[fix]Modify follow-up push parameters and Modify the verification method for thinking length (#4177)

* [fix]Modify follow-up push parameters and Modify the verification method for thinking length (#4086)

* 续推参数  generated_token_ids 修改成 completion_token_ids;修改思考长度校验方式

* 续推参数  generated_token_ids 修改成 completion_token_ids;修改思考长度校验方式

* 续推参数  generated_token_ids 修改成 completion_token_ids;修改思考长度校验方式

* 续推参数  generated_token_ids 修改成 completion_token_ids;修改思考长度校验方式

* add completion_token_ids

* add logger

* fix reasoning_max_tokens ParameterError

* add unittest

* add unittest

* add unittest

* add unittest

* add unittest

* add unit test

* fix
This commit is contained in:
luukunn
2025-09-22 21:12:05 +08:00
committed by GitHub
parent 0358329946
commit 6b47773bd6
6 changed files with 75 additions and 24 deletions

View File

@@ -255,8 +255,13 @@ class EngineClient:
raise ValueError(f"max_tokens can be defined [1, {self.max_model_len}).")
if data.get("reasoning_max_tokens") is not None:
if data["reasoning_max_tokens"] > data["max_tokens"] or data["reasoning_max_tokens"] < 1:
raise ValueError("reasoning_max_tokens must be between max_tokens and 1")
if data["reasoning_max_tokens"] < 1:
raise ValueError("reasoning_max_tokens must be greater than 1")
if data["reasoning_max_tokens"] > data["max_tokens"]:
data["reasoning_max_tokens"] = data["max_tokens"]
api_server_logger.warning(
f"req_id: {data['request_id']}, reasoning_max_tokens exceeds max_tokens, the value of reasoning_max_tokens will be adjusted to match that of max_tokens"
)
if data.get("top_p") is not None:
if data["top_p"] > 1 or data["top_p"] < 0:

View File

@@ -588,6 +588,7 @@ class ChatCompletionRequest(BaseModel):
prompt_token_ids: Optional[List[int]] = None
max_streaming_response_tokens: Optional[int] = None
disable_chat_template: Optional[bool] = False
completion_token_ids: Optional[List[int]] = None
# doc: end-chat-completion-extra-params
def to_dict_for_infer(self, request_id=None):
@@ -613,6 +614,9 @@ class ChatCompletionRequest(BaseModel):
), "The parameter `raw_request` is not supported now, please use completion api instead."
for key, value in self.metadata.items():
req_dict[key] = value
from fastdeploy.utils import api_server_logger
api_server_logger.warning("The parameter metadata is obsolete.")
for key, value in self.dict().items():
if value is not None:
req_dict[key] = value

View File

@@ -241,10 +241,8 @@ class Ernie4_5_VLProcessor(Ernie4_5Processor):
else:
raise ValueError(f"Request must contain 'prompt', or 'messages': {request}")
metadata = request.get("metadata")
# 如果metadata包含之前输出的token将这些token添加到input_ids末尾
if metadata and metadata.get("generated_token_ids"):
self.append_generated_tokens(outputs, metadata["generated_token_ids"])
if request.get("completion_token_ids"):
self.append_completion_tokens(outputs, request["completion_token_ids"])
outputs = self.pack_outputs(outputs)
request["prompt_token_ids"] = outputs["input_ids"].tolist()
request["prompt_token_ids_len"] = len(request["prompt_token_ids"])
@@ -263,11 +261,11 @@ class Ernie4_5_VLProcessor(Ernie4_5Processor):
return request
def append_generated_tokens(self, multimodal_inputs, generated_token_ids):
"append already generated tokens"
def append_completion_tokens(self, multimodal_inputs, completion_token_ids):
"append already completion tokens"
num_tokens = len(generated_token_ids)
multimodal_inputs["input_ids"].extend(generated_token_ids)
num_tokens = len(completion_token_ids)
multimodal_inputs["input_ids"].extend(completion_token_ids)
multimodal_inputs["token_type_ids"].extend([IDS_TYPE_FLAG["text"]] * num_tokens)
start = multimodal_inputs["cur_position"]

