mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 09:07:10 +08:00
[Other] PPOCR models support model clone function (#1072)
* Refactor PaddleSeg with preprocessor && postprocessor * Fix bugs * Delete redundancy code * Modify by comments * Refactor according to comments * Add batch evaluation * Add single test script * Add ppliteseg single test script && fix eval(raise) error * fix bug * Fix evaluation segmentation.py batch predict * Fix segmentation evaluation bug * Fix evaluation segmentation bugs * Update segmentation result docs * Update old predict api and DisableNormalizeAndPermute * Update resize segmentation label map with cv::INTER_NEAREST * Add Model Clone function for PaddleClas && PaddleDet && PaddleSeg * Add multi thread demo * Add python model clone function * Add multi thread python && C++ example * Fix bug * Update python && cpp multi_thread examples * Add cpp && python directory * Add README.md for examples * Delete redundant code * Create README_CN.md * Rename README_CN.md to README.md * Update README.md * Update README.md * Update VERSION_NUMBER * Update requirements.txt * Update README.md * update version in doc: * [Serving]Update Dockerfile (#1037) Update Dockerfile * Add license notice for RVM onnx model file (#1060) * [Model] Add GPL-3.0 license (#1065) Add GPL-3.0 license * PPOCR model support model clone * Update README.md * Update PPOCRv2 && PPOCRv3 clone code * Update PPOCR python __init__ * Add multi thread ocr example code * Update README.md * Update README.md * Update ResNet50_vd_infer multi process code * Add PPOCR multi process && thread example * Update README.md * Update README.md * Update multi-thread docs Co-authored-by: Jason <jiangjiajun@baidu.com> Co-authored-by: leiqing <54695910+leiqing1@users.noreply.github.com> Co-authored-by: heliqi <1101791222@qq.com> Co-authored-by: WJJ1995 <wjjisloser@163.com>
This commit is contained in:
51
tutorials/multi_thread/python/single_model/README.md
Normal file
51
tutorials/multi_thread/python/single_model/README.md
Normal file
@@ -0,0 +1,51 @@
|
||||
English | [简体中文](README_CN.md)
|
||||
# Example of PaddleClas models Python multi-thread/multi-process Deployment
|
||||
|
||||
Before deployment, two steps require confirmation
|
||||
|
||||
- 1. Software and hardware should meet the requirements. Please refer to [FastDeploy Environment Requirements](../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
||||
- 2. Install the FastDeploy Python whl package. Please refer to [FastDeploy Python Installation](../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
||||
|
||||
This directory provides example file `multi_thread_process.py` to fast deploy multi-thread/multi-process ResNet50_vd on CPU/GPU and GPU accelerated by TensorRT. The script is as follows
|
||||
|
||||
|
||||
```bash
|
||||
# Download deployment example code
|
||||
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
||||
cd FastDeploy/tutorials/multi_thread/python
|
||||
|
||||
# Download the ResNet50_vd model file and test images
|
||||
wget https://bj.bcebos.com/paddlehub/fastdeploy/ResNet50_vd_infer.tgz
|
||||
tar -xvf ResNet50_vd_infer.tgz
|
||||
wget https://gitee.com/paddlepaddle/PaddleClas/raw/release/2.4/deploy/images/ImageNet/ILSVRC2012_val_00000010.jpeg
|
||||
|
||||
|
||||
# CPU multi-thread inference
|
||||
python multi_thread_process.py --model ResNet50_vd_infer --image_path ILSVRC2012_val_00000010.jpeg --device cpu --topk 1 --thread_num 1
|
||||
# CPU multi-process inference
|
||||
python multi_thread_process.py --model ResNet50_vd_infer --image_path ILSVRC2012_val_00000010.jpeg --device cpu --topk 1 --use_multi_process True --process_num 1
|
||||
|
||||
# GPU multi-thread inference
|
||||
python multi_thread_process.py --model ResNet50_vd_infer --image_path ILSVRC2012_val_00000010.jpeg --device gpu --topk 1 --thread_num 1
|
||||
# GPU multi-process inference
|
||||
python multi_thread_process.py --model ResNet50_vd_infer --image_path ILSVRC2012_val_00000010.jpeg --device gpu --topk 1 --use_multi_process True --process_num 1
|
||||
|
||||
# Use TensorRT multi-thread inference on GPU (Attention: It is somewhat time-consuming for the operation of model serialization when running TensorRT inference for the first time. Please be patient.)
|
||||
python multi_thread_process.py --model ResNet50_vd_infer --image_path ILSVRC2012_val_00000010.jpeg --device gpu --use_trt True --topk 1 --thread_num 1
|
||||
# Use TensorRT multi-process inference on GPU (Attention: It is somewhat time-consuming for the operation of model serialization when running TensorRT inference for the first time. Please be patient.)
|
||||
python multi_thread_process.py --model ResNet50_vd_infer --image_path ILSVRC2012_val_00000010.jpeg --device gpu --use_trt True --topk 1 --use_multi_process True --process_num 1
|
||||
|
||||
# IPU multi-thread inference(Attention: It is somewhat time-consuming for the operation of model serialization when running IPU inference for the first time. Please be patient.)
|
||||
python multi_thread_process.py --model ResNet50_vd_infer --image_path ILSVRC2012_val_00000010.jpeg --device ipu --topk 1 --thread_num 1
|
||||
# IPU multi-process inference(Attention: It is somewhat time-consuming for the operation of model serialization when running IPU inference for the first time. Please be patient.)
|
||||
python multi_thread_process.py --model ResNet50_vd_infer --image_path ILSVRC2012_val_00000010.jpeg --device ipu --topk 1 --use_multi_process True --process_num 1
|
||||
```
|
||||
>> **Notice**: `--image_path` can be the path of the pictures folder
|
||||
|
||||
The result returned after running is as follows
|
||||
```bash
|
||||
ClassifyResult(
|
||||
label_ids: 153,
|
||||
scores: 0.686229,
|
||||
)
|
||||
```
|
Reference in New Issue
Block a user