE_INSTALL_PREFIX}/include
|
||||
FILES_MATCHING
|
||||
PATTERN "*.h"
|
||||
PATTERN "*/types_internal.h" EXCLUDE
|
||||
)
|
||||
endif()
|
||||
|
||||
include(${PROJECT_SOURCE_DIR}/cmake/config_cpack.cmake)
|
||||
|
||||
############################### Building: FastDeploy Python Wheel #############################
|
||||
|
@@ -33,6 +33,7 @@ set(ORT_DIRECTORY "@ORT_DIRECTORY@")
|
||||
set(OPENVINO_DIRECTORY "@OPENVINO_DIRECTORY@")
|
||||
set(RKNN2_TARGET_SOC "@RKNN2_TARGET_SOC@")
|
||||
set(WITH_KUNLUNXIN @WITH_KUNLUNXIN@)
|
||||
set(WITH_CAPI @WITH_CAPI@)
|
||||
# Whether to use FastDeploy static lib. The default
|
||||
# value for this option is determined by the SDK
|
||||
# build-time options.
|
||||
@@ -357,6 +358,7 @@ message(STATUS " CMAKE_INSTALL_PREFIX : ${CMAKE_INSTALL_PREFIX}")
|
||||
message(STATUS " CMAKE_MODULE_PATH : ${CMAKE_MODULE_PATH}")
|
||||
message(STATUS "")
|
||||
message(STATUS " WITH_GPU : ${WITH_GPU}")
|
||||
message(STATUS " WITH_CAPI : ${WITH_CAPI}")
|
||||
message(STATUS " ENABLE_ORT_BACKEND : ${ENABLE_ORT_BACKEND}")
|
||||
message(STATUS " ENABLE_RKNPU2_BACKEND : ${ENABLE_RKNPU2_BACKEND}")
|
||||
message(STATUS " ENABLE_SOPHGO_BACKEND : ${ENABLE_SOPHGO_BACKEND}")
|
||||
@@ -365,6 +367,7 @@ message(STATUS " ENABLE_POROS_BACKEND : ${ENABLE_POROS_BACKEND}")
|
||||
message(STATUS " ENABLE_OPENVINO_BACKEND : ${ENABLE_OPENVINO_BACKEND}")
|
||||
message(STATUS " ENABLE_TRT_BACKEND : ${ENABLE_TRT_BACKEND}")
|
||||
message(STATUS " ENABLE_LITE_BACKEND : ${ENABLE_LITE_BACKEND}")
|
||||
|
||||
if(ENABLE_PADDLE_BACKEND)
|
||||
message(STATUS " Paddle Inference version : ${PADDLEINFERENCE_VERSION}")
|
||||
endif()
|
||||
|
9
benchmark/cpp/benchmark_ppyolov8.cc
Normal file → Executable file
9
benchmark/cpp/benchmark_ppyolov8.cc
Normal file → Executable file
@@ -12,16 +12,10 @@
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "flags.h"
|
||||
#include "macros.h"
|
||||
#include "flags.h"
|
||||
#include "option.h"
|
||||
|
||||
#ifdef WIN32
|
||||
const char sep = '\\';
|
||||
#else
|
||||
const char sep = '/';
|
||||
#endif
|
||||
|
||||
int main(int argc, char* argv[]) {
|
||||
google::ParseCommandLineFlags(&argc, &argv, true);
|
||||
auto im = cv::imread(FLAGS_image);
|
||||
@@ -31,6 +25,7 @@ int main(int argc, char* argv[]) {
|
||||
PrintUsage();
|
||||
return false;
|
||||
}
|
||||
PrintBenchmarkInfo();
|
||||
auto model_file = FLAGS_model + sep + "model.pdmodel";
|
||||
auto params_file = FLAGS_model + sep + "model.pdiparams";
|
||||
auto config_file = FLAGS_model + sep + "infer_cfg.yml";
|
||||
|
3
benchmark/cpp/benchmark_yolov5.cc
Normal file → Executable file
3
benchmark/cpp/benchmark_yolov5.cc
Normal file → Executable file
@@ -12,8 +12,8 @@
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "flags.h"
|
||||
#include "macros.h"
|
||||
#include "flags.h"
|
||||
#include "option.h"
|
||||
|
||||
int main(int argc, char* argv[]) {
|
||||
@@ -25,6 +25,7 @@ int main(int argc, char* argv[]) {
|
||||
PrintUsage();
|
||||
return false;
|
||||
}
|
||||
PrintBenchmarkInfo();
|
||||
auto model_yolov5 =
|
||||
fastdeploy::vision::detection::YOLOv5(FLAGS_model, "", option);
|
||||
fastdeploy::vision::DetectionResult res;
|
||||
|
@@ -16,6 +16,12 @@
|
||||
|
||||
#include "gflags/gflags.h"
|
||||
|
||||
#ifdef WIN32
|
||||
const char sep = '\\';
|
||||
#else
|
||||
const char sep = '/';
|
||||
#endif
|
||||
|
||||
DEFINE_string(model, "", "Directory of the inference model.");
|
||||
DEFINE_string(image, "", "Path of the image file.");
|
||||
DEFINE_string(device, "cpu",
|
||||
@@ -48,3 +54,35 @@ void PrintUsage() {
|
||||
std::cout << "Default value of backend: default" << std::endl;
|
||||
std::cout << "Default value of use_fp16: false" << std::endl;
|
||||
}
|
||||
|
||||
void PrintBenchmarkInfo() {
|
||||
// Get model name
|
||||
std::vector<std::string> model_names;
|
||||
fastdeploy::benchmark::Split(FLAGS_model, model_names, sep);
|
||||
// Save benchmark info
|
||||
std::stringstream ss;
|
||||
ss.precision(3);
|
||||
ss << "\n======= Model Info =======\n";
|
||||
ss << "model_name: " << model_names[model_names.size() - 1] << std::endl;
|
||||
ss << "profile_mode: " << FLAGS_profile_mode << std::endl;
|
||||
if (FLAGS_profile_mode == "runtime") {
|
||||
ss << "include_h2d_d2h: " << FLAGS_include_h2d_d2h << std::endl;
|
||||
}
|
||||
ss << "\n======= Backend Info =======\n";
|
||||
ss << "warmup: " << FLAGS_warmup << std::endl;
|
||||
ss << "repeats: " << FLAGS_repeat << std::endl;
|
||||
ss << "device: " << FLAGS_device << std::endl;
|
||||
if (FLAGS_device == "gpu") {
|
||||
ss << "device_id: " << FLAGS_device_id << std::endl;
|
||||
}
|
||||
ss << "backend: " << FLAGS_backend << std::endl;
|
||||
ss << "cpu_thread_nums: " << FLAGS_cpu_thread_nums << std::endl;
|
||||
ss << "use_fp16: " << FLAGS_use_fp16 << std::endl;
|
||||
ss << "collect_memory_info: " << FLAGS_collect_memory_info << std::endl;
|
||||
if (FLAGS_collect_memory_info) {
|
||||
ss << "sampling_interval: " << std::to_string(FLAGS_sampling_interval)
|
||||
<< "ms" << std::endl;
|
||||
}
|
||||
std::cout << ss.str() << std::endl;
|
||||
return;
|
||||
}
|
||||
|
@@ -18,7 +18,6 @@
|
||||
|
||||
#define BENCHMARK_MODEL(MODEL_NAME, BENCHMARK_FUNC) \
|
||||
{ \
|
||||
std::cout << "====" << #MODEL_NAME << "====" << std::endl; \
|
||||
if (!MODEL_NAME.Initialized()) { \
|
||||
std::cerr << "Failed to initialize." << std::endl; \
|
||||
return 0; \
|
||||
@@ -62,8 +61,8 @@
|
||||
float __cpu_mem__ = __resource_moniter__.GetMaxCpuMem(); \
|
||||
float __gpu_mem__ = __resource_moniter__.GetMaxGpuMem(); \
|
||||
float __gpu_util__ = __resource_moniter__.GetMaxGpuUtil(); \
|
||||
std::cout << "cpu_pss_mb: " << __cpu_mem__ << "MB." << std::endl; \
|
||||
std::cout << "gpu_pss_mb: " << __gpu_mem__ << "MB." << std::endl; \
|
||||
std::cout << "cpu_rss_mb: " << __cpu_mem__ << "MB." << std::endl; \
|
||||
std::cout << "gpu_rss_mb: " << __gpu_mem__ << "MB." << std::endl; \
|
||||
std::cout << "gpu_util: " << __gpu_util__ << std::endl; \
|
||||
__resource_moniter__.Stop(); \
|
||||
} \
|
||||
|
@@ -19,6 +19,7 @@ if(NOT WITH_CAPI)
|
||||
return()
|
||||
endif()
|
||||
|
||||
configure_file(${PROJECT_SOURCE_DIR}/${CSRCS_DIR_NAME}/c_api/fastdeploy_capi/config.h.in ${PROJECT_SOURCE_DIR}/${CSRCS_DIR_NAME}/c_api/fastdeploy_capi/config.h)
|
||||
file(GLOB_RECURSE DEPLOY_CAPI_SRCS ${PROJECT_SOURCE_DIR}/${CSRCS_DIR_NAME}/c_api/fastdeploy_capi/*.cc)
|
||||
if(NOT ENABLE_VISION)
|
||||
file(GLOB_RECURSE DEPLOY_VISION_CAPI_SRCS ${PROJECT_SOURCE_DIR}/${CSRCS_DIR_NAME}/c_api/fastdeploy_capi/vision/*.cc)
|
||||
|
22
c_api/fastdeploy_capi/config.h
Executable file
22
c_api/fastdeploy_capi/config.h
Executable file
@@ -0,0 +1,22 @@
|
||||
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
#pragma once
|
||||
|
||||
#ifndef ENABLE_VISION
|
||||
#define ENABLE_VISION
|
||||
#endif
|
||||
|
||||
#ifndef ENABLE_TEXT
|
||||
/* #undef ENABLE_TEXT */
|
||||
#endif
|
22
c_api/fastdeploy_capi/config.h.in
Executable file
22
c_api/fastdeploy_capi/config.h.in
Executable file
@@ -0,0 +1,22 @@
|
||||
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
#pragma once
|
||||
|
||||
#ifndef ENABLE_VISION
|
||||
#cmakedefine ENABLE_VISION
|
||||
#endif
|
||||
|
||||
#ifndef ENABLE_TEXT
|
||||
#cmakedefine ENABLE_TEXT
|
||||
#endif
|
71
c_api/fastdeploy_capi/enum_variables.h
Normal file
71
c_api/fastdeploy_capi/enum_variables.h
Normal file
@@ -0,0 +1,71 @@
|
||||
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#define FD_ENUM(type) \
|
||||
typedef int32_t type; \
|
||||
enum
|
||||
|
||||
FD_ENUM(FD_C_ModelFormat){
|
||||
AUTOREC, ///< Auto recognize the model format by model file name
|
||||
PADDLE, ///< Model with paddlepaddle format
|
||||
ONNX, ///< Model with ONNX format
|
||||
RKNN, ///< Model with RKNN format
|
||||
TORCHSCRIPT, ///< Model with TorchScript format
|
||||
SOPHGO, ///< Model with SOPHGO format
|
||||
};
|
||||
|
||||
FD_ENUM(FD_C_rknpu2_CpuName){
|
||||
RK356X = 0, /* run on RK356X. */
|
||||
RK3588 = 1, /* default,run on RK3588. */
|
||||
UNDEFINED,
|
||||
};
|
||||
|
||||
FD_ENUM(FD_C_rknpu2_CoreMask){
|
||||
RKNN_NPU_CORE_AUTO = 0, //< default, run on NPU core randomly.