View File

@@ -245,15 +245,11 @@ class QwenVLProcessor(TextProcessor):
else:
raise ValueError(f"Request must contain 'prompt', or 'messages': {request}")
metadata = request.get("metadata")
# Handle continuation of previous generation by appending existing tokens
if metadata and metadata.get("generated_token_ids"):
self.append_generated_tokens(outputs, metadata["generated_token_ids"])
if request.get("completion_token_ids"):
self.append_completion_tokens(outputs, request["completion_token_ids"])
enable_thinking = False
if metadata:
enable_thinking = metadata.get("enable_thinking", False)
if request.get("chat_template_kwargs"):
chat_template_kwargs = request.get("chat_template_kwargs")
enable_thinking = chat_template_kwargs.get("enable_thinking", False)
@@ -278,16 +274,16 @@ class QwenVLProcessor(TextProcessor):
return request
def append_generated_tokens(self, outputs, generated_token_ids):
def append_completion_tokens(self, outputs, completion_token_ids):
"""
Append generated tokens to existing outputs.
Append completion tokens to existing outputs.
Args:
outputs: Current model outputs
generated_token_ids: Generated tokens to append
completion_token_ids: completion tokens to append
"""
out = {"input_ids": [], "token_type_ids": [], "position_ids": [], "cur_position": outputs["cur_position"]}
self.processor._add_text(generated_token_ids, out)
self.processor._add_text(completion_token_ids, out)
outputs["input_ids"] = np.concatenate(
[outputs["input_ids"], np.array(out["input_ids"], dtype=np.int64)], axis=0

View File

@@ -255,6 +255,16 @@ def test_consistency_between_runs(api_url, headers, consistent_payload):
assert content1 == content2
def test_with_metadata(api_url, headers, consistent_payload):
"""
Test that result is same as the base result.
"""
# request
consistent_payload["metadata"] = {"enable_thinking": True}
resp1 = requests.post(api_url, headers=headers, json=consistent_payload)
assert resp1.status_code == 200
# ==========================
# OpenAI Client Chat Completion Test
# ==========================
@@ -555,6 +565,46 @@ def test_chat_with_thinking(openai_client, capsys):
assert reasoning_tokens <= reasoning_max_tokens
def test_chat_with_completion_token_ids(openai_client):
"""Test completion_token_ids"""
response = openai_client.chat.completions.create(
model="default",
messages=[{"role": "user", "content": "Hello"}],
extra_body={
"completion_token_ids": [94936],
"return_token_ids": True,
"reasoning_max_tokens": 20,
"max_tokens": 10,
},
max_tokens=10,
stream=False,
)
assert hasattr(response, "choices")
assert len(response.choices) > 0
assert hasattr(response.choices[0], "message")
assert hasattr(response.choices[0].message, "prompt_token_ids")
assert isinstance(response.choices[0].message.prompt_token_ids, list)
assert 94936 in response.choices[0].message.prompt_token_ids
def test_chat_with_reasoning_max_tokens(openai_client):
"""Test completion_token_ids"""
assertion_executed = False
try:
openai_client.chat.completions.create(
model="default",
messages=[{"role": "user", "content": "Hello"}],
extra_body={"completion_token_ids": [18900], "return_token_ids": True, "reasoning_max_tokens": -1},
max_tokens=10,
stream=False,
)
except Exception as e:
error_message = str(e)
assertion_executed = True
assert "reasoning_max_tokens must be greater than 1" in error_message
assert assertion_executed, "Assertion was not executed (no exception raised)"
def test_profile_reset_block_num():
"""测试profile reset_block_num功能与baseline diff不能超过5%"""
log_file = "./log/config.log"

View File

@@ -176,12 +176,10 @@ class TestQwenVLProcessor(unittest.TestCase):
3. Video processing produces expected output dimensions
4. Correct counts for images (1) and videos (1)
"""
num_generated_token_ids = 10
num_completion_token_ids = 10
request = {
"request_id": "12345",
"metadata": {
"generated_token_ids": [1] * num_generated_token_ids,
},
"completion_token_ids": [1] * num_completion_token_ids,
"stop": ["stop", "eof"],
"messages": [
{