mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 09:07:10 +08:00
Modify file structure to separate python and cpp code (#223)
Modify code structure
This commit is contained in:
156
python/fastdeploy/vision/evaluation/utils/json_results.py
Normal file
156
python/fastdeploy/vision/evaluation/utils/json_results.py
Normal file
@@ -0,0 +1,156 @@
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import six
|
||||
import numpy as np
|
||||
|
||||
|
||||
def get_det_res(bboxes, bbox_nums, image_id, label_to_cat_id_map, bias=0):
|
||||
det_res = []
|
||||
for i in range(bbox_nums):
|
||||
cur_image_id = int(image_id)
|
||||
dt = bboxes[i]
|
||||
num_id, score, xmin, ymin, xmax, ymax = dt
|
||||
if int(num_id) < 0:
|
||||
continue
|
||||
category_id = label_to_cat_id_map[int(num_id)]
|
||||
w = xmax - xmin + bias
|
||||
h = ymax - ymin + bias
|
||||
bbox = [xmin, ymin, w, h]
|
||||
dt_res = {
|
||||
'image_id': cur_image_id,
|
||||
'category_id': category_id,
|
||||
'bbox': bbox,
|
||||
'score': score
|
||||
}
|
||||
det_res.append(dt_res)
|
||||
return det_res
|
||||
|
||||
|
||||
def get_det_poly_res(bboxes, bbox_nums, image_id, label_to_cat_id_map, bias=0):
|
||||
det_res = []
|
||||
k = 0
|
||||
for i in range(len(bbox_nums)):
|
||||
cur_image_id = int(image_id[i][0])
|
||||
det_nums = bbox_nums[i]
|
||||
for j in range(det_nums):
|
||||
dt = bboxes[k]
|
||||
k = k + 1
|
||||
num_id, score, x1, y1, x2, y2, x3, y3, x4, y4 = dt.tolist()
|
||||
if int(num_id) < 0:
|
||||
continue
|
||||
category_id = label_to_cat_id_map[int(num_id)]
|
||||
rbox = [x1, y1, x2, y2, x3, y3, x4, y4]
|
||||
dt_res = {
|
||||
'image_id': cur_image_id,
|
||||
'category_id': category_id,
|
||||
'bbox': rbox,
|
||||
'score': score
|
||||
}
|
||||
det_res.append(dt_res)
|
||||
return det_res
|
||||
|
||||
|
||||
def strip_mask(mask):
|
||||
row = mask[0, 0, :]
|
||||
col = mask[0, :, 0]
|
||||
im_h = len(col) - np.count_nonzero(col == -1)
|
||||
im_w = len(row) - np.count_nonzero(row == -1)
|
||||
return mask[:, :im_h, :im_w]
|
||||
|
||||
|
||||
def get_seg_res(masks, bboxes, mask_nums, image_id, label_to_cat_id_map):
|
||||
import pycocotools.mask as mask_util
|
||||
seg_res = []
|
||||
k = 0
|
||||
for i in range(len(mask_nums)):
|
||||
cur_image_id = int(image_id[i][0])
|
||||
det_nums = mask_nums[i]
|
||||
mask_i = masks[k:k + det_nums]
|
||||
mask_i = strip_mask(mask_i)
|
||||
for j in range(det_nums):
|
||||
mask = mask_i[j].astype(np.uint8)
|
||||
score = float(bboxes[k][1])
|
||||
label = int(bboxes[k][0])
|
||||
k = k + 1
|
||||
if label == -1:
|
||||
continue
|
||||
cat_id = label_to_cat_id_map[label]
|
||||
rle = mask_util.encode(
|
||||
np.array(
|
||||
mask[:, :, None], order="F", dtype="uint8"))[0]
|
||||
if six.PY3:
|
||||
if 'counts' in rle:
|
||||
rle['counts'] = rle['counts'].decode("utf8")
|
||||
sg_res = {
|
||||
'image_id': cur_image_id,
|
||||
'category_id': cat_id,
|
||||
'segmentation': rle,
|
||||
'score': score
|
||||
}
|
||||
seg_res.append(sg_res)
|
||||
return seg_res
|
||||
|
||||
|
||||
def get_solov2_segm_res(results, image_id, num_id_to_cat_id_map):
|
||||
import pycocotools.mask as mask_util
|
||||
segm_res = []
|
||||
# for each batch
|
||||
segms = results['segm'].astype(np.uint8)
|
||||
clsid_labels = results['cate_label']
|
||||
clsid_scores = results['cate_score']
|
||||
lengths = segms.shape[0]
|
||||
im_id = int(image_id[0][0])
|
||||
if lengths == 0 or segms is None:
|
||||
return None
|
||||
# for each sample
|
||||
for i in range(lengths - 1):
|
||||
clsid = int(clsid_labels[i])
|
||||
catid = num_id_to_cat_id_map[clsid]
|
||||
score = float(clsid_scores[i])
|
||||
mask = segms[i]
|
||||
segm = mask_util.encode(np.array(mask[:, :, np.newaxis], order='F'))[0]
|
||||
segm['counts'] = segm['counts'].decode('utf8')
|
||||
coco_res = {
|
||||
'image_id': im_id,
|
||||
'category_id': catid,
|
||||
'segmentation': segm,
|
||||
'score': score
|
||||
}
|
||||
segm_res.append(coco_res)
|
||||
return segm_res
|
||||
|
||||
|
||||
def get_keypoint_res(results, im_id):
|
||||
anns = []
|
||||
preds = results['keypoint']
|
||||
for idx in range(im_id.shape[0]):
|
||||
image_id = im_id[idx].item()
|
||||
kpts, scores = preds[idx]
|
||||
for kpt, score in zip(kpts, scores):
|
||||
kpt = kpt.flatten()
|
||||
ann = {
|
||||
'image_id': image_id,
|
||||
'category_id': 1, # XXX hard code
|
||||
'keypoints': kpt.tolist(),
|
||||
'score': float(score)
|
||||
}
|
||||
x = kpt[0::3]
|
||||
y = kpt[1::3]
|
||||
x0, x1, y0, y1 = np.min(x).item(), np.max(x).item(), np.min(
|
||||
y).item(), np.max(y).item()
|
||||
ann['area'] = (x1 - x0) * (y1 - y0)
|
||||
ann['bbox'] = [x0, y0, x1 - x0, y1 - y0]
|
||||
anns.append(ann)
|
||||
return anns
|
Reference in New Issue
Block a user