|
||||
RKNN_NPU_CORE_0 = 1, //< run on NPU core 0.
|
||||
RKNN_NPU_CORE_1 = 2, //< run on NPU core 1.
|
||||
RKNN_NPU_CORE_2 = 4, //< run on NPU core 2.
|
||||
RKNN_NPU_CORE_0_1 = RKNN_NPU_CORE_0 |
|
||||
RKNN_NPU_CORE_1, //< run on NPU core 1 and core 2.
|
||||
RKNN_NPU_CORE_0_1_2 = RKNN_NPU_CORE_0_1 |
|
||||
RKNN_NPU_CORE_2, //< run on NPU core 1 and core 2.
|
||||
RKNN_NPU_CORE_UNDEFINED,
|
||||
};
|
||||
|
||||
FD_ENUM(FD_C_LitePowerMode){
|
||||
LITE_POWER_HIGH = 0, ///< Use Lite Backend with high power mode
|
||||
LITE_POWER_LOW = 1, ///< Use Lite Backend with low power mode
|
||||
LITE_POWER_FULL = 2, ///< Use Lite Backend with full power mode
|
||||
LITE_POWER_NO_BIND = 3, ///< Use Lite Backend with no bind power mode
|
||||
LITE_POWER_RAND_HIGH = 4, ///< Use Lite Backend with rand high mode
|
||||
LITE_POWER_RAND_LOW = 5 ///< Use Lite Backend with rand low power mode
|
||||
};
|
||||
|
||||
FD_ENUM(FD_C_ResultType){
|
||||
UNKNOWN_RESULT,
|
||||
CLASSIFY,
|
||||
DETECTION,
|
||||
SEGMENTATION,
|
||||
OCR,
|
||||
MOT,
|
||||
FACE_DETECTION,
|
||||
FACE_ALIGNMENT,
|
||||
FACE_RECOGNITION,
|
||||
MATTING,
|
||||
MASK,
|
||||
KEYPOINT_DETECTION,
|
||||
HEADPOSE,
|
||||
};
|
@@ -58,43 +58,3 @@
|
||||
typedef int8_t FD_C_Bool;
|
||||
#define TRUE 1
|
||||
#define FALSE 0
|
||||
|
||||
#define FD_ENUM(type) \
|
||||
typedef int32_t type; \
|
||||
enum
|
||||
|
||||
FD_ENUM(FD_C_ModelFormat){
|
||||
AUTOREC, ///< Auto recognize the model format by model file name
|
||||
PADDLE, ///< Model with paddlepaddle format
|
||||
ONNX, ///< Model with ONNX format
|
||||
RKNN, ///< Model with RKNN format
|
||||
TORCHSCRIPT, ///< Model with TorchScript format
|
||||
SOPHGO, ///< Model with SOPHGO format
|
||||
};
|
||||
|
||||
FD_ENUM(FD_C_rknpu2_CpuName){
|
||||
RK356X = 0, /* run on RK356X. */
|
||||
RK3588 = 1, /* default,run on RK3588. */
|
||||
UNDEFINED,
|
||||
};
|
||||
|
||||
FD_ENUM(FD_C_rknpu2_CoreMask){
|
||||
RKNN_NPU_CORE_AUTO = 0, //< default, run on NPU core randomly.
|
||||
RKNN_NPU_CORE_0 = 1, //< run on NPU core 0.
|
||||
RKNN_NPU_CORE_1 = 2, //< run on NPU core 1.
|
||||
RKNN_NPU_CORE_2 = 4, //< run on NPU core 2.
|
||||
RKNN_NPU_CORE_0_1 = RKNN_NPU_CORE_0 |
|
||||
RKNN_NPU_CORE_1, //< run on NPU core 1 and core 2.
|
||||
RKNN_NPU_CORE_0_1_2 = RKNN_NPU_CORE_0_1 |
|
||||
RKNN_NPU_CORE_2, //< run on NPU core 1 and core 2.
|
||||
RKNN_NPU_CORE_UNDEFINED,
|
||||
};
|
||||
|
||||
FD_ENUM(FD_C_LitePowerMode){
|
||||
LITE_POWER_HIGH = 0, ///< Use Lite Backend with high power mode
|
||||
LITE_POWER_LOW = 1, ///< Use Lite Backend with low power mode
|
||||
LITE_POWER_FULL = 2, ///< Use Lite Backend with full power mode
|
||||
LITE_POWER_NO_BIND = 3, ///< Use Lite Backend with no bind power mode
|
||||
LITE_POWER_RAND_HIGH = 4, ///< Use Lite Backend with rand high mode
|
||||
LITE_POWER_RAND_LOW = 5 ///< Use Lite Backend with rand low power mode
|
||||
};
|
||||
|
40
c_api/fastdeploy_capi/fd_type.cc
Normal file
40
c_api/fastdeploy_capi/fd_type.cc
Normal file
@@ -0,0 +1,40 @@
|
||||
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "fastdeploy_capi/fd_type.h"
|
||||
|
||||
#include <opencv2/imgcodecs.hpp>
|
||||
|
||||
#include "fastdeploy_capi/fd_common.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
FD_C_Mat FD_C_Imread(const char* imgpath) {
|
||||
cv::Mat image = cv::imread(imgpath);
|
||||
return new cv::Mat(image);
|
||||
}
|
||||
|
||||
FD_C_Bool FD_C_Imwrite(const char* savepath, FD_C_Mat img) {
|
||||
cv::Mat cv_img = *(reinterpret_cast<cv::Mat*>(img));
|
||||
bool result = cv::imwrite(savepath, cv_img);
|
||||
return result;
|
||||
}
|
||||
|
||||
void FD_C_DestroyMat(FD_C_Mat mat) { delete reinterpret_cast<cv::Mat*>(mat); }
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
@@ -17,7 +17,8 @@
|
||||
#include <stdint.h>
|
||||
#include <stdio.h>
|
||||
|
||||
#include "fastdeploy_capi/fd_common.h" // NOLINT
|
||||
#include "fastdeploy_capi/enum_variables.h"
|
||||
#include "fastdeploy_capi/fd_common.h"
|
||||
|
||||
typedef struct FD_C_OneDimArrayUint8 {
|
||||
size_t size;
|
||||
@@ -65,3 +66,19 @@ typedef struct FD_C_TwoDimArrayFloat {
|
||||
} FD_C_TwoDimArrayFloat; // std::vector<std::vector<float>>
|
||||
|
||||
typedef void* FD_C_Mat;
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
FASTDEPLOY_CAPI_EXPORT extern __fd_give FD_C_Mat
|
||||
FD_C_Imread(const char* imgpath);
|
||||
|
||||
FASTDEPLOY_CAPI_EXPORT extern FD_C_Bool FD_C_Imwrite(const char* savepath,
|
||||
__fd_keep FD_C_Mat);
|
||||
|
||||
FASTDEPLOY_CAPI_EXPORT extern void FD_C_DestroyMat(__fd_take FD_C_Mat mat);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
@@ -17,7 +17,9 @@
|
||||
#include "fastdeploy/utils/utils.h"
|
||||
#include "fastdeploy_capi/types_internal.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
FD_C_RuntimeOptionWrapper* FD_C_CreateRuntimeOptionWrapper() {
|
||||
FD_C_RuntimeOptionWrapper* fd_c_runtime_option_wrapper =
|
||||
@@ -28,7 +30,7 @@ FD_C_RuntimeOptionWrapper* FD_C_CreateRuntimeOptionWrapper() {
|
||||
return fd_c_runtime_option_wrapper;
|
||||
}
|
||||
|
||||
void FD_C_DestroyRuntimeOption(
|
||||
void FD_C_DestroyRuntimeOptionWrapper(
|
||||
__fd_take FD_C_RuntimeOptionWrapper* fd_c_runtime_option_wrapper) {
|
||||
delete fd_c_runtime_option_wrapper;
|
||||
}
|
||||
@@ -404,15 +406,6 @@ void FD_C_RuntimeOptionWrapperUseIpu(
|
||||
batches_per_step);
|
||||
}
|
||||
|
||||
void FD_C_RuntimeOptionWrapperSetIpuConfig(
|
||||
__fd_keep FD_C_RuntimeOptionWrapper* fd_c_runtime_option_wrapper,
|
||||
FD_C_Bool enable_fp16, int replica_num, float available_memory_proportion,
|
||||
FD_C_Bool enable_half_partial) {
|
||||
auto& runtime_option = CHECK_AND_CONVERT_FD_TYPE(RuntimeOptionWrapper,
|
||||
fd_c_runtime_option_wrapper);
|
||||
runtime_option->SetIpuConfig(enable_fp16, replica_num,
|
||||
available_memory_proportion,
|
||||
enable_half_partial);
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
||||
} // extern "C"
|
||||
#endif
|
||||
|
@@ -14,9 +14,7 @@
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <memory>
|
||||
|
||||
#include "fastdeploy_capi/fd_common.h"
|
||||
#include "fastdeploy_capi/fd_type.h"
|
||||
|
||||
typedef struct FD_C_RuntimeOptionWrapper FD_C_RuntimeOptionWrapper;
|
||||
|
||||
@@ -499,19 +497,6 @@ FASTDEPLOY_CAPI_EXPORT extern void FD_C_RuntimeOptionWrapperUseIpu(
|
||||
int device_num, int micro_batch_size, FD_C_Bool enable_pipelining,
|
||||
int batches_per_step);
|
||||
|
||||
/** \brief Set IPU config.
|
||||
*
|
||||
* \param[in] fd_c_runtime_option_wrapper pointer to FD_C_RuntimeOptionWrapper object
|
||||
* \param[in] enable_fp16 enable fp16.
|
||||
* \param[in] replica_num the number of graph replication.
|
||||
* \param[in] available_memory_proportion the available memory proportion for matmul/conv.
|
||||
* \param[in] enable_half_partial enable fp16 partial for matmul, only work with fp16.
