mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 09:07:10 +08:00
Modify file structure to separate python and cpp code (#223)
Modify code structure
This commit is contained in:
78
python/fastdeploy/vision/evaluation/segmentation.py
Normal file
78
python/fastdeploy/vision/evaluation/segmentation.py
Normal file
@@ -0,0 +1,78 @@
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from tqdm import trange
|
||||
import numpy as np
|
||||
import collections
|
||||
import os
|
||||
import math
|
||||
import time
|
||||
|
||||
|
||||
def eval_segmentation(model, data_dir):
|
||||
import cv2
|
||||
from .utils import Cityscapes
|
||||
from .utils import f1_score, calculate_area, mean_iou, accuracy, kappa
|
||||
assert os.path.isdir(
|
||||
data_dir), "The image_file_path:{} is not a directory.".format(
|
||||
data_dir)
|
||||
eval_dataset = Cityscapes(dataset_root=data_dir, mode="val")
|
||||
file_list = eval_dataset.file_list
|
||||
image_num = eval_dataset.num_samples
|
||||
num_classes = eval_dataset.num_classes
|
||||
intersect_area_all = 0
|
||||
pred_area_all = 0
|
||||
label_area_all = 0
|
||||
conf_mat_all = []
|
||||
twenty_percent_image_num = math.ceil(image_num * 0.2)
|
||||
start_time = 0
|
||||
end_time = 0
|
||||
average_inference_time = 0
|
||||
for image_label_path, i in zip(file_list,
|
||||
trange(
|
||||
image_num, desc="Inference Progress")):
|
||||
if i == twenty_percent_image_num:
|
||||
start_time = time.time()
|
||||
im = cv2.imread(image_label_path[0])
|
||||
label = cv2.imread(image_label_path[1], cv2.IMREAD_GRAYSCALE)
|
||||
result = model.predict(im)
|
||||
if i == image_num - 1:
|
||||
end_time = time.time()
|
||||
average_inference_time = round(
|
||||
(end_time - start_time) / (image_num - twenty_percent_image_num),
|
||||
4)
|
||||
pred = np.array(result.label_map).reshape(result.shape[0],
|
||||
result.shape[1])
|
||||
intersect_area, pred_area, label_area = calculate_area(pred, label,
|
||||
num_classes)
|
||||
intersect_area_all = intersect_area_all + intersect_area
|
||||
pred_area_all = pred_area_all + pred_area
|
||||
label_area_all = label_area_all + label_area
|
||||
|
||||
class_iou, miou = mean_iou(intersect_area_all, pred_area_all,
|
||||
label_area_all)
|
||||
class_acc, oacc = accuracy(intersect_area_all, pred_area_all)
|
||||
kappa_res = kappa(intersect_area_all, pred_area_all, label_area_all)
|
||||
category_f1score = f1_score(intersect_area_all, pred_area_all,
|
||||
label_area_all)
|
||||
|
||||
eval_metrics = collections.OrderedDict(
|
||||
zip([
|
||||
'miou', 'category_iou', 'oacc', 'category_acc', 'kappa',
|
||||
'category_F1-score', 'average_inference_time(s)'
|
||||
], [
|
||||
miou, class_iou, oacc, class_acc, kappa_res, category_f1score,
|
||||
average_inference_time
|
||||
]))
|
||||
return eval_metrics
|
Reference in New Issue
Block a user