[Other] PPOCR models support model clone function (#1072)

* Refactor PaddleSeg with preprocessor && postprocessor

* Fix bugs

* Delete redundancy code

* Modify by comments

* Refactor according to comments

* Add batch evaluation

* Add single test script

* Add ppliteseg single test script && fix eval(raise) error

* fix bug

* Fix evaluation segmentation.py batch predict

* Fix segmentation evaluation bug

* Fix evaluation segmentation bugs

* Update segmentation result docs

* Update old predict api and DisableNormalizeAndPermute

* Update resize segmentation label map with cv::INTER_NEAREST

* Add Model Clone function for PaddleClas && PaddleDet && PaddleSeg

* Add multi thread demo

* Add python model clone function

* Add multi thread python && C++ example

* Fix bug

* Update python && cpp multi_thread examples

* Add cpp && python directory

* Add README.md for examples

* Delete redundant code

* Create README_CN.md

* Rename README_CN.md to README.md

* Update README.md

* Update README.md

* Update VERSION_NUMBER

* Update requirements.txt

* Update README.md

* update version in doc:

* [Serving]Update Dockerfile (#1037)

Update Dockerfile

* Add license notice for RVM onnx model file (#1060)

* [Model] Add GPL-3.0 license (#1065)

Add GPL-3.0 license

* PPOCR model support model clone

* Update README.md

* Update PPOCRv2 && PPOCRv3 clone code

* Update PPOCR python __init__

* Add multi thread ocr example code

* Update README.md

* Update README.md

* Update ResNet50_vd_infer multi process code

* Add PPOCR multi process && thread example

* Update README.md

* Update README.md

* Update multi-thread docs

Co-authored-by: Jason <jiangjiajun@baidu.com>
Co-authored-by: leiqing <54695910+leiqing1@users.noreply.github.com>
Co-authored-by: heliqi <1101791222@qq.com>
Co-authored-by: WJJ1995 <wjjisloser@163.com>
This commit is contained in:
huangjianhui
2023-01-17 15:16:41 +08:00
committed by GitHub
parent abba2afd74
commit 6c4a08e416
28 changed files with 1201 additions and 96 deletions

View File

@@ -0,0 +1,14 @@
PROJECT(multi_thread_demo C CXX)
CMAKE_MINIMUM_REQUIRED (VERSION 3.10)
# 指定下载解压后的fastdeploy库路径
option(FASTDEPLOY_INSTALL_DIR "Path of downloaded fastdeploy sdk.")
include(${FASTDEPLOY_INSTALL_DIR}/FastDeploy.cmake)
# 添加FastDeploy依赖头文件
include_directories(${FASTDEPLOY_INCS})
add_executable(multi_thread_demo ${PROJECT_SOURCE_DIR}/multi_thread_ocr.cc)
# 添加FastDeploy库依赖
target_link_libraries(multi_thread_demo ${FASTDEPLOY_LIBS} pthread)