|
||||
*/
|
||||
FASTDEPLOY_CAPI_EXPORT extern void FD_C_RuntimeOptionWrapperSetIpuConfig(
|
||||
__fd_keep FD_C_RuntimeOptionWrapper* fd_c_runtime_option_wrapper,
|
||||
FD_C_Bool enable_fp16, int replica_num, float available_memory_proportion,
|
||||
FD_C_Bool enable_half_partial);
|
||||
|
||||
#ifdef __cplusplus
|
||||
} // extern "C"
|
||||
#endif
|
||||
|
26
c_api/fastdeploy_capi/vision.h
Normal file
26
c_api/fastdeploy_capi/vision.h
Normal file
@@ -0,0 +1,26 @@
|
||||
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
#pragma once
|
||||
|
||||
#include "fastdeploy_capi/config.h"
|
||||
|
||||
#ifdef ENABLE_VISION
|
||||
#include "fastdeploy_capi/vision/classification/ppcls/model.h"
|
||||
#include "fastdeploy_capi/vision/detection/ppdet/model.h"
|
||||
#include "fastdeploy_capi/vision/result.h"
|
||||
#include "fastdeploy_capi/vision/visualize.h"
|
||||
#endif
|
||||
|
||||
#include "fastdeploy_capi/fd_type.h"
|
||||
#include "fastdeploy_capi/runtime_option.h"
|
@@ -16,7 +16,9 @@
|
||||
|
||||
#include "fastdeploy_capi/types_internal.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
FD_C_PaddleClasModelWrapper* FD_C_CreatePaddleClasModelWrapper(
|
||||
const char* model_file, const char* params_file, const char* config_file,
|
||||
@@ -50,4 +52,7 @@ FD_C_Bool FD_C_PaddleClasModelWrapperPredict(
|
||||
ClassifyResultWrapper, fd_c_classify_result_wrapper);
|
||||
return paddleclas_model->Predict(im, classify_result.get());
|
||||
}
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
@@ -17,7 +17,9 @@
|
||||
#include "fastdeploy_capi/types_internal.h"
|
||||
#include "fastdeploy_capi/vision/visualize.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
FD_C_PPYOLOEWrapper* FD_C_CreatesPPYOLOEWrapper(
|
||||
const char* model_file, const char* params_file, const char* config_file,
|
||||
@@ -50,4 +52,7 @@ FD_C_Bool FD_C_PPYOLOEWrapperPredict(
|
||||
DetectionResultWrapper, fd_c_detection_result_wrapper);
|
||||
return ppyoloe_model->Predict(im, detection_result.get());
|
||||
}
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
@@ -17,7 +17,9 @@
|
||||
#include "fastdeploy/utils/utils.h"
|
||||
#include "fastdeploy_capi/types_internal.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
// Classification Results
|
||||
|
||||
@@ -235,4 +237,6 @@ FD_C_DetectionResultWrapper* FD_C_CreateDetectionResultWrapperFromData(
|
||||
|
||||
return fd_c_detection_result_wrapper;
|
||||
}
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
@@ -24,22 +24,6 @@ typedef struct FD_C_DetectionResultWrapper FD_C_DetectionResultWrapper;
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
FD_ENUM(FD_C_ResultType){
|
||||
UNKNOWN_RESULT,
|
||||
CLASSIFY,
|
||||
DETECTION,
|
||||
SEGMENTATION,
|
||||
OCR,
|
||||
MOT,
|
||||
FACE_DETECTION,
|
||||
FACE_ALIGNMENT,
|
||||
FACE_RECOGNITION,
|
||||
MATTING,
|
||||
MASK,
|
||||
KEYPOINT_DETECTION,
|
||||
HEADPOSE,
|
||||
};
|
||||
|
||||
typedef struct FD_C_ClassifyResult {
|
||||
FD_C_OneDimArrayInt32 label_ids;
|
||||
FD_C_OneDimArrayFloat scores;
|
||||
|
@@ -17,7 +17,9 @@
|
||||
#include "fastdeploy/vision/visualize/visualize.h"
|
||||
#include "fastdeploy_capi/types_internal.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
FD_C_Mat FD_C_VisDetection(FD_C_Mat im,
|
||||
FD_C_DetectionResult* fd_c_detection_result,
|
||||
@@ -32,4 +34,6 @@ FD_C_Mat FD_C_VisDetection(FD_C_Mat im,
|
||||
line_size, font_size);
|
||||
return new cv::Mat(result);
|
||||
}
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
13
examples/vision/detection/paddledetection/c/CMakeLists.txt
Normal file
13
examples/vision/detection/paddledetection/c/CMakeLists.txt
Normal file
@@ -0,0 +1,13 @@
|
||||
PROJECT(infer_demo C)
|
||||
CMAKE_MINIMUM_REQUIRED (VERSION 3.10)
|
||||
|
||||
# 指定下载解压后的fastdeploy库路径
|
||||
option(FASTDEPLOY_INSTALL_DIR "Path of downloaded fastdeploy sdk.")
|
||||
|
||||
include(${FASTDEPLOY_INSTALL_DIR}/FastDeploy.cmake)
|
||||
|
||||
# 添加FastDeploy依赖头文件
|
||||
include_directories(${FASTDEPLOY_INCS})
|
||||
|
||||
add_executable(infer_ppyoloe_demo ${PROJECT_SOURCE_DIR}/infer_ppyoloe.c)
|
||||
target_link_libraries(infer_ppyoloe_demo ${FASTDEPLOY_LIBS})
|
200
examples/vision/detection/paddledetection/c/README.md
Normal file
200
examples/vision/detection/paddledetection/c/README.md
Normal file
@@ -0,0 +1,200 @@
|
||||
English | [简体中文](README_CN.md)
|
||||
# PaddleDetection C Deployment Example
|
||||
|
||||
This directory provides examples that `infer_xxx.c` fast finishes the deployment of PaddleDetection models, including PPYOLOE on CPU/GPU.
|
||||
|
||||
Before deployment, two steps require confirmation
|
||||
|
||||
- 1. Software and hardware should meet the requirements. Please refer to [FastDeploy Environment Requirements](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md)
|
||||
- 2. Download the precompiled deployment library and samples code according to your development environment. Refer to [FastDeploy Precompiled Library](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md)
|
||||
|
||||
Taking inference on Linux as an example, the compilation test can be completed by executing the following command in this directory. FastDeploy version 1.0.4 or above (x.x.x>=1.0.4) is required to support this model.
|
||||
|
||||
```bash
|
||||
ppyoloe is taken as an example for inference deployment
|
||||
|
||||
mkdir build
|
||||
cd build
|
||||
# Download the FastDeploy precompiled library. Users can choose your appropriate version in the `FastDeploy Precompiled Library` mentioned above
|
||||
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
|
||||
tar xvf fastdeploy-linux-x64-x.x.x.tgz
|
||||
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
|
||||
make -j
|
||||
|
||||
# Download the PPYOLOE model file and test images
|
||||
wget https://bj.bcebos.com/paddlehub/fastdeploy/ppyoloe_crn_l_300e_coco.tgz
|
||||
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
|
||||
tar xvf ppyoloe_crn_l_300e_coco.tgz
|
||||
|
||||
|
||||
# CPU inference
|
||||
./infer_ppyoloe_demo ./ppyoloe_crn_l_300e_coco 000000014439.jpg 0
|
||||
# GPU inference
|
||||
./infer_ppyoloe_demo ./ppyoloe_crn_l_300e_coco 000000014439.jpg 1
|
||||
```
|
||||
|
||||
The above command works for Linux or MacOS. For SDK use-pattern in Windows, refer to:
|
||||
- [How to use FastDeploy C++ SDK in Windows](../../../../../docs/en/faq/use_sdk_on_windows.md)
|
||||
|
||||
## PaddleDetection C Interface
|
||||
|
||||
### RuntimeOption
|
||||
|
||||
```c
|
||||
FD_C_RuntimeOptionWrapper* FD_C_CreateRuntimeOptionWrapper()
|
||||
```
|
||||
|
||||
> Create a RuntimeOption object, and return a pointer to manipulate it.
|
||||
>
|
||||
> **Return**
|
||||
> * **fd_c_runtime_option_wrapper**(FD_C_RuntimeOptionWrapper*): Pointer to manipulate RuntimeOption object.
|
||||
|
||||
|
||||
```c
|
||||
void FD_C_RuntimeOptionWrapperUseCpu(
|
||||
FD_C_RuntimeOptionWrapper* fd_c_runtime_option_wrapper)
|
||||
```
|
||||
|
||||
> Enable Cpu inference.
|
||||
>
|
||||
> **Params**
|
||||
>
|
||||
> * **fd_c_runtime_option_wrapper**(FD_C_RuntimeOptionWrapper*): Pointer to manipulate RuntimeOption object.
|
||||
|
||||
```c
|
||||
void FD_C_RuntimeOptionWrapperUseGpu(
|
||||
FD_C_RuntimeOptionWrapper* fd_c_runtime_option_wrapper,
|
||||
int gpu_id)
|
||||
```
|
||||
> Enable Gpu inference.
|
||||
>
|
||||
> **Params**
|
||||
>
|
||||
> * **fd_c_runtime_option_wrapper**(FD_C_RuntimeOptionWrapper*): Pointer to manipulate RuntimeOption object.
|
||||
> * **gpu_id**(int): gpu id
|
||||
|
||||
|
||||
### Model
|
||||
|
||||
```c
|
||||
|
||||
FD_C_PPYOLOEWrapper* FD_C_CreatesPPYOLOEWrapper(
|
||||
const char* model_file, const char* params_file, const char* config_file,
|
||||
FD_C_RuntimeOptionWrapper* runtime_option,
|
||||
const FD_C_ModelFormat model_format)
|
||||
|
||||
```
|
||||
|
||||
> Create a PPYOLOE model object, and return a pointer to manipulate it.
|
||||
>
|
||||
> **Params**
|
||||
>
|
||||
> * **model_file**(const char*): Model file path
|
||||
> * **params_file**(const char*): Parameter file path
|
||||
> * **config_file**(const char*): Configuration file path, which is the deployment yaml file exported by PaddleDetection
|
||||
> * **runtime_option**(FD_C_RuntimeOptionWrapper*): Backend inference configuration. None by default, which is the default configuration
|
||||
> * **model_format**(FD_C_ModelFormat): Model format. Paddle format by default
|
||||
>
|
||||
> **Return**
|
||||
> * **fd_c_ppyoloe_wrapper**(FD_C_PPYOLOEWrapper*): Pointer to manipulate PPYOLOE object.
|
||||
|
||||
|
||||
#### Read and write image
|
||||
|
||||
```c
|
||||
FD_C_Mat FD_C_Imread(const char* imgpath)
|
||||
```
|
||||
|
||||
> Read an image, and return a pointer to cv::Mat.
|
||||
>
|
||||
> **Params**
|
||||
>
|
||||
> * **imgpath**(const char*): image path
|
||||
>
|
||||
> **Return**
|
||||
>
|
||||
> * **imgmat**(FD_C_Mat): pointer to cv::Mat object which holds the image.
|
||||
|
||||
|
||||
```c
|
||||
FD_C_Bool FD_C_Imwrite(const char* savepath, FD_C_Mat img);
|
||||
```
|
||||
|
||||
> Write image to a file.
|
||||
>
|
||||
> **Params**
|
||||
>
|
||||
> * **savepath**(const char*): save path
|
||||
> * **img**(FD_C_Mat): pointer to cv::Mat object
|
||||
>
|
||||
> **Return**
|
||||
>
|
||||
> * **result**(FD_C_Bool): bool to indicate success or failure
|
||||
|
||||
|
||||
#### Prediction
|
||||
|
||||
```c
|
||||
FD_C_Bool FD_C_PPYOLOEWrapperPredict(
|
||||
__fd_take FD_C_PPYOLOEWrapper* fd_c_ppyoloe_wrapper, FD_C_Mat img,
|
||||
FD_C_DetectionResultWrapper* fd_c_detection_result_wrapper)
|
||||
```
|
||||
>
|
||||
> Predict an image, and generate detection result.
|
||||
>
|
||||
> **Params**
|
||||
> * **fd_c_ppyoloe_wrapper**(FD_C_PPYOLOEWrapper*): pointer to manipulate PPYOLOE object
|
||||
> * **img**(FD_C_Mat): pointer to cv::Mat object, which can be obained by FD_C_Imread interface
|
||||
> * **result**(FD_C_DetectionResultWrapper*): Detection result, including detection box and confidence of each box. Refer to [Vision Model Prediction Result](../../../../../docs/api/vision_results/) for DetectionResult
|
||||
|
||||
|
||||
#### Result
|
||||
|
||||
```c
|
||||
FD_C_DetectionResultWrapper* FD_C_CreateDetectionResultWrapper();
|
||||
```
|
||||
>
|
||||
> Create a DetectionResult object to keep the detection result,return a pointer to manipulate it.
|
||||
>
|
||||
> **Return**
|
||||
> * **fd_c_detection_result_wrapper**(FD_C_DetectionResultWrapper*): pointer to manipulate DetectionResult object
|
||||
|
||||
|
||||
|
||||
```c
|
||||
FD_C_DetectionResult* FD_C_DetectionResultWrapperGetData(
|
||||
FD_C_DetectionResultWrapper* fd_c_detection_result_wrapper)
|
||||
```
|
||||
>
|
||||
> Get the C DetectionResult structure from FD_C_DetectionResultWrapper, which can access the fileds directly.
