[Backend] A311D support (#825)

* add A311D support

* update code

* update toolchain

* update opencv_armhf lib

* update libs

* update code

* add install script

* update bos link

* update toolchain
This commit is contained in:
yeliang2258
2022-12-13 11:53:36 +08:00
committed by GitHub
parent f6e8fe7427
commit 6a1a3d001f
36 changed files with 1096 additions and 88 deletions

View File

@@ -0,0 +1,38 @@
PROJECT(infer_demo C CXX)
CMAKE_MINIMUM_REQUIRED (VERSION 3.10)
# 指定下载解压后的fastdeploy库路径
option(FASTDEPLOY_INSTALL_DIR "Path of downloaded fastdeploy sdk.")
include(${FASTDEPLOY_INSTALL_DIR}/FastDeploy.cmake)
# 添加FastDeploy依赖头文件
include_directories(${FASTDEPLOY_INCS})
include_directories(${FastDeploy_INCLUDE_DIRS})
add_executable(infer_demo ${PROJECT_SOURCE_DIR}/infer.cc)
# 添加FastDeploy库依赖
target_link_libraries(infer_demo ${FASTDEPLOY_LIBS})
set(CMAKE_INSTALL_PREFIX ${CMAKE_SOURCE_DIR}/build/install)
install(TARGETS infer_demo DESTINATION ./)
install(DIRECTORY models DESTINATION ./)
install(DIRECTORY images DESTINATION ./)
# install(DIRECTORY run_with_adb.sh DESTINATION ./)
file(GLOB FASTDEPLOY_LIBS ${FASTDEPLOY_INSTALL_DIR}/lib/*)
install(PROGRAMS ${FASTDEPLOY_LIBS} DESTINATION lib)
file(GLOB OPENCV_LIBS ${FASTDEPLOY_INSTALL_DIR}/third_libs/install/opencv/lib/lib*)
install(PROGRAMS ${OPENCV_LIBS} DESTINATION lib)
file(GLOB PADDLELITE_LIBS ${FASTDEPLOY_INSTALL_DIR}/third_libs/install/paddlelite/lib/lib*)
install(PROGRAMS ${PADDLELITE_LIBS} DESTINATION lib)
file(GLOB TIMVX_LIBS ${FASTDEPLOY_INSTALL_DIR}/third_libs/install/paddlelite/lib/verisilicon_timvx/*)
install(PROGRAMS ${TIMVX_LIBS} DESTINATION lib)
file(GLOB ADB_TOOLS run_with_adb.sh)
install(PROGRAMS ${ADB_TOOLS} DESTINATION ./)

View File

@@ -0,0 +1,54 @@
# PP-LiteSeg 量化模型 C++ 部署示例
本目录下提供的 `infer.cc`,可以帮助用户快速完成 PP-LiteSeg 量化模型在 A311D 上的部署推理加速。
## 部署准备
### FastDeploy 交叉编译环境准备
- 1. 软硬件环境满足要求,以及交叉编译环境的准备,请参考:[FastDeploy 交叉编译环境准备](../../../../../../docs/cn/build_and_install/a311d.md#交叉编译环境搭建)
### 模型准备
- 1. 用户可以直接使用由 FastDeploy 提供的量化模型进行部署。
- 2. 用户可以使用 FastDeploy 提供的一键模型自动化压缩工具,自行进行模型量化, 并使用产出的量化模型进行部署.(注意: 推理量化后的分类模型仍然需要FP32模型文件夹下的 deploy.yaml 文件, 自行量化的模型文件夹内不包含此 yaml 文件, 用户从FP32模型文件夹下复制此yaml文件到量化后的模型文件夹内即可.)
- 更多量化相关相关信息可查阅[模型量化](../../quantize/README.md)
## 在 A311D 上部署量化后的 PP-LiteSeg 分割模型
请按照以下步骤完成在 A311D 上部署 PP-LiteSeg 量化模型:
1. 交叉编译编译 FastDeploy 库,具体请参考:[交叉编译 FastDeploy](../../../../../../docs/cn/build_and_install/a311d.md#基于-paddlelite-的-fastdeploy-交叉编译库编译)
2. 将编译后的库拷贝到当前目录,可使用如下命令:
```bash
cp -r FastDeploy/build/fastdeploy-tmivx/ FastDeploy/examples/vision/segmentation/paddleseg/a311d/cpp
```
3. 在当前路径下载部署所需的模型和示例图片:
```bash
mkdir models && mkdir images
wget https://bj.bcebos.com/fastdeploy/models/rk1/ppliteseg.tar.gz
tar -xvf ppliteseg.tar.gz
cp -r ppliteseg models
wget https://paddleseg.bj.bcebos.com/dygraph/demo/cityscapes_demo.png
cp -r cityscapes_demo.png images
```
4. 编译部署示例,可使入如下命令:
```bash
mkdir build && cd build
cmake -DCMAKE_TOOLCHAIN_FILE=${PWD}/../fastdeploy-tmivx/toolchain.cmake -DFASTDEPLOY_INSTALL_DIR=${PWD}/../fastdeploy-tmivx -DTARGET_ABI=arm64 ..
make -j8
make install
# 成功编译之后,会生成 install 文件夹,里面有一个运行 demo 和部署所需的库
```
5. 基于 adb 工具部署 PP-LiteSeg 分割模型到晶晨 A311D可使用如下命令
```bash
# 进入 install 目录
cd FastDeploy/examples/vision/segmentation/paddleseg/a311d/cpp/build/install/
# 如下命令表示bash run_with_adb.sh 需要运行的demo 模型路径 图片路径 设备的DEVICE_ID
bash run_with_adb.sh infer_demo ppliteseg cityscapes_demo.png $DEVICE_ID
```
部署成功后运行结果如下:
<img width="640" src="https://user-images.githubusercontent.com/30516196/205544166-9b2719ff-ed82-4908-b90a-095de47392e1.png">
需要特别注意的是,在 A311D 上部署的模型需要是量化后的模型,模型的量化请参考:[模型量化](../../../../../../docs/cn/quantize.md)