View File

@@ -0,0 +1,59 @@
English | [简体中文](README_CN.md)
# PPOCRv3 C++ multi-thread Deployment Example
This directory provides examples file `multi_thread_ocr.cc` to fast deploy PPOCRv3 on CPU/GPU and GPU accelerated by TensorRT.
Two steps before deployment
- 1. Software and hardware should meet the requirements. Please refer to [FastDeploy Environment Requirements](../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
- 2. Download the precompiled deployment library and samples code according to your development environment. Refer to [FastDeploy Precompiled Library](../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
Taking the PPOCRv3 inference on Linux as an example, the compilation test can be completed by executing the following command in this directory. FastDeploy version 0.7.0 or above (x.x.x>=0.7.0) is required to support this model.
```bash
mkdir build
cd build
# Download the FastDeploy precompiled library. Users can choose your appropriate version in the `FastDeploy Precompiled Library` mentioned above
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
tar xvf fastdeploy-linux-x64-x.x.x.tgz
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
make -j
# Download model, image, and dictionary files
wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_infer.tar
tar -xvf ch_PP-OCRv3_det_infer.tar
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar
tar -xvf ch_ppocr_mobile_v2.0_cls_infer.tar
wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_infer.tar
tar -xvf ch_PP-OCRv3_rec_infer.tar
wget https://gitee.com/paddlepaddle/PaddleOCR/raw/release/2.6/doc/imgs/12.jpg
wget https://gitee.com/paddlepaddle/PaddleOCR/raw/release/2.6/ppocr/utils/ppocr_keys_v1.txt
# CPU multi-thread inference
./multi_thread_demo ./ch_PP-OCRv3_det_infer ./ch_ppocr_mobile_v2.0_cls_infer ./ch_PP-OCRv3_rec_infer ./ppocr_keys_v1.txt ./12.jpg 0 1
# GPU multi-thread inference
./multi_thread_demo ./ch_PP-OCRv3_det_infer ./ch_ppocr_mobile_v2.0_cls_infer ./ch_PP-OCRv3_rec_infer ./ppocr_keys_v1.txt ./12.jpg 1 1
# TensorRT multi-thread inference on GPU
./multi_thread_demo ./ch_PP-OCRv3_det_infer ./ch_ppocr_mobile_v2.0_cls_infer ./ch_PP-OCRv3_rec_infer ./ppocr_keys_v1.txt ./12.jpg 2 1
# Paddle-TRT multi-thread inference on GPU
./multi_thread_demo ./ch_PP-OCRv3_det_infer ./ch_ppocr_mobile_v2.0_cls_infer ./ch_PP-OCRv3_rec_infer ./ppocr_keys_v1.txt ./12.jpg 3 1
# KunlunXin XPU multi-thread inference
./multi_thread_demo ./ch_PP-OCRv3_det_infer ./ch_ppocr_mobile_v2.0_cls_infer ./ch_PP-OCRv3_rec_infer ./ppocr_keys_v1.txt ./12.jpg 4 1
>> **Notice**: the last number in above command is thread number
The above command works for Linux or MacOS. For SDK in Windows, refer to:
- [How to use FastDeploy C++ SDK in Windows](../../../docs/cn/faq/use_sdk_on_windows.md)
The result returned after running is as follows
```
Thread Id: 0
det boxes: [[42,413],[483,391],[484,428],[43,450]]rec text: 上海斯格威铂尔大酒店 rec score:0.980085 cls label: 0 cls score: 1.000000