|
||||
>
|
||||
> **Params**
|
||||
> * **fd_c_detection_result_wrapper**(FD_C_DetectionResultWrapper*): pointer to manipulate DetectionResult object
|
||||
>
|
||||
> **Return**
|
||||
> * **fd_c_detection_result**(FD_C_DetectionResult*): pointer to C DetectionResult structure
|
||||
|
||||
|
||||
|
||||
```c
|
||||
FD_C_Mat FD_C_VisDetection(FD_C_Mat im, FD_C_DetectionResult* fd_detection_result,
|
||||
float score_threshold, int line_size, float font_size);
|
||||
```
|
||||
>
|
||||
> Visualize detection results and return visualization image.
|
||||
>
|
||||
> **Params**
|
||||
> * **im**(FD_C_Mat): pointer to input image
|
||||
> * **fd_detection_result**(FD_C_DetectionResult*): pointer to C DetectionResult structure
|
||||
> * **score_threshold**(float): score threshold
|
||||
> * **line_size**(int): line size
|
||||
> * **font_size**(float): font size
|
||||
>
|
||||
> **Return**
|
||||
> * **vis_im**(FD_C_Mat): pointer to visualization image.
|
||||
|
||||
|
||||
- [Model Description](../../)
|
||||
- [Python Deployment](../python)
|
||||
- [Vision Model prediction results](../../../../../docs/api/vision_results/)
|
||||
- [How to switch the model inference backend engine](../../../../../docs/en/faq/how_to_change_backend.md)
|
204
examples/vision/detection/paddledetection/c/README_CN.md
Normal file
204
examples/vision/detection/paddledetection/c/README_CN.md
Normal file
@@ -0,0 +1,204 @@
|
||||
[English](README.md) | 简体中文
|
||||
# PaddleDetection C 部署示例
|
||||
|
||||
本目录下提供`infer_xxx.c`来调用C API快速完成PaddleDetection模型PPYOLOE在CPU/GPU上部署的示例。
|
||||
|
||||
在部署前,需确认以下两个步骤
|
||||
|
||||
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
||||
- 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
||||
|
||||
以Linux上推理为例,在本目录执行如下命令即可完成编译测试,支持此模型需保证FastDeploy版本1.0.4以上(x.x.x>=1.0.4)
|
||||
|
||||
```bash
|
||||
以ppyoloe为例进行推理部署
|
||||
|
||||
mkdir build
|
||||
cd build
|
||||
# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用
|
||||
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
|
||||
tar xvf fastdeploy-linux-x64-x.x.x.tgz
|
||||
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
|
||||
make -j
|
||||
|
||||
# 下载PPYOLOE模型文件和测试图片
|
||||
wget https://bj.bcebos.com/paddlehub/fastdeploy/ppyoloe_crn_l_300e_coco.tgz
|
||||
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
|
||||
tar xvf ppyoloe_crn_l_300e_coco.tgz
|
||||
|
||||
|
||||
# CPU推理
|
||||
./infer_ppyoloe_demo ./ppyoloe_crn_l_300e_coco 000000014439.jpg 0
|
||||
# GPU推理
|
||||
./infer_ppyoloe_demo ./ppyoloe_crn_l_300e_coco 000000014439.jpg 1
|
||||
```
|
||||
|
||||
以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考:
|
||||
- [如何在Windows中使用FastDeploy C++ SDK](../../../../../docs/cn/faq/use_sdk_on_windows.md)
|
||||
|
||||
如果用户使用华为昇腾NPU部署, 请参考以下方式在部署前初始化部署环境:
|
||||
- [如何使用华为昇腾NPU部署](../../../../../docs/cn/faq/use_sdk_on_ascend.md)
|
||||
|
||||
## PaddleDetection C API接口
|
||||
|
||||
### 配置
|
||||
|
||||
```c
|
||||
FD_C_RuntimeOptionWrapper* FD_C_CreateRuntimeOptionWrapper()
|
||||
```
|
||||
|
||||
> 创建一个RuntimeOption的配置对象,并且返回操作它的指针。
|
||||
>
|
||||
> **返回**
|
||||
>
|
||||
> * **fd_c_runtime_option_wrapper**(FD_C_RuntimeOptionWrapper*): 指向RuntimeOption对象的指针
|
||||
|
||||
|
||||
```c
|
||||
void FD_C_RuntimeOptionWrapperUseCpu(
|
||||
FD_C_RuntimeOptionWrapper* fd_c_runtime_option_wrapper)
|
||||
```
|
||||
|
||||
> 开启CPU推理
|
||||
>
|
||||
> **参数**
|
||||
>
|
||||
> * **fd_c_runtime_option_wrapper**(FD_C_RuntimeOptionWrapper*): 指向RuntimeOption对象的指针
|
||||
|
||||
```c
|
||||
void FD_C_RuntimeOptionWrapperUseGpu(
|
||||
FD_C_RuntimeOptionWrapper* fd_c_runtime_option_wrapper,
|
||||
int gpu_id)
|
||||
```
|
||||
> 开启GPU推理
|
||||
>
|
||||
> **参数**
|
||||
>
|
||||
> * **fd_c_runtime_option_wrapper**(FD_C_RuntimeOptionWrapper*): 指向RuntimeOption对象的指针
|
||||
> * **gpu_id**(int): 显卡号
|
||||
|
||||
|
||||
### 模型
|
||||
|
||||
```c
|
||||
|
||||
FD_C_PPYOLOEWrapper* FD_C_CreatesPPYOLOEWrapper(
|
||||
const char* model_file, const char* params_file, const char* config_file,
|
||||
FD_C_RuntimeOptionWrapper* runtime_option,
|
||||
const FD_C_ModelFormat model_format)
|
||||
|
||||
```
|
||||
|
||||
> 创建一个PPYOLOE的模型,并且返回操作它的指针。
|
||||
>
|
||||
> **参数**
|
||||
>
|
||||
> * **model_file**(const char*): 模型文件路径
|
||||
> * **params_file**(const char*): 参数文件路径
|
||||
> * **config_file**(const char*): 配置文件路径,即PaddleDetection导出的部署yaml文件
|
||||
> * **runtime_option**(FD_C_RuntimeOptionWrapper*): 指向RuntimeOption的指针,表示后端推理配置
|
||||
> * **model_format**(FD_C_ModelFormat): 模型格式
|
||||
>
|
||||
> **返回**
|
||||
> * **fd_c_ppyoloe_wrapper**(FD_C_PPYOLOEWrapper*): 指向PPYOLOE模型对象的指针
|
||||
|
||||
|
||||
#### 读写图像
|
||||
|
||||
```c
|
||||
FD_C_Mat FD_C_Imread(const char* imgpath)
|
||||
```
|
||||
|
||||
> 读取一个图像,并且返回cv::Mat的指针。
|
||||
>
|
||||
> **参数**
|
||||
>
|
||||
> * **imgpath**(const char*): 图像文件路径
|
||||
>
|
||||
> **返回**
|
||||
>
|
||||
> * **imgmat**(FD_C_Mat): 指向图像数据cv::Mat的指针。
|
||||
|
||||
|
||||
```c
|
||||
FD_C_Bool FD_C_Imwrite(const char* savepath, FD_C_Mat img);
|
||||
```
|
||||
|
||||
> 将图像写入文件中。
|
||||
>
|
||||
> **参数**
|
||||
>
|
||||
> * **savepath**(const char*): 保存图像的路径
|
||||
> * **img**(FD_C_Mat): 指向图像数据的指针
|
||||
>
|
||||
> **返回**
|
||||
>
|
||||
> * **result**(FD_C_Bool): 表示操作是否成功
|
||||
|
||||
|
||||
#### Predict函数
|
||||
|
||||
```c
|
||||
FD_C_Bool FD_C_PPYOLOEWrapperPredict(
|
||||
__fd_take FD_C_PPYOLOEWrapper* fd_c_ppyoloe_wrapper, FD_C_Mat img,
|
||||
FD_C_DetectionResultWrapper* fd_c_detection_result_wrapper)
|
||||
```
|
||||
>
|
||||
> 模型预测接口,输入图像直接并生成检测结果。
|
||||
>
|
||||
> **参数**
|
||||
> * **fd_c_ppyoloe_wrapper**(FD_C_PPYOLOEWrapper*): 指向PPYOLOE模型的指针
|
||||
> * **img**(FD_C_Mat): 输入图像的指针,指向cv::Mat对象,可以调用FD_C_Imread读取图像获取
|
||||
> * **result**(FD_C_DetectionResultWrapper*): 指向检测结果的指针,检测结果包括检测框,各个框的置信度, DetectionResult说明参考[视觉模型预测结果](../../../../../docs/api/vision_results/)
|
||||
|
||||
|
||||
#### Predict结果
|
||||
|
||||
```c
|
||||
FD_C_DetectionResultWrapper* FD_C_CreateDetectionResultWrapper();
|
||||
```
|
||||
>
|
||||
> 创建一个DetectionResult对象,用来保存推理的结果,并返回所创建的DetectionResult对象的指针。
|
||||
>
|
||||
> **返回**
|
||||
> * **fd_c_detection_result_wrapper**(FD_C_DetectionResultWrapper*): 指向DetectionResult对象的指针
|
||||
|
||||
|
||||
|
||||
```c
|
||||
FD_C_DetectionResult* FD_C_DetectionResultWrapperGetData(
|
||||
FD_C_DetectionResultWrapper* fd_c_detection_result_wrapper)
|
||||
```
|
||||
>
|
||||
> 从DetectionResult对象中提取纯C结构的DetectionResult结果,并返回结构指针,通过该指针可直接返回结构中的字段。
|
||||
>
|
||||
> **参数**
|
||||
> * **fd_c_detection_result_wrapper**(FD_C_DetectionResultWrapper*): 指向DetectionResult对象的指针
|
||||
>
|
||||
> **返回**
|
||||
> * **fd_c_detection_result**(FD_C_DetectionResult*): 指向纯C结构的DetectionResult的指针
|
||||
|
||||
|
||||
|
||||
```c
|
||||
FD_C_Mat FD_C_VisDetection(FD_C_Mat im, FD_C_DetectionResult* fd_detection_result,
|
||||
float score_threshold, int line_size, float font_size);
|
||||
```
|
||||
>
|
||||
> 对检测结果进行可视化,返回可视化的图像。
|
||||
>
|
||||
> **参数**
|
||||
> * **im**(FD_C_Mat): 指向输入图像的指针
|
||||
> * **fd_detection_result**(FD_C_DetectionResult*): 指向纯C结构DetectionResult的指针
|
||||
> * **score_threshold**(float): 检测阈值
|
||||
> * **line_size**(int): 检测框线大小
|
||||
> * **font_size**(float): 检测框字体大小
|
||||
>
|
||||
> **返回**
|
||||
> * **vis_im**(FD_C_Mat): 指向可视化图像的指针
|
||||
|
||||
|
||||
- [模型介绍](../../)
|
||||
- [Python部署](../python)
|
||||
- [视觉模型预测结果](../../../../../docs/api/vision_results/)
|
||||
- [如何切换模型推理后端引擎](../../../../../docs/cn/faq/how_to_change_backend.md)