View File

@@ -0,0 +1,65 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision.h"
#ifdef WIN32
const char sep = '\\';
#else
const char sep = '/';
#endif
void InitAndInfer(const std::string& model_dir, const std::string& image_file) {
auto model_file = model_dir + sep + "model.pdmodel";
auto params_file = model_dir + sep + "model.pdiparams";
auto config_file = model_dir + sep + "deploy.yaml";
auto subgraph_file = model_dir + sep + "subgraph.txt";
fastdeploy::RuntimeOption option;
option.UseTimVX();
option.SetLiteSubgraphPartitionPath(subgraph_file);
auto model = fastdeploy::vision::segmentation::PaddleSegModel(
model_file, params_file, config_file,option);
assert(model.Initialized());
auto im = cv::imread(image_file);
fastdeploy::vision::SegmentationResult res;
if (!model.Predict(im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return;
}
std::cout << res.Str() << std::endl;
auto vis_im = fastdeploy::vision::VisSegmentation(im, res, 0.5);
cv::imwrite("vis_result.jpg", vis_im);
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
}
int main(int argc, char* argv[]) {
if (argc < 3) {
std::cout << "Usage: infer_demo path/to/quant_model "
"path/to/image "
"e.g ./infer_demo ./ResNet50_vd_quant ./test.jpeg"
<< std::endl;
return -1;
}
std::string model_dir = argv[1];
std::string test_image = argv[2];
InitAndInfer(model_dir, test_image);
return 0;
}

View File

@@ -0,0 +1,47 @@
#!/bin/bash
HOST_SPACE=${PWD}
echo ${HOST_SPACE}
WORK_SPACE=/data/local/tmp/test
# The first parameter represents the demo name
DEMO_NAME=image_classification_demo
if [ -n "$1" ]; then
DEMO_NAME=$1
fi
# The second parameter represents the model name
MODEL_NAME=mobilenet_v1_fp32_224
if [ -n "$2" ]; then
MODEL_NAME=$2
fi
# The third parameter indicates the name of the image to be tested
IMAGE_NAME=0001.jpg
if [ -n "$3" ]; then
IMAGE_NAME=$3
fi
# The fourth parameter represents the ID of the device
ADB_DEVICE_NAME=
if [ -n "$4" ]; then
ADB_DEVICE_NAME="-s $4"
fi
# Set the environment variables required during the running process
EXPORT_ENVIRONMENT_VARIABLES="export GLOG_v=5; export VIV_VX_ENABLE_GRAPH_TRANSFORM=-pcq:1; export VIV_VX_SET_PER_CHANNEL_ENTROPY=100; export TIMVX_BATCHNORM_FUSION_MAX_ALLOWED_QUANT_SCALE_DEVIATION=300000; export VSI_NN_LOG_LEVEL=5;"
EXPORT_ENVIRONMENT_VARIABLES="${EXPORT_ENVIRONMENT_VARIABLES}export LD_LIBRARY_PATH=${WORK_SPACE}/lib:\$LD_LIBRARY_PATH;"
# Please install adb, and DON'T run this in the docker.
set -e
adb $ADB_DEVICE_NAME shell "rm -rf $WORK_SPACE"
adb $ADB_DEVICE_NAME shell "mkdir -p $WORK_SPACE"
# Upload the demo, librarys, model and test images to the device
adb $ADB_DEVICE_NAME push ${HOST_SPACE}/lib $WORK_SPACE
adb $ADB_DEVICE_NAME push ${HOST_SPACE}/${DEMO_NAME} $WORK_SPACE
adb $ADB_DEVICE_NAME push models $WORK_SPACE
adb $ADB_DEVICE_NAME push images $WORK_SPACE
# Execute the deployment demo
adb $ADB_DEVICE_NAME shell "cd $WORK_SPACE; ${EXPORT_ENVIRONMENT_VARIABLES} chmod +x ./${DEMO_NAME}; ./${DEMO_NAME} ./models/${MODEL_NAME} ./images/$IMAGE_NAME"