det boxes: [[187,456],[399,448],[400,480],[188,488]]rec text: 打浦路15号 rec score:0.964993 cls label: 0 cls score: 1.000000
det boxes: [[23,507],[513,488],[515,529],[24,548]]rec text: 绿洲仕格维花园公寓 rec score:0.993727 cls label: 0 cls score: 1.000000
det boxes: [[74,553],[427,542],[428,571],[75,582]]rec text: 打浦路252935号 rec score:0.947723 cls label: 0 cls score: 1.000000
```

View File

@@ -0,0 +1,59 @@
[English](README.md) | 中文
# PPOCRv3模型 C++多线程部署示例
本目录下提供`multi_thread_ocr.cc`快速完成PPOCRv3系列模型在CPU/GPU以及GPU上通过TensorRT加速多线程部署的示例。
在部署前,需确认以下两个步骤
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
- 2. 根据开发环境下载预编译部署库和samples代码参考[FastDeploy预编译库](../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
以Linux上ResNet50_vd推理为例在本目录执行如下命令即可完成编译测试支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0)
```bash
mkdir build
cd build
# 下载FastDeploy预编译库用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
tar xvf fastdeploy-linux-x64-x.x.x.tgz
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
make -j
# 下载模型,图片和字典文件
wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_infer.tar
tar -xvf ch_PP-OCRv3_det_infer.tar
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar
tar -xvf ch_ppocr_mobile_v2.0_cls_infer.tar
wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_infer.tar
tar -xvf ch_PP-OCRv3_rec_infer.tar
wget https://gitee.com/paddlepaddle/PaddleOCR/raw/release/2.6/doc/imgs/12.jpg
wget https://gitee.com/paddlepaddle/PaddleOCR/raw/release/2.6/ppocr/utils/ppocr_keys_v1.txt
# CPU推理
./multi_thread_demo ./ch_PP-OCRv3_det_infer ./ch_ppocr_mobile_v2.0_cls_infer ./ch_PP-OCRv3_rec_infer ./ppocr_keys_v1.txt ./12.jpg 0 1
# GPU推理
./multi_thread_demo ./ch_PP-OCRv3_det_infer ./ch_ppocr_mobile_v2.0_cls_infer ./ch_PP-OCRv3_rec_infer ./ppocr_keys_v1.txt ./12.jpg 1 1
# GPU上TensorRT推理
./multi_thread_demo ./ch_PP-OCRv3_det_infer ./ch_ppocr_mobile_v2.0_cls_infer ./ch_PP-OCRv3_rec_infer ./ppocr_keys_v1.txt ./12.jpg 2 1
# GPU上Paddle-TRT推理
./multi_thread_demo ./ch_PP-OCRv3_det_infer ./ch_ppocr_mobile_v2.0_cls_infer ./ch_PP-OCRv3_rec_infer ./ppocr_keys_v1.txt ./12.jpg 3 1
# 昆仑芯XPU推理
./multi_thread_demo ./ch_PP-OCRv3_det_infer ./ch_ppocr_mobile_v2.0_cls_infer ./ch_PP-OCRv3_rec_infer ./ppocr_keys_v1.txt ./12.jpg 4 1
>> **注意**: 最后一位数字表示线程数
以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考:
- [如何在Windows中使用FastDeploy C++ SDK](../../../docs/cn/faq/use_sdk_on_windows.md)
运行完成后返回结果如下所示
```
Thread Id: 0
det boxes: [[42,413],[483,391],[484,428],[43,450]]rec text: 上海斯格威铂尔大酒店 rec score:0.980085 cls label: 0 cls score: 1.000000
det boxes: [[187,456],[399,448],[400,480],[188,488]]rec text: 打浦路15号 rec score:0.964993 cls label: 0 cls score: 1.000000
det boxes: [[23,507],[513,488],[515,529],[24,548]]rec text: 绿洲仕格维花园公寓 rec score:0.993727 cls label: 0 cls score: 1.000000
det boxes: [[74,553],[427,542],[428,571],[75,582]]rec text: 打浦路252935号 rec score:0.947723 cls label: 0 cls score: 1.000000
```