|
124
examples/vision/detection/paddledetection/c/infer_ppyoloe.c
Normal file
124
examples/vision/detection/paddledetection/c/infer_ppyoloe.c
Normal file
@@ -0,0 +1,124 @@
|
||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
#include "fastdeploy_capi/vision.h"
|
||||
|
||||
#ifdef WIN32
|
||||
const char sep = '\\';
|
||||
#else
|
||||
const char sep = '/';
|
||||
#endif
|
||||
|
||||
void CpuInfer(const char* model_dir, const char* image_file) {
|
||||
char model_file[100];
|
||||
char params_file[100];
|
||||
char config_file[100];
|
||||
int max_size = 99;
|
||||
snprintf(model_file, max_size, "%s%c%s", model_dir, sep, "model.pdmodel");
|
||||
snprintf(params_file, max_size, "%s%c%s", model_dir, sep, "model.pdiparams");
|
||||
snprintf(config_file, max_size, "%s%c%s", model_dir, sep, "infer_cfg.yml");
|
||||
|
||||
FD_C_RuntimeOptionWrapper* option = FD_C_CreateRuntimeOptionWrapper();
|
||||
FD_C_RuntimeOptionWrapperUseCpu(option);
|
||||
|
||||
FD_C_PPYOLOEWrapper* model = FD_C_CreatesPPYOLOEWrapper(
|
||||
model_file, params_file, config_file, option, PADDLE);
|
||||
|
||||
FD_C_Mat im = FD_C_Imread(image_file);
|
||||
|
||||
FD_C_DetectionResultWrapper* result_wrapper =
|
||||
FD_C_CreateDetectionResultWrapper();
|
||||
|
||||
if (!FD_C_PPYOLOEWrapperPredict(model, im, result_wrapper)) {
|
||||
printf("Failed to predict.\n");
|
||||
return;
|
||||
}
|
||||
|
||||
FD_C_DetectionResult* result =
|
||||
FD_C_DetectionResultWrapperGetData(result_wrapper);
|
||||
FD_C_Mat vis_im = FD_C_VisDetection(im, result, 0.5, 1, 0.5);
|
||||
|
||||
FD_C_Imwrite("vis_result.jpg", vis_im);
|
||||
printf("Visualized result saved in ./vis_result.jpg\n");
|
||||
|
||||
FD_C_DestroyRuntimeOptionWrapper(option);
|
||||
FD_C_DestroyPPYOLOEWrapper(model);
|
||||
FD_C_DestroyDetectionResultWrapper(result_wrapper);
|
||||
FD_C_DestroyDetectionResult(result);
|
||||
FD_C_DestroyMat(im);
|
||||
FD_C_DestroyMat(vis_im);
|
||||
}
|
||||
|
||||
void GpuInfer(const char* model_dir, const char* image_file) {
|
||||
char model_file[100];
|
||||
char params_file[100];
|
||||
char config_file[100];
|
||||
int max_size = 99;
|
||||
snprintf(model_file, max_size, "%s%c%s", model_dir, sep, "model.pdmodel");
|
||||
snprintf(params_file, max_size, "%s%c%s", model_dir, sep, "model.pdiparams");
|
||||
snprintf(config_file, max_size, "%s%c%s", model_dir, sep, "infer_cfg.yml");
|
||||
|
||||
FD_C_RuntimeOptionWrapper* option = FD_C_CreateRuntimeOptionWrapper();
|
||||
FD_C_RuntimeOptionWrapperUseGpu(option, 0);
|
||||
|
||||
FD_C_PPYOLOEWrapper* model = FD_C_CreatesPPYOLOEWrapper(
|
||||
model_file, params_file, config_file, option, PADDLE);
|
||||
|
||||
FD_C_Mat im = FD_C_Imread(image_file);
|
||||
|
||||
FD_C_DetectionResultWrapper* result_wrapper =
|
||||
FD_C_CreateDetectionResultWrapper();
|
||||
|
||||
if (!FD_C_PPYOLOEWrapperPredict(model, im, result_wrapper)) {
|
||||
printf("Failed to predict.\n");
|
||||
return;
|
||||
}
|
||||
|
||||
FD_C_DetectionResult* result =
|
||||
FD_C_DetectionResultWrapperGetData(result_wrapper);
|
||||
FD_C_Mat vis_im = FD_C_VisDetection(im, result, 0.5, 1, 0.5);
|
||||
|
||||
FD_C_Imwrite("vis_result.jpg", vis_im);
|
||||
printf("Visualized result saved in ./vis_result.jpg\n");
|
||||
|
||||
FD_C_DestroyRuntimeOptionWrapper(option);
|
||||
FD_C_DestroyPPYOLOEWrapper(model);
|
||||
FD_C_DestroyDetectionResultWrapper(result_wrapper);
|
||||
FD_C_DestroyDetectionResult(result);
|
||||
FD_C_DestroyMat(im);
|
||||
FD_C_DestroyMat(vis_im);
|
||||
}
|
||||
|
||||
int main(int argc, char* argv[]) {
|
||||
if (argc < 4) {
|
||||
printf(
|
||||
"Usage: infer_demo path/to/model_dir path/to/image run_option, "
|
||||
"e.g ./infer_model ./ppyoloe_model_dir ./test.jpeg 0"
|
||||
"\n");
|
||||
printf(
|
||||
"The data type of run_option is int, 0: run with cpu; 1: run with gpu"
|
||||
"\n");
|
||||
return -1;
|
||||
}
|
||||
|
||||
if (atoi(argv[3]) == 0) {
|
||||
CpuInfer(argv[1], argv[2]);
|
||||
} else if (atoi(argv[3]) == 1) {
|
||||
GpuInfer(argv[1], argv[2]);
|
||||
}
|
||||
return 0;
|
||||
}
|
@@ -4,12 +4,14 @@
|
||||
|
||||
## 支持模型列表
|
||||
|
||||
目前FastDeploy使用RKNPU2支持如下PaddleDetection模型的部署:
|
||||
在RKNPU2上已经通过测试的PaddleDetection模型如下:
|
||||
|
||||
- Picodet
|
||||
- PPYOLOE
|
||||
- PPYOLOE(int8)
|
||||
- YOLOV8
|
||||
|
||||
如果你需要查看详细的速度信息,请查看[RKNPU2模型速度一览表](../../../../../docs/cn/faq/rknpu2/rknpu2.md)
|
||||
|
||||
## 准备PaddleDetection部署模型以及转换模型
|
||||
|
||||
RKNPU部署模型前需要将Paddle模型转换成RKNN模型,具体步骤如下:
|
||||
@@ -20,8 +22,79 @@ RKNPU部署模型前需要将Paddle模型转换成RKNN模型,具体步骤如
|
||||
|
||||
## 模型转换example
|
||||
|
||||
- [Picodet RKNPU2模型转换文档](./picodet.md)
|
||||
- [YOLOv8 RKNPU2模型转换文档](./yolov8.md)
|
||||
### 注意点
|
||||
|
||||
PPDetection模型在RKNPU2上部署时要注意以下几点:
|
||||
|
||||
* 模型导出需要包含Decode
|
||||
* 由于RKNPU2不支持NMS,因此输出节点必须裁剪至NMS之前
|
||||
* 由于RKNPU2 Div算子的限制,模型的输出节点需要裁剪至Div算子之前
|
||||
|
||||
### Paddle模型转换为ONNX模型
|
||||
|
||||
由于Rockchip提供的rknn-toolkit2工具暂时不支持Paddle模型直接导出为RKNN模型,因此需要先将Paddle模型导出为ONNX模型,再将ONNX模型转为RKNN模型。
|
||||
|
||||
```bash
|
||||
# 以Picodet为例
|
||||
# 下载Paddle静态图模型并解压
|
||||
wget https://paddledet.bj.bcebos.com/deploy/Inference/picodet_s_416_coco_lcnet.tar
|
||||
tar xvf picodet_s_416_coco_lcnet.tar
|
||||
|
||||
# 静态图转ONNX模型,注意,这里的save_file请和压缩包名对齐
|
||||
paddle2onnx --model_dir picodet_s_416_coco_lcnet \
|
||||
--model_filename model.pdmodel \
|
||||
--params_filename model.pdiparams \
|
||||
--save_file picodet_s_416_coco_lcnet/picodet_s_416_coco_lcnet.onnx \
|
||||
--enable_dev_version True
|
||||
|
||||
# 固定shape
|
||||
python -m paddle2onnx.optimize --input_model picodet_s_416_coco_lcnet/picodet_s_416_coco_lcnet.onnx \
|
||||
--output_model picodet_s_416_coco_lcnet/picodet_s_416_coco_lcnet.onnx \
|
||||
--input_shape_dict "{'image':[1,3,416,416]}"
|
||||
```
|
||||
|
||||
### 编写yaml文件
|
||||
|
||||
**修改normalize参数**
|
||||
|
||||
如果你需要在NPU上执行normalize操作,请根据你的模型配置normalize参数,例如:
|
||||
|
||||
```yaml
|
||||
mean:
|
||||
-
|
||||
- 123.675
|
||||
- 116.28
|
||||
- 103.53
|
||||
std:
|
||||
-
|
||||
- 58.395
|
||||
- 57.12
|
||||
- 57.375
|
||||
```
|
||||
|
||||
**修改outputs参数**
|
||||
由于Paddle2ONNX版本的不同,转换模型的输出节点名称也有所不同,请使用[Netron](https://netron.app)对模型进行可视化,并找到以下蓝色方框标记的NonMaxSuppression节点,红色方框的节点名称即为目标名称。
|
||||
|
||||
例如,使用Netron可视化后,得到以下图片:
|
||||
|
||||

|
||||
|
||||
找到蓝色方框标记的NonMaxSuppression节点,可以看到红色方框标记的两个节点名称为p2o.Div.79和p2o.Concat.9,因此需要修改outputs参数,修改后如下:
|
||||
|
||||
```yaml
|
||||
outputs_nodes:
|
||||
- 'p2o.Mul.179'
|
||||
- 'p2o.Concat.9'
|
||||
```
|
||||
|
||||
### ONNX模型转RKNN模型
|
||||
|
||||
为了方便大家使用,我们提供了python脚本,通过我们预配置的config文件,你将能够快速地转换ONNX模型到RKNN模型
|
||||
|
||||
```bash
|
||||
python tools/rknpu2/export.py --config_path tools/rknpu2/config/picodet_s_416_coco_lcnet_unquantized.yaml \
|
||||
--target_platform rk3588
|
||||
```
|
||||
|
||||
|
||||
## 其他链接
|
||||
|
@@ -1,68 +0,0 @@
|
||||
# Picodet RKNPU2模型转换文档
|
||||
|
||||
以下步骤均在Ubuntu电脑上完成,请参考配置文档完成转换模型环境配置。下面以Picodet-s为例子,教大家如何转换PaddleDetection模型到RKNN模型。
|
||||
|
||||
|
||||
### 导出ONNX模型
|
||||
|
||||
```bash
|
||||
# 下载Paddle静态图模型并解压
|
||||
wget https://paddledet.bj.bcebos.com/deploy/Inference/picodet_s_416_coco_lcnet.tar
|
||||
tar xvf picodet_s_416_coco_lcnet.tar
|
||||
|
||||
# 静态图转ONNX模型,注意,这里的save_file请和压缩包名对齐
|
||||
paddle2onnx --model_dir picodet_s_416_coco_lcnet \
|
||||
--model_filename model.pdmodel \
|
||||
--params_filename model.pdiparams \
|
||||
--save_file picodet_s_416_coco_lcnet/picodet_s_416_coco_lcnet.onnx \
|
||||
--enable_dev_version True
|
||||
|
||||
