mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-31 03:46:40 +08:00
Modify file structure to separate python and cpp code (#223)
Modify code structure
This commit is contained in:
217
fastdeploy/fastdeploy_model.cc
Normal file
217
fastdeploy/fastdeploy_model.cc
Normal file
@@ -0,0 +1,217 @@
|
||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
#include "fastdeploy/fastdeploy_model.h"
|
||||
#include "fastdeploy/utils/utils.h"
|
||||
|
||||
namespace fastdeploy {
|
||||
|
||||
bool FastDeployModel::InitRuntime() {
|
||||
FDASSERT(
|
||||
CheckModelFormat(runtime_option.model_file, runtime_option.model_format),
|
||||
"ModelFormatCheck Failed.");
|
||||
if (runtime_initialized_) {
|
||||
FDERROR << "The model is already initialized, cannot be initliazed again."
|
||||
<< std::endl;
|
||||
return false;
|
||||
}
|
||||
if (runtime_option.backend != Backend::UNKNOWN) {
|
||||
if (!IsBackendAvailable(runtime_option.backend)) {
|
||||
FDERROR << Str(runtime_option.backend)
|
||||
<< " is not compiled with current FastDeploy library."
|
||||
<< std::endl;
|
||||
return false;
|
||||
}
|
||||
|
||||
bool use_gpu = (runtime_option.device == Device::GPU);
|
||||
#ifndef WITH_GPU
|
||||
use_gpu = false;
|
||||
#endif
|
||||
|
||||
// whether the model is supported by the setted backend
|
||||
bool is_supported = false;
|
||||
if (use_gpu) {
|
||||
for (auto& item : valid_gpu_backends) {
|
||||
if (item == runtime_option.backend) {
|
||||
is_supported = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
for (auto& item : valid_cpu_backends) {
|
||||
if (item == runtime_option.backend) {
|
||||
is_supported = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (is_supported) {
|
||||
runtime_ = std::unique_ptr<Runtime>(new Runtime());
|
||||
if (!runtime_->Init(runtime_option)) {
|
||||
return false;
|
||||
}
|
||||
runtime_initialized_ = true;
|
||||
return true;
|
||||
} else {
|
||||
FDWARNING << ModelName() << " is not supported with backend "
|
||||
<< Str(runtime_option.backend) << "." << std::endl;
|
||||
if (use_gpu) {
|
||||
FDASSERT(valid_gpu_backends.size() > 0,
|
||||
"There's no valid gpu backend for %s.", ModelName().c_str());
|
||||
FDWARNING << "FastDeploy will choose " << Str(valid_gpu_backends[0])
|
||||
<< " for model inference." << std::endl;
|
||||
} else {
|
||||
FDASSERT(valid_cpu_backends.size() > 0,
|
||||
"There's no valid cpu backend for %s.", ModelName().c_str());
|
||||
FDWARNING << "FastDeploy will choose " << Str(valid_cpu_backends[0])
|
||||
<< " for model inference." << std::endl;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (runtime_option.device == Device::CPU) {
|
||||
return CreateCpuBackend();
|
||||
} else if (runtime_option.device == Device::GPU) {
|
||||
#ifdef WITH_GPU
|
||||
return CreateGpuBackend();
|
||||
#else
|
||||
FDERROR << "The compiled FastDeploy library doesn't support GPU now."
|
||||
<< std::endl;
|
||||
return false;
|
||||
#endif
|
||||
}
|
||||
FDERROR << "Only support CPU/GPU now." << std::endl;
|
||||
return false;
|
||||
}
|
||||
|
||||
bool FastDeployModel::CreateCpuBackend() {
|
||||
if (valid_cpu_backends.size() == 0) {
|
||||
FDERROR << "There's no valid cpu backends for model: " << ModelName()
|
||||
<< std::endl;
|
||||
return false;
|
||||
}
|
||||
|
||||
for (size_t i = 0; i < valid_cpu_backends.size(); ++i) {
|
||||
if (!IsBackendAvailable(valid_cpu_backends[i])) {
|
||||
continue;
|
||||
}
|
||||
runtime_option.backend = valid_cpu_backends[i];
|
||||
runtime_ = std::unique_ptr<Runtime>(new Runtime());
|
||||
if (!runtime_->Init(runtime_option)) {
|
||||
return false;
|
||||
}
|
||||
runtime_initialized_ = true;
|
||||
return true;
|
||||
}
|
||||
FDERROR << "Found no valid backend for model: " << ModelName() << std::endl;
|
||||
return false;
|
||||
}
|
||||
|
||||
bool FastDeployModel::CreateGpuBackend() {
|
||||
if (valid_gpu_backends.size() == 0) {
|
||||
FDERROR << "There's no valid gpu backends for model: " << ModelName()
|
||||
<< std::endl;
|
||||
return false;
|
||||
}
|
||||
|
||||
for (size_t i = 0; i < valid_gpu_backends.size(); ++i) {
|
||||
if (!IsBackendAvailable(valid_gpu_backends[i])) {
|
||||
continue;
|
||||
}
|
||||
runtime_option.backend = valid_gpu_backends[i];
|
||||
runtime_ = std::unique_ptr<Runtime>(new Runtime());
|
||||
if (!runtime_->Init(runtime_option)) {
|
||||
return false;
|
||||
}
|
||||
runtime_initialized_ = true;
|
||||
return true;
|
||||
}
|
||||
FDERROR << "Cannot find an available gpu backend to load this model."