View File

@@ -0,0 +1,177 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <thread>
#include "fastdeploy/vision.h"
#ifdef WIN32
const char sep = '\\';
#else
const char sep = '/';
#endif
void Predict(fastdeploy::pipeline::PPOCRv3 *model, int thread_id, const std::vector<std::string>& images) {
for (auto const &image_file : images) {
auto im = cv::imread(image_file);
fastdeploy::vision::OCRResult res;
if (!model->Predict(im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return;
}
// print res
std::cout << "Thread Id: " << thread_id << std::endl;
std::cout << res.Str() << std::endl;
}
}
void GetImageList(std::vector<std::vector<std::string>>* image_list, const std::string& image_file_path, int thread_num){
std::vector<cv::String> images;
cv::glob(image_file_path, images, false);
// number of image files in images folder
size_t count = images.size();
size_t num = count / thread_num;
for (int i = 0; i < thread_num; i++) {
std::vector<std::string> temp_list;
if (i == thread_num - 1) {
for (size_t j = i*num; j < count; j++){
temp_list.push_back(images[j]);
}
} else {
for (size_t j = 0; j < num; j++){
temp_list.push_back(images[i * num + j]);
}
}
(*image_list)[i] = temp_list;
}
}
void InitAndInfer(const std::string& det_model_dir, const std::string& cls_model_dir, const std::string& rec_model_dir, const std::string& rec_label_file, const std::string& image_file_path, const fastdeploy::RuntimeOption& option, int thread_num) {
auto det_model_file = det_model_dir + sep + "inference.pdmodel";
auto det_params_file = det_model_dir + sep + "inference.pdiparams";
auto cls_model_file = cls_model_dir + sep + "inference.pdmodel";
auto cls_params_file = cls_model_dir + sep + "inference.pdiparams";
auto rec_model_file = rec_model_dir + sep + "inference.pdmodel";
auto rec_params_file = rec_model_dir + sep + "inference.pdiparams";
auto det_option = option;
auto cls_option = option;
auto rec_option = option;
// The cls and rec model can inference a batch of images now.
// User could initialize the inference batch size and set them after create PP-OCR model.
int cls_batch_size = 1;
int rec_batch_size = 6;
// If use TRT backend, the dynamic shape will be set as follow.
// We recommend that users set the length and height of the detection model to a multiple of 32.
// We also recommend that users set the Trt input shape as follow.
det_option.SetTrtInputShape("x", {1, 3, 64,64}, {1, 3, 640, 640},
{1, 3, 960, 960});
cls_option.SetTrtInputShape("x", {1, 3, 48, 10}, {cls_batch_size, 3, 48, 320}, {cls_batch_size, 3, 48, 1024});
rec_option.SetTrtInputShape("x", {1, 3, 48, 10}, {rec_batch_size, 3, 48, 320},
{rec_batch_size, 3, 48, 2304});
// Users could save TRT cache file to disk as follow.
// det_option.SetTrtCacheFile(det_model_dir + sep + "det_trt_cache.trt");
// cls_option.SetTrtCacheFile(cls_model_dir + sep + "cls_trt_cache.trt");
// rec_option.SetTrtCacheFile(rec_model_dir + sep + "rec_trt_cache.trt");
auto det_model = fastdeploy::vision::ocr::DBDetector(det_model_file, det_params_file, det_option);
auto cls_model = fastdeploy::vision::ocr::Classifier(cls_model_file, cls_params_file, cls_option);
auto rec_model = fastdeploy::vision::ocr::Recognizer(rec_model_file, rec_params_file, rec_label_file, rec_option);
assert(det_model.Initialized());
assert(cls_model.Initialized());
assert(rec_model.Initialized());
// The classification model is optional, so the PP-OCR can also be connected in series as follows
// auto ppocr_v3 = fastdeploy::pipeline::PPOCRv3(&det_model, &rec_model);
auto ppocr_v3 = fastdeploy::pipeline::PPOCRv3(&det_model, &cls_model, &rec_model);
// Set inference batch size for cls model and rec model, the value could be -1 and 1 to positive infinity.
// When inference batch size is set to -1, it means that the inference batch size
// of the cls and rec models will be the same as the number of boxes detected by the det model.
ppocr_v3.SetClsBatchSize(cls_batch_size);
ppocr_v3.SetRecBatchSize(rec_batch_size);
if(!ppocr_v3.Initialized()){
std::cerr << "Failed to initialize PP-OCR." << std::endl;
return;
}
std::vector<decltype(ppocr_v3.Clone())> models;
for (int i = 0; i < thread_num; ++i) {
models.emplace_back(std::move(ppocr_v3.Clone()));
}
std::vector<std::vector<std::string>> image_list(thread_num);
GetImageList(&image_list, image_file_path, thread_num);
std::vector<std::thread> threads;
for (int i = 0; i < thread_num; ++i) {
threads.emplace_back(Predict, models[i].get(), i, image_list[i]);
}
for (int i = 0; i < thread_num; ++i) {
threads[i].join();
}
}
int main(int argc, char* argv[]) {
if (argc < 7) {
std::cout << "Usage: infer_demo path/to/det_model path/to/cls_model "
"path/to/rec_model path/to/rec_label_file path/to/image "
"run_option thread_num,"
"e.g ./infer_demo ./ch_PP-OCRv3_det_infer "
"./ch_ppocr_mobile_v2.0_cls_infer ./ch_PP-OCRv3_rec_infer "
"./ppocr_keys_v1.txt ./12.jpg 0 3"
<< std::endl;
std::cout << "The data type of run_option is int, 0: run with cpu; 1: run "
"with gpu; 2: run with gpu and use tensorrt backend; 3: run with gpu and use Paddle-TRT; 4: run with kunlunxin."
<< std::endl;
return -1;
}
fastdeploy::RuntimeOption option;
int flag = std::atoi(argv[6]);
if (flag == 0) {
option.UseCpu();
} else if (flag == 1) {
option.UseGpu();
} else if (flag == 2) {
option.UseGpu();
option.UseTrtBackend();
} else if (flag == 3) {
option.UseGpu();
option.UseTrtBackend();
option.EnablePaddleTrtCollectShape();
option.EnablePaddleToTrt();
} else if (flag == 4) {
option.UseKunlunXin();
}
std::string det_model_dir = argv[1];
std::string cls_model_dir = argv[2];
std::string rec_model_dir = argv[3];
std::string rec_label_file = argv[4];
std::string image_file_path = argv[5];
int thread_num = std::atoi(argv[7]);
InitAndInfer(det_model_dir, cls_model_dir, rec_model_dir, rec_label_file, image_file_path, option, thread_num);
return 0;
}