# 固定shape
|
||||
python -m paddle2onnx.optimize --input_model picodet_s_416_coco_lcnet/picodet_s_416_coco_lcnet.onnx \
|
||||
--output_model picodet_s_416_coco_lcnet/picodet_s_416_coco_lcnet.onnx \
|
||||
--input_shape_dict "{'image':[1,3,416,416]}"
|
||||
```
|
||||
|
||||
### 编写模型导出配置文件
|
||||
|
||||
以转化RK3568的RKNN模型为例子,我们需要编辑tools/rknpu2/config/picodet_s_416_coco_lcnet_unquantized.yaml,来转换ONNX模型到RKNN模型。
|
||||
|
||||
**修改normalize参数**
|
||||
|
||||
如果你需要在NPU上执行normalize操作,请根据你的模型配置normalize参数,例如:
|
||||
|
||||
```yaml
|
||||
mean:
|
||||
-
|
||||
- 127.5
|
||||
- 127.5
|
||||
- 127.5
|
||||
std:
|
||||
-
|
||||
- 127.5
|
||||
- 127.5
|
||||
- 127.5
|
||||
```
|
||||
|
||||
**修改outputs参数**
|
||||
由于Paddle2ONNX版本的不同,转换模型的输出节点名称也有所不同,请使用[Netron](https://netron.app)对模型进行可视化,并找到以下蓝色方框标记的NonMaxSuppression节点,红色方框的节点名称即为目标名称。
|
||||
|
||||
例如,使用Netron可视化后,得到以下图片:
|
||||
|
||||

|
||||
|
||||
找到蓝色方框标记的NonMaxSuppression节点,可以看到红色方框标记的两个节点名称为p2o.Div.79和p2o.Concat.9,因此需要修改outputs参数,修改后如下:
|
||||
|
||||
```yaml
|
||||
outputs_nodes: [ 'p2o.Div.79','p2o.Concat.9' ]
|
||||
```
|
||||
|
||||
### 转换模型
|
||||
|
||||
```bash
|
||||
|
||||
# ONNX模型转RKNN模型
|
||||
# 转换模型,模型将生成在picodet_s_320_coco_lcnet_non_postprocess目录下
|
||||
python tools/rknpu2/export.py --config_path tools/rknpu2/config/picodet_s_416_coco_lcnet_unquantized.yaml \
|
||||
--target_platform rk3588
|
||||
```
|
@@ -45,15 +45,16 @@ if __name__ == "__main__":
|
||||
|
||||
# 配置runtime,加载模型
|
||||
runtime_option = fd.RuntimeOption()
|
||||
runtime_option.use_cpu()
|
||||
runtime_option.use_rknpu2()
|
||||
|
||||
model = fd.vision.detection.PPYOLOE(
|
||||
model_file,
|
||||
params_file,
|
||||
config_file,
|
||||
runtime_option=runtime_option,
|
||||
model_format=fd.ModelFormat.ONNX)
|
||||
|
||||
model_format=fd.ModelFormat.RKNN)
|
||||
model.preprocessor.disable_normalize()
|
||||
model.preprocessor.disable_permute()
|
||||
model.postprocessor.apply_decode_and_nms()
|
||||
|
||||
# 预测图片分割结果
|
||||
|
@@ -1,50 +0,0 @@
|
||||
# YOLOv8 RKNPU2模型转换文档
|
||||
|
||||
以下步骤均在Ubuntu电脑上完成,请参考配置文档完成转换模型环境配置。下面以yolov8为例子,教大家如何转换PaddleDetection模型到RKNN模型。
|
||||
|
||||
|
||||
### 导出ONNX模型
|
||||
|
||||
```bash
|
||||
# 下载Paddle静态图模型并解压
|
||||
|
||||
# 静态图转ONNX模型,注意,这里的save_file请和压缩包名对齐
|
||||
paddle2onnx --model_dir yolov8_n_500e_coco \
|
||||
--model_filename model.pdmodel \
|
||||
--params_filename model.pdiparams \
|
||||
--save_file yolov8_n_500e_coco/yolov8_n_500e_coco.onnx \
|
||||
--enable_dev_version True
|
||||
|
||||
# 固定shape
|
||||
python -m paddle2onnx.optimize --input_model yolov8_n_500e_coco/yolov8_n_500e_coco.onnx \
|
||||
--output_model yolov8_n_500e_coco/yolov8_n_500e_coco.onnx \
|
||||
--input_shape_dict "{'image':[1,3,640,640],'scale_factor':[1,2]}"
|
||||
```
|
||||
|
||||
### 编写模型导出配置文件
|
||||
**修改outputs参数**
|
||||
由于Paddle2ONNX版本的不同,转换模型的输出节点名称也有所不同,请使用[Netron](https://netron.app)对模型进行可视化,并找到以下蓝色方框标记的NonMaxSuppression节点,红色方框的节点名称即为目标名称。
|
||||
|
||||
例如,使用Netron可视化后,得到以下图片:
|
||||
|
||||

|
||||
|
||||
找到蓝色方框标记的NonMaxSuppression节点,可以看到红色方框标记的两个节点名称为p2o.Div.1和p2o.Concat.9,因此需要修改outputs参数,修改后如下:
|
||||
|
||||
```yaml
|
||||
outputs_nodes: [ 'p2o.Div.1','p2o.Concat.49' ]
|
||||
```
|
||||
|
||||
### 转换模型
|
||||
|
||||
```bash
|
||||
|
||||
# ONNX模型转RKNN模型
|
||||
# 转换非全量化模型,模型将生成在yolov8_n目录下
|
||||
python tools/rknpu2/export.py --config_path tools/rknpu2/config/yolov8_n_unquantized.yaml \
|
||||
--target_platform rk3588
|
||||
|
||||
# 转换全量化模型,模型将生成在yolov8_n目录下
|
||||
python tools/rknpu2/export.py --config_path tools/rknpu2/config/yolov8_n_quantized.yaml \
|
||||
--target_platform rk3588
|
||||
```
|
@@ -13,8 +13,8 @@
|
||||
// limitations under the License.
|
||||
|
||||
#include <sys/types.h>
|
||||
#if defined(__linux__) || defined(__ANDROID__)
|
||||
#include <unistd.h>
|
||||
#ifdef __linux__
|
||||
#include <sys/resource.h>
|
||||
#endif
|
||||
#include <cmath>
|
||||
|
||||
@@ -23,8 +23,7 @@
|
||||
namespace fastdeploy {
|
||||
namespace benchmark {
|
||||
|
||||
// Remove the ch characters at both ends of str
|
||||
static std::string strip(const std::string& str, char ch = ' ') {
|
||||
std::string Strip(const std::string& str, char ch) {
|
||||
int i = 0;
|
||||
while (str[i] == ch) {
|
||||
i++;
|
||||
@@ -36,9 +35,8 @@ static std::string strip(const std::string& str, char ch = ' ') {
|
||||
return str.substr(i, j + 1 - i);
|
||||
}
|
||||
|
||||
// Split string
|
||||
static void split(const std::string& s, std::vector<std::string>& tokens,
|
||||
char delim = ' ') {
|
||||
void Split(const std::string& s, std::vector<std::string>& tokens,
|
||||
char delim) {
|
||||
tokens.clear();
|
||||
size_t lastPos = s.find_first_not_of(delim, 0);
|
||||
size_t pos = s.find(delim, lastPos);
|
||||
@@ -54,7 +52,7 @@ ResourceUsageMonitor::ResourceUsageMonitor(int sampling_interval_ms, int gpu_id)
|
||||
: is_supported_(false),
|
||||
sampling_interval_(sampling_interval_ms),
|
||||
gpu_id_(gpu_id) {
|
||||
#if defined(__linux__) || defined(__ANDROID__)
|
||||
#ifdef __linux__
|
||||
is_supported_ = true;
|
||||
#else
|
||||
is_supported_ = false;
|
||||
@@ -67,7 +65,9 @@ ResourceUsageMonitor::ResourceUsageMonitor(int sampling_interval_ms, int gpu_id)
|
||||
}
|
||||
|
||||
void ResourceUsageMonitor::Start() {
|
||||
if (!is_supported_) return;
|
||||
if (!is_supported_) {
|
||||
return;
|
||||
}
|
||||
if (check_memory_thd_ != nullptr) {
|
||||
FDINFO << "Memory monitoring has already started!" << std::endl;
|
||||
return;
|
||||
@@ -77,20 +77,24 @@ void ResourceUsageMonitor::Start() {
|
||||
check_memory_thd_.reset(new std::thread(([this]() {
|
||||
// Note we retrieve the memory usage at the very beginning of the thread.
|
||||
while (true) {
|
||||
std::string cpu_mem_info = GetCurrentCpuMemoryInfo();
|
||||
// get max_cpu_mem
|
||||
std::vector<std::string> cpu_tokens;
|
||||
split(cpu_mem_info, cpu_tokens, ' ');
|
||||
max_cpu_mem_ = std::max(max_cpu_mem_, stof(cpu_tokens[3]) / 1024);
|
||||
#ifdef __linux__
|
||||
rusage res;
|
||||
if (getrusage(RUSAGE_SELF, &res) == 0) {
|
||||
max_cpu_mem_ =
|
||||
std::max(max_cpu_mem_, static_cast<float>(res.ru_maxrss / 1024.0));
|
||||
}
|
||||
#endif
|
||||
#if defined(WITH_GPU)
|
||||
std::string gpu_mem_info = GetCurrentGpuMemoryInfo(gpu_id_);
|
||||
// get max_gpu_mem and max_gpu_util
|
||||
std::vector<std::string> gpu_tokens;
|
||||
split(gpu_mem_info, gpu_tokens, ',');
|
||||
Split(gpu_mem_info, gpu_tokens, ',');
|
||||
max_gpu_mem_ = std::max(max_gpu_mem_, stof(gpu_tokens[6]));
|
||||
max_gpu_util_ = std::max(max_gpu_util_, stof(gpu_tokens[7]));
|
||||
#endif
|
||||
if (stop_signal_) break;
|
||||
if (stop_signal_) {
|
||||
break;
|
||||
}
|
||||
std::this_thread::sleep_for(
|
||||
std::chrono::milliseconds(sampling_interval_));
|
||||
}
|
||||
@@ -121,26 +125,6 @@ void ResourceUsageMonitor::StopInternal() {
|
||||
check_memory_thd_.reset(nullptr);
|
||||
}
|
||||
|
||||
std::string ResourceUsageMonitor::GetCurrentCpuMemoryInfo() {
|
||||
std::string result = "";
|
||||
#if defined(__linux__) || defined(__ANDROID__)
|
||||
int iPid = static_cast<int>(getpid());
|
||||
std::string command = "pmap -x " + std::to_string(iPid) + " | grep total";
|
||||
FILE* pp = popen(command.data(), "r");
|
||||
if (!pp) return "";
|
||||
char tmp[1024];
|
||||
|
||||
while (fgets(tmp, sizeof(tmp), pp) != NULL) {
|
||||
result += tmp;
|
||||
}
|
||||
pclose(pp);
|
||||
#else
|
||||
FDASSERT(false,
|
||||
"Currently collect cpu memory info only supports Linux and ANDROID.")