|
||||
<< std::endl;
|
||||
return false;
|
||||
}
|
||||
|
||||
bool FastDeployModel::Infer(std::vector<FDTensor>& input_tensors,
|
||||
std::vector<FDTensor>* output_tensors) {
|
||||
TimeCounter tc;
|
||||
if (enable_record_time_of_runtime_) {
|
||||
tc.Start();
|
||||
}
|
||||
auto ret = runtime_->Infer(input_tensors, output_tensors);
|
||||
if (enable_record_time_of_runtime_) {
|
||||
tc.End();
|
||||
if (time_of_runtime_.size() > 50000) {
|
||||
FDWARNING << "There are already 50000 records of runtime, will force to "
|
||||
"disable record time of runtime now."
|
||||
<< std::endl;
|
||||
enable_record_time_of_runtime_ = false;
|
||||
}
|
||||
time_of_runtime_.push_back(tc.Duration());
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
std::map<std::string, float> FastDeployModel::PrintStatisInfoOfRuntime() {
|
||||
std::map<std::string, float> statis_info_of_runtime_dict;
|
||||
|
||||
if (time_of_runtime_.size() < 10) {
|
||||
FDWARNING << "PrintStatisInfoOfRuntime require the runtime ran 10 times at "
|
||||
"least, but now you only ran "
|
||||
<< time_of_runtime_.size() << " times." << std::endl;
|
||||
}
|
||||
double warmup_time = 0.0;
|
||||
double remain_time = 0.0;
|
||||
int warmup_iter = time_of_runtime_.size() / 5;
|
||||
for (size_t i = 0; i < time_of_runtime_.size(); ++i) {
|
||||
if (i < warmup_iter) {
|
||||
warmup_time += time_of_runtime_[i];
|
||||
} else {
|
||||
remain_time += time_of_runtime_[i];
|
||||
}
|
||||
}
|
||||
double avg_time = remain_time / (time_of_runtime_.size() - warmup_iter);
|
||||
std::cout << "============= Runtime Statis Info(" << ModelName()
|
||||
<< ") =============" << std::endl;
|
||||
std::cout << "Total iterations: " << time_of_runtime_.size() << std::endl;
|
||||
std::cout << "Total time of runtime: " << warmup_time + remain_time << "s."
|
||||
<< std::endl;
|
||||
std::cout << "Warmup iterations: " << warmup_iter << std::endl;
|
||||
std::cout << "Total time of runtime in warmup step: " << warmup_time << "s."
|
||||
<< std::endl;
|
||||
std::cout << "Average time of runtime exclude warmup step: "
|
||||
<< avg_time * 1000 << "ms." << std::endl;
|
||||
|
||||
statis_info_of_runtime_dict["total_time"] = warmup_time + remain_time;
|
||||
statis_info_of_runtime_dict["warmup_time"] = warmup_time;
|
||||
statis_info_of_runtime_dict["remain_time"] = remain_time;
|
||||
statis_info_of_runtime_dict["warmup_iter"] = warmup_iter;
|
||||
statis_info_of_runtime_dict["avg_time"] = avg_time;
|
||||
statis_info_of_runtime_dict["iterations"] = time_of_runtime_.size();
|
||||
return statis_info_of_runtime_dict;
|
||||
}
|
||||
|
||||
void FastDeployModel::EnableDebug() {
|
||||
#ifdef FASTDEPLOY_DEBUG
|
||||
debug_ = true;
|
||||
#else
|
||||
FDWARNING << "The compile FastDeploy is not with -DENABLE_DEBUG=ON, so "
|
||||
"cannot enable debug mode."
|
||||
<< std::endl;
|
||||
debug_ = false;
|
||||
#endif
|
||||
}
|
||||
|
||||
bool FastDeployModel::DebugEnabled() { return debug_; }
|
||||
|
||||
} // namespace fastdeploy
|
||||
Reference in New Issue
Block a user