mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 17:17:14 +08:00
Modify file structure to separate python and cpp code (#223)
Modify code structure
This commit is contained in:
89
python/fastdeploy/vision/evaluation/utils/coco_metrics.py
Normal file
89
python/fastdeploy/vision/evaluation/utils/coco_metrics.py
Normal file
@@ -0,0 +1,89 @@
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import copy
|
||||
import sys
|
||||
from collections import OrderedDict
|
||||
from .coco_utils import get_infer_results, cocoapi_eval
|
||||
|
||||
|
||||
class COCOMetric(object):
|
||||
def __init__(self, coco_gt, **kwargs):
|
||||
self.clsid2catid = {
|
||||
i: cat['id']
|
||||
for i, cat in enumerate(coco_gt.loadCats(coco_gt.getCatIds()))
|
||||
}
|
||||
self.coco_gt = coco_gt
|
||||
self.classwise = kwargs.get('classwise', False)
|
||||
self.bias = 0
|
||||
self.reset()
|
||||
|
||||
def reset(self):
|
||||
# only bbox and mask evaluation support currently
|
||||
self.details = {
|
||||
'gt': copy.deepcopy(self.coco_gt.dataset),
|
||||
'bbox': [],
|
||||
'mask': []
|
||||
}
|
||||
self.eval_stats = {}
|
||||
|
||||
def update(self, im_id, outputs):
|
||||
outs = {}
|
||||
# outputs Tensor -> numpy.ndarray
|
||||
for k, v in outputs.items():
|
||||
outs[k] = v
|
||||
|
||||
outs['im_id'] = im_id
|
||||
infer_results = get_infer_results(
|
||||
outs, self.clsid2catid, bias=self.bias)
|
||||
self.details['bbox'] += infer_results[
|
||||
'bbox'] if 'bbox' in infer_results else []
|
||||
self.details['mask'] += infer_results[
|
||||
'mask'] if 'mask' in infer_results else []
|
||||
|
||||
def accumulate(self):
|
||||
if len(self.details['bbox']) > 0:
|
||||
bbox_stats = cocoapi_eval(
|
||||
copy.deepcopy(self.details['bbox']),
|
||||
'bbox',
|
||||
coco_gt=self.coco_gt,
|
||||
classwise=self.classwise)
|
||||
self.eval_stats['bbox'] = bbox_stats
|
||||
sys.stdout.flush()
|
||||
|
||||
if len(self.details['mask']) > 0:
|
||||
seg_stats = cocoapi_eval(
|
||||
copy.deepcopy(self.details['mask']),
|
||||
'segm',
|
||||
coco_gt=self.coco_gt,
|
||||
classwise=self.classwise)
|
||||
self.eval_stats['mask'] = seg_stats
|
||||
sys.stdout.flush()
|
||||
|
||||
def log(self):
|
||||
pass
|
||||
|
||||
def get(self):
|
||||
if 'bbox' not in self.eval_stats:
|
||||
return {'bbox_mmap': 0.}
|
||||
if 'mask' in self.eval_stats:
|
||||
return OrderedDict(
|
||||
zip(['bbox_mmap', 'segm_mmap'],
|
||||
[self.eval_stats['bbox'][0], self.eval_stats['mask'][0]]))
|
||||
else:
|
||||
return {'bbox_mmap': self.eval_stats['bbox'][0]}
|
Reference in New Issue
Block a user