|
||||
#endif
|
||||
return result;
|
||||
}
|
||||
|
||||
std::string ResourceUsageMonitor::GetCurrentGpuMemoryInfo(int device_id) {
|
||||
std::string result = "";
|
||||
#if defined(__linux__) && defined(WITH_GPU)
|
||||
|
@@ -65,20 +65,26 @@ class FASTDEPLOY_DECL ResourceUsageMonitor {
|
||||
|
||||
private:
|
||||
void StopInternal();
|
||||
// Get current cpu memory info
|
||||
std::string GetCurrentCpuMemoryInfo();
|
||||
// Get current gpu memory info
|
||||
std::string GetCurrentGpuMemoryInfo(int device_id);
|
||||
|
||||
bool is_supported_ = false;
|
||||
bool stop_signal_ = false;
|
||||
const int sampling_interval_;
|
||||
float max_cpu_mem_ = 0.0f;
|
||||
float max_gpu_mem_ = 0.0f;
|
||||
float max_cpu_mem_ = 0.0f; // MB
|
||||
float max_gpu_mem_ = 0.0f; // MB
|
||||
float max_gpu_util_ = 0.0f;
|
||||
const int gpu_id_ = 0;
|
||||
std::unique_ptr<std::thread> check_memory_thd_ = nullptr;
|
||||
};
|
||||
|
||||
// Remove the ch characters at both ends of str
|
||||
FASTDEPLOY_DECL std::string Strip(const std::string& str, char ch = ' ');
|
||||
|
||||
// Split string
|
||||
FASTDEPLOY_DECL void Split(const std::string& s,
|
||||
std::vector<std::string>& tokens,
|
||||
char delim = ' ');
|
||||
|
||||
} // namespace benchmark
|
||||
} // namespace fastdeploy
|
||||
|
@@ -15,9 +15,9 @@
|
||||
#include <dlpack/dlpack.h>
|
||||
|
||||
#include "fastdeploy/core/fd_type.h"
|
||||
#include "fastdeploy/utils/utils.h"
|
||||
#include "fastdeploy/fastdeploy_model.h"
|
||||
#include "fastdeploy/pybind/main.h"
|
||||
#include "fastdeploy/utils/utils.h"
|
||||
|
||||
namespace fastdeploy {
|
||||
|
||||
@@ -68,8 +68,8 @@ DLDataType FDToDlpackType(FDDataType fd_dtype) {
|
||||
break;
|
||||
|
||||
default:
|
||||
FDASSERT(false,
|
||||
"Convert to DlPack, FDType \"%s\" is not supported.", Str(fd_dtype).c_str());
|
||||
FDASSERT(false, "Convert to DlPack, FDType \"%s\" is not supported.",
|
||||
Str(fd_dtype).c_str());
|
||||
}
|
||||
|
||||
dl_dtype.code = dl_code;
|
||||
@@ -77,10 +77,8 @@ DLDataType FDToDlpackType(FDDataType fd_dtype) {
|
||||
return dl_dtype;
|
||||
}
|
||||
|
||||
FDDataType
|
||||
DlpackToFDType(const DLDataType& data_type) {
|
||||
FDASSERT(data_type.lanes == 1,
|
||||
"FDTensor does not support dlpack lanes != 1")
|
||||
FDDataType DlpackToFDType(const DLDataType& data_type) {
|
||||
FDASSERT(data_type.lanes == 1, "FDTensor does not support dlpack lanes != 1")
|
||||
|
||||
if (data_type.code == DLDataTypeCode::kDLFloat) {
|
||||
if (data_type.bits == 16) {
|
||||
@@ -162,8 +160,8 @@ pybind11::capsule FDTensorToDLPack(FDTensor& fd_tensor) {
|
||||
dlpack_tensor->dl_tensor.device.device_type = DLDeviceType::kDLCPU;
|
||||
}
|
||||
|
||||
return pybind11::capsule(
|
||||
static_cast<void*>(dlpack_tensor), "dltensor", &DeleteUnusedDltensor);
|
||||
return pybind11::capsule(static_cast<void*>(dlpack_tensor), "dltensor",
|
||||
&DeleteUnusedDltensor);
|
||||
}
|
||||
|
||||
FDTensor FDTensorFromDLPack(const std::string& name,
|
||||
@@ -178,8 +176,7 @@ FDTensor FDTensorFromDLPack(const std::string& name,
|
||||
int64_t* strides = dl_managed_tensor->dl_tensor.strides;
|
||||
|
||||
int ndim = dl_managed_tensor->dl_tensor.ndim;
|
||||
std::vector<int64_t> dims(
|
||||
dl_managed_tensor->dl_tensor.shape,
|
||||
std::vector<int64_t> dims(dl_managed_tensor->dl_tensor.shape,
|
||||
dl_managed_tensor->dl_tensor.shape + ndim);
|
||||
|
||||
// Check if the input is contiguous and in C order
|
||||
@@ -216,21 +213,20 @@ FDTensor FDTensorFromDLPack(const std::string& name,
|
||||
is_pinned_memory = true;
|
||||
break;
|
||||
default:
|
||||
FDASSERT(false,
|
||||
FDASSERT(
|
||||
false,
|
||||
("DLDevice type " +
|
||||
std::to_string(dl_managed_tensor->dl_tensor.device.device_type) +
|
||||
" is not support by Python backend.").c_str());
|
||||
" is not support by Python backend.")
|
||||
.c_str());
|
||||
break;
|
||||
}
|
||||
|
||||
FDDataType dtype =
|
||||
DlpackToFDType(dl_managed_tensor->dl_tensor.dtype);
|
||||
FDDataType dtype = DlpackToFDType(dl_managed_tensor->dl_tensor.dtype);
|
||||
|
||||
PyCapsule_SetName(dlpack_tensor.ptr(), "used_dlpack");
|
||||
FDTensor fd_tensor(name);
|
||||
fd_tensor.SetExternalData(
|
||||
dims, dtype, memory_ptr, device, device_id
|
||||
);
|
||||
fd_tensor.SetExternalData(dims, dtype, memory_ptr, device, device_id);
|
||||
fd_tensor.is_pinned_memory = is_pinned_memory;
|
||||
return fd_tensor;
|
||||
}
|
||||
@@ -242,13 +238,50 @@ void BindFDTensor(pybind11::module& m) {
|
||||
.def_readonly("shape", &FDTensor::shape)
|
||||
.def_readonly("dtype", &FDTensor::dtype)
|
||||
.def_readonly("device", &FDTensor::device)
|
||||
.def("numpy", [](FDTensor& self) {
|
||||
return TensorToPyArray(self);
|
||||
})
|
||||
.def("numpy", [](FDTensor& self) { return TensorToPyArray(self); })
|
||||
.def("data", &FDTensor::MutableData)
|
||||
.def("from_numpy", [](FDTensor& self, pybind11::array& pyarray, bool share_buffer = false) {
|
||||
.def("from_numpy",
|
||||
[](FDTensor& self, pybind11::array& pyarray,
|
||||
bool share_buffer = false) {
|
||||
PyArrayToTensor(pyarray, &self, share_buffer);
|
||||
})
|
||||
.def("from_external_data",
|
||||
[](const std::string& name, size_t data_addr,
|
||||
const std::vector<int64_t>& shape, const std::string& data_type,
|
||||
const std::string& data_place, int device_id) {
|
||||
auto fd_data_type = FDDataType::UNKNOWN1;
|
||||
if (data_type == "FP32") {
|
||||
fd_data_type = FDDataType::FP32;
|
||||
} else if (data_type == "FP16") {
|
||||
fd_data_type = FDDataType::FP16;
|
||||
} else if (data_type == "INT32") {
|
||||
fd_data_type = FDDataType::INT32;
|
||||
} else if (data_type == "INT64") {
|
||||
fd_data_type = FDDataType::INT64;
|
||||
} else {
|
||||
FDASSERT(false,
|
||||
"FDTensor.from_external_data, datatype \"%s\" is not "
|
||||
"supported.",
|
||||
data_type.c_str());
|
||||
}
|
||||
|
||||
Device fd_data_place;
|
||||
if (data_place.find("gpu") != data_place.npos) {
|
||||
fd_data_place = Device::GPU;
|
||||
} else {
|
||||
FDASSERT(false,
|
||||
("Device type " + data_place +
|
||||
" is not support by FDTensor.from_external_data.")
|
||||
.c_str());
|
||||
}
|
||||
void* data_ptr = nullptr;
|
||||
data_ptr = reinterpret_cast<void*>(data_addr);
|
||||
FDTensor fd_tensor(name);
|
||||
fd_tensor.SetExternalData(shape, fd_data_type,
|
||||
static_cast<void*>(data_ptr),
|
||||
fd_data_place, device_id);
|
||||
return fd_tensor;
|
||||
})
|
||||
.def("to_dlpack", &FDTensorToDLPack)
|
||||
.def("from_dlpack", &FDTensorFromDLPack)
|
||||
.def("print_info", &FDTensor::PrintInfo);
|
||||
|
@@ -110,6 +110,7 @@ void BindRuntime(pybind11::module& m) {
|
||||
return outputs;
|
||||
})
|
||||
.def("bind_input_tensor", &Runtime::BindInputTensor)
|
||||
.def("bind_output_tensor", &Runtime::BindOutputTensor)
|
||||
.def("infer", [](Runtime& self) { self.Infer(); })
|
||||
.def("get_output_tensor",
|
||||
[](Runtime& self, const std::string& name) {
|
||||
|
@@ -25,6 +25,7 @@ void PaddleBackend::BuildOption(const PaddleBackendOption& option) {
|
||||
if (option.device == Device::GPU) {
|
||||
config_.EnableUseGpu(option.gpu_mem_init_size, option.device_id);
|
||||
if (option_.external_stream_) {
|
||||
FDINFO << "Will use external stream for Paddle Backend." << std::endl;
|
||||
config_.SetExecStream(option_.external_stream_);
|
||||
}
|
||||
if (option.enable_trt) {
|
||||
@@ -226,23 +227,47 @@ bool PaddleBackend::Infer(std::vector<FDTensor>& inputs,
|
||||
<< inputs_desc_.size() << ")." << std::endl;
|
||||
return false;
|
||||
}
|
||||
// output share backend memory only support CPU or GPU
|
||||
if (option_.device == Device::IPU) {
|
||||
copy_to_fd = true;
|
||||
}
|
||||
|
||||
RUNTIME_PROFILE_LOOP_H2D_D2H_BEGIN
|
||||
for (size_t i = 0; i < inputs.size(); ++i) {
|
||||
auto handle = predictor_->GetInputHandle(inputs[i].name);
|
||||
ShareTensorFromFDTensor(handle.get(), inputs[i]);
|
||||
}
|
||||
std::unordered_set<std::string> prebinded_output_name;
|
||||
// prebinded output only support for GPU
|
||||
if (!copy_to_fd) {
|
||||
for (size_t i = 0; i < (*outputs).size(); ++i) {
|
||||
auto output_name = (*outputs)[i].name;
|
||||
// if a output is not prebinded,
|
||||
// the name of output is expected to be empty.
|
||||
// We skip here
|
||||
if (output_name.empty()) {
|
||||
continue;
|
||||
}
|
||||
// Record the prebinded output_name.
|
||||
// Those outputs do not need PaddleTensorToFDTensor
|
||||
// after predictor_.Run()
|
||||
prebinded_output_name.insert(output_name);
|
||||
auto handle = predictor_->GetOutputHandle(output_name);
|
||||
ShareOutTensorFromFDTensor(handle.get(), (*outputs)[i]);
|
||||
}
|
||||
}
|
||||
|
||||
RUNTIME_PROFILE_LOOP_BEGIN(1)
|
||||
predictor_->Run();
|
||||
RUNTIME_PROFILE_LOOP_END
|
||||
|
||||
// output share backend memory only support CPU or GPU
|
||||
if (option_.device == Device::IPU) {
|
||||
copy_to_fd = true;
|
||||
}
|
||||
outputs->resize(outputs_desc_.size());
|
||||
for (size_t i = 0; i < outputs_desc_.size(); ++i) {
|
||||
// skip prebinded output
|
||||
if (copy_to_fd == false &&
|
||||
prebinded_output_name.count(outputs_desc_[i].name)) {
|
||||
continue;
|
||||
}
|
||||
auto handle = predictor_->GetOutputHandle(outputs_desc_[i].name);
|
||||
if (copy_to_fd) {
|
||||
(*outputs)[i].is_pinned_memory = option_.enable_pinned_memory;
|
||||
|
@@ -35,6 +35,9 @@ paddle_infer::PlaceType ConvertFDDeviceToPlace(Device device);
|
||||
// Share memory buffer with paddle_infer::Tensor from fastdeploy::FDTensor
|
||||
void ShareTensorFromFDTensor(paddle_infer::Tensor* tensor, FDTensor& fd_tensor);
|
||||
|
||||
void ShareOutTensorFromFDTensor(paddle_infer::Tensor* tensor,
|
||||
FDTensor& fd_tensor);
|
||||
|
||||
// convert paddle_infer::Tensor to fastdeploy::FDTensor
|
||||
// if copy_to_fd is true, copy memory data to FDTensor
|
||||
/// else share memory to FDTensor
|
||||
|
@@ -61,6 +61,43 @@ void ShareTensorFromFDTensor(paddle_infer::Tensor* tensor,
|
||||
Str(fd_tensor.dtype).c_str());
|
||||
}
|
||||
|
||||
void ShareOutTensorFromFDTensor(paddle_infer::Tensor* tensor,
|
||||
FDTensor& fd_tensor) {
|
||||
std::vector<int> shape(fd_tensor.shape.begin(), fd_tensor.shape.end());
|
||||
auto place = ConvertFDDeviceToPlace(fd_tensor.device);
|
||||
if (fd_tensor.dtype == FDDataType::FP32) {
|
||||
if (place == paddle_infer::PlaceType::kGPU) {
|
||||
tensor->ShareExternalData(static_cast<float*>(fd_tensor.MutableData()),
|
||||
shape, place);
|
||||
} else {
|
||||
tensor->CopyToCpu(static_cast<float*>(fd_tensor.MutableData()));
|
||||
}
|
||||
return;
|
||||
} else if (fd_tensor.dtype == FDDataType::INT32) {
|
||||
if (place == paddle_infer::PlaceType::kGPU) {
|
||||
tensor->ShareExternalData(static_cast<int32_t*>(fd_tensor.MutableData()),
|
||||
shape, place);
|
||||
} else {
|
||||
tensor->CopyToCpu(static_cast<int32_t*>(fd_tensor.MutableData()));
|
||||
}
|
||||
return;
|
||||
} else if (fd_tensor.dtype == FDDataType::INT64) {
|
||||
if (place == paddle_infer::PlaceType::kGPU) {
|
||||
tensor->ShareExternalData(static_cast<int64_t*>(fd_tensor.MutableData()),
|
||||
shape, place);
|
||||
} else {
|
||||
tensor->CopyToCpu(static_cast<int64_t*>(fd_tensor.MutableData()));
|
||||
}
|
||||
return;
|
||||
} else if (fd_tensor.dtype == FDDataType::UINT8) {
|
||||
tensor->ShareExternalData(static_cast<uint8_t*>(fd_tensor.MutableData()),
|
||||
shape, paddle_infer::PlaceType::kCPU);
|
||||
return;
|
||||
}
|
||||
FDASSERT(false, "Unexpected data type(%s) while infer with PaddleBackend.",
|
||||
Str(fd_tensor.dtype).c_str());
|
||||
}
|
||||
|
||||
void PaddleTensorToFDTensor(std::unique_ptr<paddle_infer::Tensor>& tensor,
|
||||
FDTensor* fd_tensor, bool copy_to_fd) {
|
||||
auto fd_dtype = PaddleDataTypeToFD(tensor->type());
|
||||
|
@@ -67,6 +67,7 @@ bool RKNPU2Backend::GetSDKAndDeviceVersion() {
|
||||
***************************************************************/
|
||||
void RKNPU2Backend::BuildOption(const RKNPU2BackendOption& option) {
|
||||
this->option_ = option;
|
||||
|
||||
// save cpu_name
|
||||
this->option_.cpu_name = option.cpu_name;
|
||||
|
||||
@@ -123,7 +124,7 @@ bool RKNPU2Backend::InitFromRKNN(const std::string& model_file,
|
||||
* @return bool
|
||||
* @note Only support RK3588
|
||||
***************************************************************/
|
||||
bool RKNPU2Backend::SetCoreMask(rknpu2::CoreMask& core_mask) const {
|
||||
bool RKNPU2Backend::SetCoreMask(const rknpu2::CoreMask& core_mask) {
|
||||
int ret = rknn_set_core_mask(ctx, static_cast<rknn_core_mask>(core_mask));
|
||||
if (ret != RKNN_SUCC) {
|
||||
FDERROR << "rknn_set_core_mask fail! ret=" << ret << std::endl;
|
||||
|
@@ -25,7 +25,7 @@
|
||||
|
||||
namespace fastdeploy {
|
||||
struct RKNPU2BackendOption {
|
||||
rknpu2::CpuName cpu_name = rknpu2::CpuName::RK3588;
|
||||
rknpu2::CpuName cpu_name = rknpu2::CpuName::RK356X;
|
||||
|
||||
// The specification of NPU core setting.It has the following choices :
|
||||
// RKNN_NPU_CORE_AUTO : Referring to automatic mode, meaning that it will
|
||||
@@ -49,7 +49,7 @@ class RKNPU2Backend : public BaseBackend {
|
||||
|
||||
bool GetSDKAndDeviceVersion();
|
||||
|
||||
bool SetCoreMask(rknpu2::CoreMask& core_mask) const;
|
||||
bool SetCoreMask(const rknpu2::CoreMask& core_mask);
|
||||
|
||||
bool GetModelInputOutputInfos();
|
||||
|
||||
|
@@ -49,6 +49,10 @@ void BindOption(pybind11::module& m) {
|
||||
.def_readwrite("poros_option", &RuntimeOption::poros_option)
|
||||
.def_readwrite("paddle_infer_option", &RuntimeOption::paddle_infer_option)
|
||||
.def("set_external_stream", &RuntimeOption::SetExternalStream)
|
||||
.def("set_external_raw_stream",
|
||||
[](RuntimeOption& self, size_t external_stream) {
|
||||
self.SetExternalStream(reinterpret_cast<void*>(external_stream));
|
||||
})
|
||||
.def("set_cpu_thread_num", &RuntimeOption::SetCpuThreadNum)
|
||||
.def("use_paddle_backend", &RuntimeOption::UsePaddleBackend)
|
||||
.def("use_poros_backend", &RuntimeOption::UsePorosBackend)
|
||||
|
@@ -224,6 +224,25 @@ void Runtime::BindInputTensor(const std::string& name, FDTensor& input) {
|
||||
}
|
||||
}
|
||||
|
||||
void Runtime::BindOutputTensor(const std::string& name, FDTensor& output) {
|
||||
bool is_exist = false;
|
||||
for (auto& t : output_tensors_) {
|
||||
if (t.name == name) {
|
||||
FDINFO << "The output name [" << name << "] is exist." << std::endl;
|
||||
is_exist = true;
|
||||
t.SetExternalData(output.shape, output.dtype, output.MutableData(),
|
||||
output.device, output.device_id);
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (!is_exist) {
|
||||
FDINFO << "The output name [" << name << "] is prebinded added into output tensor list." << std::endl;
|
||||
FDTensor new_tensor(name);
|
||||
new_tensor.SetExternalData(output.shape, output.dtype, output.MutableData(),
|
||||
output.device, output.device_id);
|
||||
output_tensors_.emplace_back(std::move(new_tensor));
|
||||
}
|
||||
}
|
||||
FDTensor* Runtime::GetOutputTensor(const std::string& name) {
|
||||
for (auto& t : output_tensors_) {
|
||||
if (t.name == name) {
|
||||
|
@@ -75,6 +75,12 @@ struct FASTDEPLOY_DECL Runtime {
|
||||
/** \brief Bind FDTensor by name, no copy and share input memory
|
||||
*/
|
||||
void BindInputTensor(const std::string& name, FDTensor& input);
|
||||
|
||||
/** \brief Bind FDTensor by name, no copy and share output memory.
|
||||
* Please make share the correctness of tensor shape of output.
|
||||
*/
|
||||
void BindOutputTensor(const std::string& name, FDTensor& output);
|
||||
|
||||
/** \brief Get output FDTensor by name, no copy and share backend output memory
|
||||
*/
|
||||
FDTensor* GetOutputTensor(const std::string& name);
|
||||
|
@@ -71,9 +71,9 @@ struct FASTDEPLOY_DECL RuntimeOption {
|
||||
void UseGpu(int gpu_id = 0);
|
||||
/// Use RKNPU2 e.g RK3588/RK356X to inference
|
||||
void UseRKNPU2(fastdeploy::rknpu2::CpuName rknpu2_name =
|
||||
fastdeploy::rknpu2::CpuName::RK3588,
|
||||
fastdeploy::rknpu2::CpuName::RK356X,
|
||||
fastdeploy::rknpu2::CoreMask rknpu2_core =
|
||||
fastdeploy::rknpu2::CoreMask::RKNN_NPU_CORE_0);
|
||||
fastdeploy::rknpu2::CoreMask::RKNN_NPU_CORE_AUTO);
|
||||
/// Use TimVX e.g RV1126/A311D to inference
|
||||
void UseTimVX();
|
||||
/// Use Huawei Ascend to inference
|
||||
@@ -110,6 +110,7 @@ struct FASTDEPLOY_DECL RuntimeOption {
|
||||
bool enable_multi_stream = false);
|
||||
|
||||
void SetExternalStream(void* external_stream);
|
||||
|
||||
/*
|
||||
* @brief Set number of cpu threads while inference on CPU, by default it will decided by the different backends
|
||||
*/
|
||||
|
@@ -72,6 +72,14 @@ class Runtime:
|
||||
"""
|
||||
self._runtime.bind_input_tensor(name, fdtensor)
|
||||
|
||||
def bind_output_tensor(self, name, fdtensor):
|
||||
"""Bind FDTensor by name, no copy and share output memory
|
||||
|
||||
:param name: (str)The name of output data.
|
||||
:param fdtensor: (fastdeploy.FDTensor)The output FDTensor.
|
||||
"""
|
||||
self._runtime.bind_output_tensor(name, fdtensor)
|
||||
|
||||
def zero_copy_infer(self):
|
||||
"""No params inference the model.
|
||||
|
||||
@@ -657,6 +665,11 @@ class RuntimeOption:
|
||||
"""
|
||||
return self._option.disable_profiling()
|
||||
|
||||
def set_external_raw_stream(self, cuda_stream):
|
||||
"""Set the external raw stream used by fastdeploy runtime.
|
||||
"""
|
||||
self._option.set_external_raw_stream(cuda_stream)
|
||||
|
||||
def __repr__(self):
|
||||
attrs = dir(self._option)
|
||||
message = "RuntimeOption(\n"
|
||||
|
@@ -10,7 +10,7 @@ std:
|
||||
- 57.375
|
||||
model_path: ./picodet_s_416_coco_lcnet/picodet_s_416_coco_lcnet.onnx
|
||||
outputs_nodes:
|
||||
- 'p2o.Div.79'
|
||||
- 'p2o.Mul.179'
|
||||
- 'p2o.Concat.9'
|
||||
do_quantization: False
|
||||
dataset:
|
||||
|
@@ -0,0 +1,17 @@
|
||||
mean:
|
||||
-
|
||||
- 0
|
||||
- 0
|
||||
- 0
|
||||
std:
|
||||
-
|
||||
- 255
|
||||
- 255
|
||||
- 255
|
||||
model_path: ./ppyoloe_plus_crn_s_80e_coco/ppyoloe_plus_crn_s_80e_coco.onnx
|
||||
outputs_nodes:
|
||||
- 'p2o.Mul.224'
|
||||
- 'p2o.Concat.29'
|
||||
do_quantization: True
|
||||
dataset: "./ppyoloe_plus_crn_s_80e_coco/dataset.txt"
|
||||
output_folder: "./ppyoloe_plus_crn_s_80e_coco"
|
Reference in New Issue
Block a user